Effect Mechanism and Performance Evaluation of Flange Contact Thermal Resistance in an Aero-Engine

Chen, Yan and Chen, Liyuan and Chu, Wuli (2022) Effect Mechanism and Performance Evaluation of Flange Contact Thermal Resistance in an Aero-Engine. Aerospace, 9 (3). p. 121. ISSN 2226-4310

[thumbnail of aerospace-09-00121-v2.pdf] Text
aerospace-09-00121-v2.pdf - Published Version

Download (5MB)

Abstract

According to the discontinuous structural characteristics of a gas turbine, by considering the contact thermal resistance of the rough surface, a contact thermal resistance measurement experiment was conducted in this study. The main objectives of this work were to investigate the influence mechanism and change law of the contact thermal resistance characteristics on flange installation. Furthermore, this study conducted a theoretical analysis of contact thermal resistance and the calculation of a typical flange mounting edge based on actual operating conditions. The research results show that the contact thermal resistance of a typical flange mounting edge increases with an increase in flange clearance under different tightening torques, which is essentially proportional to the flange clearance. As the flange clearance increases, the unit contact thermal conductivity firstly decreases rapidly. Then, as the flange clearance reaches 0.4 mm, the decreasing rate of unit contact thermal conductivity tends to flatten. In addition, the contact thermal resistance of the typical flange mounting edge decreases with the increase in the tightening torque under different flange clearances. Furthermore, the contact area ratio is not related to the material, and the contact thermal resistance under actual working conditions can be calculated using the unit contact area.

Item Type: Article
Subjects: Library Keep > Engineering
Depositing User: Unnamed user with email support@librarykeep.com
Date Deposited: 29 Mar 2023 07:53
Last Modified: 02 Jan 2024 13:16
URI: http://archive.jibiology.com/id/eprint/402

Actions (login required)

View Item
View Item