Effect of Cellular-Based Artificial Antigen Presenting Cells Expressing ICOSL, in T-cell Subtypes Differentiation and Activation

Talebi, Mehdi and Nozad Charoudeh, Hojjatollah and Movassagpour Akbari, Ali Akbar and Baradaran, Behzad and Kazemi, Tohid (2020) Effect of Cellular-Based Artificial Antigen Presenting Cells Expressing ICOSL, in T-cell Subtypes Differentiation and Activation. Advanced Pharmaceutical Bulletin, 11 (3). pp. 537-542. ISSN 2228-5881

[thumbnail of apb-11-537.pdf] Text
apb-11-537.pdf - Published Version

Download (859kB)

Abstract

Purposes: Effective and selective T-cell activation and proliferation during the T-cell expansion phase of a cellular adoptive immunotherapy method, challenging because recent studies revealed the importance of each subtype of T-cells in different immunologic strategies against tumors, like CAR-T cell therapies. Artificial antigen presenting cells (aAPCs) regarded as a natural way to manipulate T-cell subtypes activation and specific proliferation. In the current study, we utilized K562 cells based aAPC method expressing the ICOSL molecule, to evaluate T-cell subtypes differentiation rate and functional status.

Methods: CD3+T-cells isolated and, co-cultured with ICOSL expressing K562 cells. After 4, 6, and 10 days selective CD markers of T-cell subtypes and each subtype’s activity-related genes levels evaluated by qPCR methods.

Results: During the culture period, CD4+ Th related phenotype reduced continuously, and in day 10th of culture CD4+ T-cell’s population significantly reduced (P=0.029). In contrast, the CD8+ population ratio was ascending during the study period but was not statistically significant. FoxP3+CD25-, Treg population ratio was significantly increased during the time in comparison with the control group, as well as memory T-cell phenotypic marker, CD127+, expressing cells ratio. T-cell subpopulations activity-related genes expression levels evaluated too, and the Th1 related IL-2 and INF-γ reductions observed alongside regulatory T-cells gene (IL-10) and Cytotoxic T-cell’s related gene (Geranzym-A) elevations.

Conclusion: We concluded that the K562-ICOSL based aAPC system is working and effective in T-cell short to medium culture periods, and this approach preparing relatively selective milieu for CD8+ T-Cell differentiation and much less Treg differentiation.

Item Type: Article
Subjects: Library Keep > Medical Science
Depositing User: Unnamed user with email support@librarykeep.com
Date Deposited: 22 Mar 2023 09:41
Last Modified: 06 Apr 2024 12:39
URI: http://archive.jibiology.com/id/eprint/370

Actions (login required)

View Item
View Item