
*Corresponding author: E-mail: frlopez@uacj.mx;

British Journal of Applied Science & Technology
13(4): 1-9, 2016, Article no.BJAST.22267

ISSN: 2231-0843, NLM ID: 101664541

SCIENCEDOMAIN international

 www.sciencedomain.org

A Genetic Algorithm with Neighborhood Search to
Solve Integer and Linear Programming Problems

Francisco Javier Lopez-Jaquez1*

1
Autonomous University of Ciudad Juarez, Av. Del Charro 450 N. C.P. 32310, Ciudad Juarez,

Chihuahua, Mexico.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJAST/2016/22267
Editor(s):

(1) Qing-Wen Wang, Department of Mathematics, Shanghai University, P.R. China.
Reviewers:

(1) Radha Gupta, Visvesvaraya Technological University, India.
(2) Rajesh Chandrakant Sanghvi, Gujarat Technological University, Gujarat, India.

(3) Saleem Zeyad Ramadan, Applied Science Private University, Jordan.
(4) Stephen Akandwanaho, University of KwaZulu-Natal, South Africa.

(5) Tamer F. Abdelmaguid, Cairo University, Egypt.
Complete Peer review History: http://sciencedomain.org/review-history/12516

Received 26
th

 September 2015
Accepted 17

th
 November 2015

Published 2
nd

 December 2015

ABSTRACT

In this paper, a metaheuristic algorithm that combines genetic and neighbor search algorithms is
proposed to solve integer linear programming problems. The individuals of the population are
binary coded into a sequence of chromosomes (variables). Initially, chromosome length is five bits
(genes) but if required they grow, up to 21 genes per chromosome, when looking for optima. The
algorithm includes a test based on systematic neighborhood search to decide if it continues or
stops. The algorithm is able to solve maximal or minimal integer linear programming problems in
standard or non-standard form and linear programming problems with a simple adaptation. A
comparative study was conducted with three algorithms; LINGO, Simplex LP and Evolutionary.
These last two algorithms are from commercial solver in Excel spreadsheet software. The results
show that the algorithm was able to find similar solution with LINGO and Simplex LP but better than
the Evolutionary. A time study using problems from literature with two, three, four, eight and twelve
variables is included.

Keywords: Optimization; metaheuristic; maximization; minimization; genetic algorithm.

Short Research Article

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

2

1. INTRODUCTION

This paper presents and discusses a first effort to
deploy a piece of software capable of finding
solution at Integer Linear Programming (ILP) and
Linear Programming (LP) problems. The test
examples are limited to simple examples that
range from two up to four variables and up to six
constraints. The implementation is based on a
variation of the classical Genetic Algorithm (GA)
as first discussed in [1]. Research on this topic
keeps on going due to the difficulty found
when looking for optimal solutions to ILP
problems [2-4].

This paper reports the results when
implementing a variation of GA with a set of
control parameters to search for optima with
normal or aggressive GA mechanism, not only to
escape from local optima but also to focus the
generation of solutions. Furthermore, we deal
with one of the questions when applying the GA:
how many generations should the GA must run?
The answer could be as much as possible, but it
is a vague response. Usually, implementations
use a time limit some others terminate after a
certain number of generations where no
improving has been found or all individual
chromosomes are identical [2,3]. In this
implementation a test applying a systematic
neighborhood iterated search is conducted [4]. If
one better solution is found in the neighborhood
of the current solution then the algorithm is
triggered again or ends otherwise.

The implementation includes six control
parameters: the model definition: maximization or
minimization, number of generations from 100 to
10000, number of ages from 1 to 40, crossover
level, mutation level, neighbor range and
diversity level. The algorithm is able to run in a
progressive way i.e. if at the end of a run it runs
again it will use the results from last run to
continue searching for optima and it is where the
history tracking control fits, if a completely new
run is required.

For each age selected, the algorithm runs the
number of generations specified. The algorithm
keeps track of fittest individual found on each
age and the fittest individual of all ages will be
the solution, the best solution, an approximation
to the optimal one if not the optimal, along with a
list of the fittest individuals of all ages.

GAs are an active research topic that has been
implemented to solve optimization problems from

non-linear programming, task scheduling,
computer vision and multi-objective resource
allocation problems [3,5-7], and of course,
integer linear programming [8,9], among others.
The mixing of GA with neighborhood search is
not new, it has been used to solve problems
related to resource scheduling, machine cell
formation and traveling salesman problem,
among others [10-12],

Section 2 is about the variation of the GA
mechanisms and how they were implemented.
Section 3 describes de implementation software.
Section 4 presents a comparative study with two
other algorithms from commercial software,
Microsoft Excel Solver. Section 5 includes a time
study with problems ranging from two to twelve
variables, maximization and minimization in
standard and non-standard from literature.
Finally, on Section 6 there are conclusions and
recommendations for further research.

2. THE GENETIC ALGORITHM
MECHANISMS

In this section, the mechanisms as implemented
are discussed. For further explanation of the
classical mechanisms of the GA they can be
found in [1].

2.1 Initial Population

On generation zero, population is generated
randomly but from age one and above the initial
population for that, is generated based on a
diversity level. A level of 100% means that
population is generated at random. If this level is
set to 50%, for example, there is a 50% chance
that individuals will be generated at random and
the other 50% will be a neighbor from current
best solution, at random but inside a maximum
neighbor range.

On generation zero, one individual goes through
chromosome repair if it is not feasible [13]. The
algorithm uses Equation (1) to compensate a not
feasible individual and make it feasible. It is the
same for minimization or maximization but on
maximization, it decreases the variables values,
xj, if a less than constraint is not met. On the
other hand, on minimization, it increases the
variables values only when a greater than
constraint is not met. The algorithm computes
the sum of coefficients cij at the start of a run. It
has been observed that in this implementation
the use of equation (1) helps to accelerate the
convergence of the algorithm.

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

3

Initial population is size 50 and it remains the
same through all the optima searching process.
Every generation ten individuals are generated
applying crossover and/or mutation and they
replace ten individuals of the population, the ten
individuals with lower fitness evaluation.

Once the initial population is ready, the
reproduction process is called (crossover and
mutation). By default there is a 50-50% chance
that a new individual is created using the
crossover or mutation mechanisms. But it can be
adjusted to a desirable value with the controls
provided.

 (1)

2.2 Crossover

The algorithm selects two individuals from the
population at random and at least one
chromosome goes through crossover. A random
position in the chromosome is selected and the
new individual inherits all the genes from the
random position to the right or left of one parent

followed by all the genes to the left or right of the
random position, from the other parent. There is
a 50% chance that the procedure includes all the
chromosomes and 50% that it uses a subset of
chromosomes. There is a 50% chance of
switching who is parent one and who is parent
two. Fig. 1 illustrates the crossover process.

Parents are selected randomly from population
where the fittest individual has 1/10 chance to be
selected for crossover or mutation, while
individuals ranked from position 2 to 6 have 1/30
chance and remain individuals have 1/60
chance.

2.3 Mutation

There are four mutation strategies with equal
chance to modify a chromosome: one gene
mutation with value switching, one gene mutation
with random value setting, multiple gene
mutation and offset mutation. In offset mutation,
the algorithm mutates the chromosomes from
current best solution to another value but inside
of range limit from current chromosome value. In
this mutation option, the algorithm generates an
integer value randomly from zero up to a range
limit, an offset, and there is 50-50% chance to go
up or down from current chromosome value. The
algorithm converts the resulting value of the
chromosome to its binary equivalent. Fig. 2
illustrates all four strategies for mutation; the
dash lines indicate alternatives due to 50%
chance. The illustration depicts a chromosome of
13 genes length at the center of the illustration,
from where new chromosomes could be
generated using one of the four possible
strategies. The algorithm assigns same
probability to all mutation strategies.

Fig. 1. Example of crossover mechanism with 4 chromosomes and 13 genes

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

4

Fig. 2. Mutation strategies sample

2.4 Evaluation

Individuals are evaluated using the objective
function and each time a constraint is not met a
penalty is considered. The size of the penalty is
the sum of the quantities but it goes beyond the
constraints limits times the number of restrictions
that was not able to meet and times a sensibility
factor. The algorithm deducts a penalty from the
objective function value when looking for maxima
or adds to it when looking for minimal.

The highest value from the objective function
coefficients and the constraints critical values is
set as the sensibility but if it is lower than 100
then sensibility is set to 100 and 10 000 if it is
greater than 10 000.

3. THE IMPLEMENTATION

The implementation runs on any web browser
with HTML5 and JavaScript support. All the tests
were run under Linux Ubuntu platform using
Firefox web browser. At present time, the
implementation supports up to twelve variables
and eleven constraints. All the runs were done
using a laptop 3.9 GB, Intel® Core™ 2 Duo CPU

T7250 @ 2.00GHz × 2, Ge Force 9200M, 32-bit
OS. Fig. 3 shows a screen shot of the
implementation. The implementation is available
to install on Android devices at Google Play
under the name MathGO.

After clicking the find solution button, the
algorithm creates 50 individuals Each individual
is set to have equal number of chromosomes as
the number of variables in the objective function.
All chromosomes are set to five genes length but
they will grow if required, small chromosome
length reduces the searching space [6]. The
algorithm assigns at random a zero or a one to
every gene. All individuals go to evaluation
process and, if model selector is set to maximize,
the algorithm sorts the population in descending
order whereas, if selector is set to minimize, the
algorithm sorts the population in ascending
order.

The algorithm generates ten new individuals on
every generation applying the crossover and
mutation mechanisms. New individuals replace
the last 10 individuals of the population and
sorting reorders the population. The best solution
is at the top of the list.

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

5

Fig. 3. Implementation display including a partial results list after a run

The implementation displays a coefficient matrix
where there are input fields and control buttons.
There is one button to select the model:
maximize or minimize. When selecting maximize
or minimize model the operator of the constraints
will change automatically from less than to
greater than, or vice versa. However, the
inequality operators can be change
independently as required. The algorithm is able
to solve non-standard problems without the need
to convert them into standard form. Below the
constraints matrix there are five fields to define
the number of generation, ages, crossover,
mutation and neighbor range.

Once all the coefficients, critical constraint
values, and algorithm parameters are set,
clicking on the find solution button will trigger the
GA will start the search for optima. At the end of
every age, the algorithm displays a list of the
population, the fitness value for each individual,
variables and their values up to that age. It is
possible to change the parameters values while
the algorithm is running or stop the running,
adjust parameters or change coefficients and
continue the run.

Currently the algorithm solves ILP problems but it
can be used to solve LP problems without the

need to change the implementation. If variables
are required to get one, two or more decimal
point precision just moving the decimal point of
the constraint limits, adding zeros to the right or
move the decimal point one place for each digit
after the decimal point required. The variables
values will still be integers but just move the
decimal point to the left the same number of
places as in the critical constraints values to get
a final solution, with decimal point, the same for
the objective function value. All the problems in
the set used to test the algorithm where a
continuous solution was required were solved
using this adaptation.

4. RESULTS AND DISCUSSION

4.1 Comparative Study

A comparative analysis with commercial software
was conducted. Eleven four variables problems
were used in this comparative study, three of the
problems (9, 10 and 11) are originally LP but
were solved adapting them to be solved using
ILP. All the problems are from [14]. LINGO and
the standard solver in Windows Excel were used
to compare the solutions of the proposed
algorithm (ILPGA). The two algorithms in the

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

6

Excel Solver are Simplex LP and Evolutionary
[15]. There is another algorithm in the Excel
solver, the GRG nonlinear but it was not used on
this comparative study. Table 1 lists the solutions
obtained from the four algorithms. Column A lists
the algorithms: Lingo that uses branch and
bound, SLP is the Simplex LP and E is the
Evolutionary, for short, both from Microsoft Excel
Solver, GA1 is the proposed implementation
based on a variation of the genetic algorithm and
neighbor search. Column Z is the objective
function value and the other columns are the
variables values outcome after running the
algorithm.

ILPGA is able to find equal solution than LINGO
and SLP but it takes longer. There are problems
where alternative variables values result in same
solution and the ILPG is able to list those
alternatives. Table 1 lists only two alternatives for
ILPGA on problem 1 and 4. The list of
alternatives helps to deduct that any combination
where x1 plus x3 is equal to 50 is a solution, in
case of problem 1.

Only in problem 9, the ILPGA and SLP outcome
was different, but probably SLP requires a
different setting than the one used in this
comparative study. Both solutions were different

than the one given in [14], it seems that ILPGA is
a better solution because it is lower than the one
found using SLP and it does not violates any
constraints as the solution given in [14]. The SLP
algorithm is based on the branch and bound
algorithm, which is one of today´s fastest
algorithms [15].

Lingo also uses branch and bound and the
outcome is the optimal solution. Branch and
bound easily outperforms any GA if it is
compared just based on time and especially in
this set of simple problems being used here.
However, as mentioned before, there are other
characteristics like the one to find different
solutions where they exist, flexibility, and easy to
code, among others, that makes GAs
appropriate but for sure requires more time and
runs than Lingo or SLP.

In the comparative, the SLP did not take more
than 7 seconds to find a solution in the worse
scenarios of Problems 9, 10 and 11. However, in
Problem 9 the SLP was not able to come out
with a better solution even after running it
multiple times. The ILPGA was able and it did
take, on average, 55, 36 and 97 seconds to find
the solution of problems 9, 10 and 11,
respectively.

Fig. 4. Time dispersion of average time, from five runs, to get the solution of 117 simple “toy
problems” from literature

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

7

Table 1. Comparative study outcome

Model A Z x1 x2 x3 x4
Min. Z = x1 + 2x2 + x3 + 5x4
s.t. x1 + x2 + x3 + x4 ≥ 50
 3x1 + x2 + 2x3 + x4 ≥ 100

Lingo 50 50 0 0 0
SLP 50 50 0 0 0
E 63 13 0 50 0
GA1 50 50 0 0 0
GA1 50 2 0 48 0

Min. Z = 0.25x1 + 0.23x2 + 0.22x3 + 0.21x4
s.t. x1 + x2 ≥ 350
 x3 + x4 ≥ 300
 x1 + x3 ≤ 370
 x2 + x4 ≤ 290

Lingo 147.7 60 290 300 0
SLP 147.7 60 290 300 0
E 147.7 60 290 300 0
GA1 147.7 60 290 300 0

Max. Z = x1 + 2x2 + x3 + 5x4
s.t. x1 + 2x2 + x3 + x4 ≤ 50
 3x1 + x2 + 2x3+ x4 ≤ 100

Lingo 250 0 0 0 50
SLP 250 0 0 0 50
E 230 5 0 0 45
GA1 250 0 0 0 50

Max. Z = x1 + x2 + 4x3 + 5x4
s.t. x1 + 2x2 + 3x3 + x4 ≤ 115
 2x1 + x2 + 8x3 + 5x4 ≤ 200
 x1 + x3 ≤ 50

Lingo 200 0 0 0 40
SLP 200 0 0 0 40
E 196 4 37 0 31
GA1 200 0 40 0 32
GA1 200 0 0 0 40

Min. Z = 1.2x1 + 2.1x2 + 1.8x3 + 1.5x4
s.t. x1 + x2 = 500;
 x3 + x4 = 1000;
 x1 + x3 ≤ 900;
 x2 + x4 ≤ 700;

Lingo 2190 5000 0 300 700
SLP 2190 500 0 300 700
E 2790 0 500 800 200
GA1 2190 500 0 300 700

Min. Z = 14x1 + 22x2 + 12x3 + 10x4
s.t. x1 + x2 ≤ 25;
 x3 + x4 ≤ 30
 x1 + x3 = 32;
 x2 + x4 = 20;

Lingo 628 22 0 10 20
SLP 628 22 0 10 20
E 828 2 20 30 0
GA1 628 22 0 10 20

Min. Z = 30x1 + 20x2 + 25x3 + 22x4
x1 + x2 ≥ 3 000;
x3 + x4 ≤ 5 000
x1 + x3 ≤ 5 000
2x1 + 6x2 + 5x3 + 4x4 ≤ 40000

Lingo 180400 200 2800 2800 2200
SLP 180400 200 2800 2800 2200
E 180400 200 2800 2800 2200
GA1 180400 200 2800 2800 2200

Min. Z = 30x1 + 20x2 + 25x3 + 22x4
x1 + x2 ≥ 3 000;
x3 + x4 ≥ 5 000
x1 + x3 = 5 000;
x2 + x4 = 5 000;
2x1 + 6x2 + 5x3 + 4x4 ≤ 40 000

Lingo 244400 2200 800 2800 4200
SLP 244400 2200 800 2800 4200
E 250000 3000 0 2000 5000
GA1 244400 2200 800 2800 4200

Min. Z = 152x1 + 61.44x2 + 884x3 + 23x4
10.33x1 + 3.29x2 + 2.9 x4 ≥ 400
11.44x1 + 3.34x2 +100 x3 + 0.26x4 ≥ 2000
1.04x1 + 4.66x2 + 3.75x4 ≥ 1500; x2 ≥ 30.5

Lingo 26181.08 0 32 18 361
SLP 26196.52 0 33 18 359
E 28623.68 0 322 10 0
GA1 26181.08 0 32 18 361

Max. Z = 4.09x1 + 2.37x2 + 2.5x3 + 4.64x4
263x1 + 14x2 + 448.8x3 + 21x4 ≤ 2600000
492.5x1 + 36x2 + 5x4 ≥ 2100000
10.33x1 + 1.62x2 + 0.85x4 ≥ 60000
 x1 + x2 + x3 + x4 ≤ 40000; x3 ≥ 3125

Lingo 124047 2430 23581 3125 10864
SLP 124047 2430 23581 3125 10864
E 123091 2437 23886 3127 10495
GA1 124047 2430 23581 3125 10864

Min. Z = 215x1 + 884x2 + 38x3 + 60x4
26x1 + 1.16x3 + 10.51x4 ≥ 500000
 x2 + 8.63x3 + 5.57x4 ≤ 100000
 6.4x3 ≥ 35 000 and x2 ≥ 450

Lingo 4434922 15188 450 5469 9398
SLP 4434922 15188 450 5469 9398
E 4687827 18987 450 5469 0
GA1 4434922 15188 450 5469 9398

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

8

4.2 Time Study

Fig. 4 illustrates the average time from five runs
of 117 problems: from one to 59 were problems
with two variables, from 60 to 102 were problems
with three variables, from 103 to 113 was the set
of problems with four variables, the ones used in
the comparative study. Problems range from
finding maxima and minima with standard and
non-standard constraints. All these problems
came from [14], some are from examples and
others are from the exercises section. Last four
problems were the alternatives of the CAPLOC
problem in [16]. This problem was divided into
four alternatives: three alternatives with eight
variables and ten constraints and one alternative
with twelve variables and eleven constraints.

There were problems where no maxima exist. In
these cases, variables keep increasing their
value until they reach the maximum limit number
of genes and the algorithm terminates the search
for optima with a message indicating that not
maxima exist and the upper number of genes
has been reached. The algorithm was set to run
using 500 generations and 10 ages.

5. CONCLUSION

GA1 algorithm performed better than the
Evolutionary implementation in Excel Standard
Solver and was able to find equal solutions than
the Simplex LP. In one problem, GA1 was able
to come up with a better solution than the
Simplex LP.

More research is required to determine the
parameter values to fine tuning the algorithm for
a particular set of constraints and the objective
function.

More research will be conducted taking into
account bigger problems but the implementation
until now is able to solve academic problems with
up to twelve variables and eleven constraints.

The test to find if the algorithm keeps running
requires more research because as the number
of variables increases the number of iterations
required during testing grows exponentially with
it. At twelve variables, testing was set to look in
±1 range and this reduces the power of the test
to find a neighbor solution. For now, in cases like
this, the alternative is to run one more time or
many more times as desirable in hope of finding
a better solution.

Another line of research is the improving of
equation (1) to better compensate infeasible
solutions in the early generations to help
accelerate the convergence of the algorithm.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

REFERENCES

1. Holland JH. Genetic algorithms. Scientific

American. 1992;66-72.
2. Al-Sallami N, Al-Aloussi S. A genetic

algorithm in green cloud computing. British
Journal of Applied Science & Technology.
2015;7(2):179-185.

3. El-Qorashy FA, Nabwey HA, Mousa AA. A
Combined Genetic Algorithms-local Search
Engine (GAs–LCE) in constrained
nonlinear programming. British Journal of
Applied Science & Technology. 2015;8(3):
324-333.

4. Castilla-Valdez G, Bastiani-Medina SS.
Iterated local search for the linear ordering
problem. International Journal of
Combinatorial Optimization Problems and
Informatics. 2015;3(1):12-20.

5. Singh J, Singh G. An optimized genetic
approach for scheduling task duplication in
parallel systems. British Journal of Applied
Science & Technology. 2015;10(1):1-12.

6. Rajagopalan R. A genetic algorithm for
optimizing background subtraction
parameters in computer vision. British
Journal of Applied Science & Technology.
2014;4(29):4148-4155.

7. Farag MA, El-Shorbagy MA, El-Desoky IM,
El-Sawy AA, Mousa AA. Genetic algorithm
based on K-means-clustering technique for
multi-objective resource allocation
problems. British Journal of Applied
Science & Technology. 2015;8(1):80-96.

8. Hua Z, Huang F. A variable-grouping
based genetic algorithm for large-scale
integer programming. Information
Sciences. 2006;176:2869-2885.

9. Huy PNA, San CTB, Triantaphyllou E.
Solving integer programming problems
using genetic algorithms. In: ICEIC:
International Conference on Electronics,
Informations and Commumications. 2004;
400-404.

10. Sepehr Proon, Mingzhou Jin. A genetic
algorithm with neighborhood search for the
resource-constrained project scheduling

Lopez-Jaquez; BJAST, 13(4): 1-9, 2016; Article no.BJAST.22267

9

problem. Naval Research Logistics. 2011;
58(2):73-82.

11. Elbenani B, Ferland JA, Bellemare J.
Genetic algorithm and large
neighbourhood search to solve the cell
formation problem. CIRRELET. 2010;39:
1-17.

12. Borna K, Hashemi VH. An improved
genetic algorithm with a local optimization
strategy and an extra mutation level for
solving traveling salesman problem. Int. J.
of Comp. Sci, Eng. and Inf. Technology.
2014;4(4):47-53.

13. Kimbrough SO, Koehler GJ, Lu M, Wood
DH. On a Feasible–Infeasible Two-

Population (FI-2Pop) genetic algorithm for
constrained optimization: Distance tracing
and no free lunch. European Journal of
Operational Research. 2008;190:310-327.

14. Lial ML, Hungerford TW. Linear
programming. In: Mathematics with
Applications. 8th ed. Pearson Education;
2003.

15. Fylstra D, Lasdon L, Watson J, Waren A.
Design and use of the Microsoft Excel
Solver. Interfaces. 1998;28(5):29-55.

16. LINDO Systems Inc. Lingo user's manual.
Available:http://www.lindo.com/downloads/
PDF/LINGO.pdf (Accessed 24 September
2015)

© 2016 Lopez-Jaquez; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here:
http://sciencedomain.org/review-history/12516

