Saleem, M. and Khan, K. H. and Yasmin, Nusrat (2015) Estimation and Forecasting Survival of Diabetic CABG Patients (Kalman Filter Smoothing Approach). American Journal of Computational Mathematics, 05 (04). pp. 405-413. ISSN 2161-1203
AJCM_2015112614482975.pdf - Published Version
Download (472kB)
Abstract
In this paper, we present a new approach (Kalman Filter Smoothing) to estimate and forecast survival of Diabetic and Non Diabetic Coronary Artery Bypass Graft Surgery (CABG) patients. Survival proportions of the patients are obtained from a lifetime representing parametric model (Weibull distribution with Kalman Filter approach). Moreover, an approach of complete population (CP) from its incomplete population (IP) of the patients with 12 years observations/follow-up is used for their survival analysis [1]. The survival proportions of the CP obtained from Kaplan Meier method are used as observed values yt at time t (input) for Kalman Filter Smoothing process to update time varying parameters. In case of CP, the term representing censored observations may be dropped from likelihood function of the distribution. Maximum likelihood method, in-conjunction with Davidon-Fletcher-Powell (DFP) optimization method [2] and Cubic Interpolation method is used in estimation of the survivor’s proportions. The estimated and forecasted survival proportions of CP of the Diabetic and Non Diabetic CABG patients from the Kalman Filter Smoothing approach are presented in terms of statistics, survival curves, discussion and conclusion.
Item Type: | Article |
---|---|
Subjects: | Library Keep > Mathematical Science |
Depositing User: | Unnamed user with email support@librarykeep.com |
Date Deposited: | 16 Jun 2023 09:43 |
Last Modified: | 11 Jan 2024 04:49 |
URI: | http://archive.jibiology.com/id/eprint/1140 |