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Abstract

Bowman et al. reported low-frequency photometric variability in 164 O- and B-type stars observed with K2 and
TESS. They interpret these motions as internal gravity waves, which could be excited stochastically by convection
in the cores of these stars. The detection of internal gravity waves in massive stars would help distinguish between
massive stars with convective or radiative cores, determine core size, and would provide important constraints on
massive star structure and evolution. In this work, we study the observational signature of internal gravity waves
generated by core convection. We calculate the wave transfer function, which links the internal gravity wave
amplitude at the base of the radiative zone to the surface luminosity variation. This transfer function varies by
many orders of magnitude for frequencies 1 days−1, and has regularly spaced peaks near 1 days−1 due to
standing modes. This is inconsistent with the observed spectra that have smooth “red noise” profiles, without the
predicted regularly spaced peaks. The wave transfer function is only meaningful if the waves stay predominately
linear. We next show that this is the case: low-frequency traveling waves do not break unless their luminosity
exceeds the radiative luminosity of the star; the observed luminosity fluctuations at high frequencies are so small
that standing modes would be stable to nonlinear instability. These simple calculations suggest that the observed
low-frequency photometric variability in massive stars is not due to internal gravity waves generated in the core of
these stars. We finish with a discussion of (sub)surface convection that produces low-frequency variability in low-
mass stars; this is very similar to that observed in Bowman et al. in higher-mass stars.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Internal waves (819); Astrophysical fluid
dynamics (101); Stellar oscillations (1617); Massive stars (732)

1. Introduction

Massive stars play an important role in astrophysics, driving
galactic turbulence that regulates star formation (Hayward &
Hopkins 2016) and enriching the chemical composition of the
interstellar medium (Nomoto et al. 2013). It is thus important
to test and calibrate models of massive star structure and
evolution. Asteroseismology is an unparalleled technique to
probe the interiors of stars (Aerts et al. 2010), and space-based
photometry has revolutionized our understanding of stellar
interiors (e.g., Aerts et al. 2019).

The detection of internal gravity waves, which propagate
to the bottom of a star’s radiative zone, provides precious
information about the cores and interiors of massive stars (e.g.,
Zwintz et al. 2017; Ouazzani et al. 2019). Bowman et al.
(2019b, hereafter B19) detected low-frequency variability in a
large population of massive stars (following similar detections
in fewer stars by, e.g., Blomme et al. 2011). In over 100
massive stars, B19 detected luminosity variations with roughly
constant amplitude for frequencies 1 days−1, and power laws
with slope −2 to −3 at higher frequencies. This “red noise”
signal is very different from previous detections of discrete
peaks in the power spectrum, which is likely due to linearly

unstable g-modes (Pápics et al. 2017). B19 interpret this low-
frequency variability as internal gravity waves, which could be
excited by core convection.
Much of the early work on wave generation by convection

was motivated by the Sun and stars with convective envelopes
(e.g., Press 1981; Goldreich & Kumar 1990). These theories
were extended to massive stars with convective cores (e.g.,
Lecoanet & Quataert 2013), and were validated by high-
resolution, turbulent, 3D numerical simulations in Cartesian
geometry (Couston et al. 2018). They find an excitation
spectrum that decreases rapidly for frequencies above the
convective turnover frequency. In contrast, work by other
authors has found extremely shallow wave spectra at high
frequencies (Rogers et al. 2013; Edelmann et al. 2019). There is
currently no consensus on the spectrum of internal gravity
waves at the radiative–convective boundary.
Simulations of wave excitation by convection do not follow

the propagation of internal waves to the surface. To predict
surface luminosity fluctuations, Samadi et al. (2010) and
Shiode et al. (2013) solved the wave propagation problem
using eigenmodes and the Wentzel–Kramers–Brillouin (WKB)
approximation, but only considered standing modes. These
calculation cannot predict the wave amplitude at frequencies
between or below the frequencies of the standing modes. Thus,
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they do not replicate the “red noise” signal observed in B19.
Here we test whether or not the signal can be explained by
traveling waves; there is no previous work studying the surface
manifestation of traveling waves in massive stars.

2. Internal Gravity Wave Propagation

The luminosity variations at the surface of a star δL( f; Rå)
are related to the radial velocity variations at the radiative–
convective boundary du f r;r RCB( ) by

d d=L f R T f u f r; ; 1r RCB( ) ( ) ( ) ( )

for linear waves. Here f is the frequency of the wave, and T( f )
is the wave transfer function. We check the linearity
assumption in Section 3. Equation (1) separates out the
nonlinear physics related to convection, which determines
du f r;r RCB( ) and is uncertain, from the linear physics of wave
propagation, which gives T( f ).

We will discuss the wave transfer function for a 10Me,
solar-metallicity star near the zero-age main sequence (ZAMS).
The stellar structure model is calculated using MESA (Paxton
et al. 2011, 2013, 2015, 2018, 2019). Appendix G shows the
wave transfer function for stars from 3Me to 20Me, and from
the ZAMS to the terminal-age main sequence (TAMS). The
broad features of the transfer functions are similar in this range
of masses and ages.

We calculate the wave transfer function in two ways. First,
we use non-adiabatic eigenmodes calculated with GYRE
(Townsend et al. 2018). We assume the non-adiabatic
eigenmodes form a complete basis, and expand the perturba-
tions in this basis. We force the horizontal displacement with

p-i ftexp 2( ) at a forcing radius rf above the radiative–
convective boundary. This produces a luminosity variation at
the surface L(Rå) with frequency f. We then calculate L(Rå) for
multiple forcing radii in a 0.02Rå range above the radiative–
convective boundary. We force at multiple radii to avoid the
nodes of the eigenfunctions. T( f ) is the average of the
amplitude of L(Rå) over these forcing radii.

To validate this calculation, we also time-evolve the linearized
non-adiabatic oscillation equations in the Cowling approximation
(Equations (33)–(39)) using Dedalus (Burns et al. 2019). We
solve the equations from the radiative–convective boundary
(rRCB≈0.22Rå) to the bottom of the surface convection zone
(rtop≈0.98Rå). We cannot include the core or surface convec-
tion zones in the simulation; otherwise, linearly unstable
convective modes dominate. We force the waves with a boundary
condition d p=u r ftsin 2r RCB( ) ( ). After an initial transient, the
luminosity at the top of the domain, dL rtop( ), also varies
sinusoidally, which allows us to measure T( f ). We find good
agreement between these two methods of calculating the wave
transfer function. Appendices A–F include more details of the
calculations, as well as the comparison between them.

Figure 1 shows the wave transfer function calculated using
GYRE for spherical harmonic degrees ℓ=1, 2, and 3. The
ℓ=1 mode dominates the surface luminosity fluctuations
(Figure 2). For each ℓ, we see the transfer function is smooth at
low frequencies, as is observed. However, the transfer function
is also very small due to strong wave damping at low
frequencies. If the observed low-frequency variability is due to
waves from the core, there should be very little power for f 
0.1 days−1, because these waves are strongly damped. The
observed luminosity fluctuations are roughly constant even for
f  0.1 days−1 (Figure 2 and Blomme et al. 2011). However, it

is likely the low-frequency observations are dominated by
systematic errors, so this inconsistency at low frequencies does
not rule out the detection of propagating internal gravity waves
at higher frequencies.
Figure 1 also shows large-amplitude, regularly spaced peaks

at frequencies 1 day−1. The peaks are at the frequencies of
standing g-modes. These frequencies are the resonant frequen-
cies for propagating internal gravity waves. Peaks with this
type of regular spacing are not present in the observed data.
Thus, we believe the observed low-frequency variability in
high-mass stars is not due to linearly propagating internal
gravity waves generated in the core.
Because the observed power spectra do not have regularly

spaced peaks, one may be tempted to attribute the low-
frequency variability to propagating, rather than standing,
internal gravity waves. However, propagating internal gravity
waves only produce a smooth spectrum when the damping rate
is similar or greater than the mode frequency spacing. This is
only true for waves that are strongly damped, which are too

Figure 1. Wave transfer function T( f ) for a 10 Me star near the ZAMS. The
transfer function has units of L/Lå per u r R dr RCB( ) ( ). The transfer function
is very small at low frequencies due to radiative damping. At higher
frequencies near 1 days−1, the transfer function is dominated by sharp peaks
associated with standing g-modes.

Figure 2. Luminosity variation spectrum for EPIC 234517653 from B19, and
two theoretical spectra with different assumptions for the convective excitation
spectrum, du f r;r RCB( ). Because the theoretical spectra are for linear waves,
their overall amplitude is arbitrary. The theoretical spectra show a sharp decline
in wave amplitude for waves with f0.1 day−1. They also show regularly
spaced peaks at higher frequencies, f1 day−1. Neither of these features are
in the observed spectrum.
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low amplitude to be observed. This dichotomy is illustrated by
the wave transfer functions in Figure 1: the transfer function is
smooth for low frequencies, but is also very small; whereas at
higher frequencies it is dominated by large-amplitude peaks.

To illustrate this point, in Figure 2 we compare the observed
spectrum of EPIC 234517653 from B19 to two theoretical
spectra. We choose this star because it has spectral type B2,
roughly corresponding to our 10Me stellar model, and has a
relatively simple spectrum without strong rotation effects or
signature of linearly unstable modes. Although we plot the
“residual” spectrum, the “original” spectrum is qualitatively
similar.

The theoretical spectrum depends on the wave excitation
spectrum du f r;r RCB( ) via Equation (1). To show a range of
possibilities, we consider two very different excitation spectra
reported in numerical simulations. Rogers et al. (2013) ran a
series of 2D cylindrical simulations using the anelastic
equations, and found d ~ L-u fr

0.4 0.9, where L = +ℓ ℓ 1( )
(Ratnasingam et al. 2019); we refer to results using this
spectrum with R. Couston et al. (2018) ran a series of 3D
cartesian simulations using the Boussinesq equations, and
found d ~ L-u f ;r

3.25 5 2 we refer to results using this spectrum
with LQ, as they match with the theoretical prediction in
Lecoanet & Quataert (2013). We then sum luminosity
variations over ℓ using the Dziembowski (1977) relations as
in Shiode et al. (2013). To maintain the same frequency
resolution as the observations, we calculate the maximum
brightness fluctuation in frequency bins with the same width as
the frequency spacing of the observational data from B19.

Figure 2 shows the luminosity variation spectrum for EPIC
234517653, as well as the R and LQ spectra. The overall
normalization of the theoretical spectra are scaled to more
easily compare to the observations. The predicted normal-
ization of the LQ spectrum is similar what we plot, whereas the
predicted normalization of the R spectrum is about 4 orders of
magnitude higher than what we plot (Appendix H). The
theoretical spectra inherit two important properties from the
wave transfer function (Figure 1): (1)at low frequencies
( f0.1 days−1), the luminosity perturbations become very
small due to strong wave damping; and (2)at frequencies
0.5 day−1, there are regularly spaced peaks due to the near-
resonant effects of standing modes. Neither of these features
are in the observations, which show a fairly flat spectrum at low
frequencies, without regularly spaced peaks at higher frequen-
cies. Our calculations do not take into account rotation.
Rotation would increase the number of resonant peaks at high
frequencies, but also decrease the luminosity variation at low
frequencies. Appendix I shows that the high-frequency waves
would still manifest as a series of resonant peaks, so rotation
does not change the main features of Figure 2.

Although here we only compare to a single star, none of the
spectra in B19 show a large number of regularly spaced peaks
similar to the theoretical spectra in Figure 2. Even stellar power
spectra that do have peaks (e.g., EPIC 202061164) only have a
couple, and thus do not match the theoretical spectra for
convectively excited internal gravity waves. The standing
waves in the R spectrum reach very large amplitudes, which
would probably lead to nonlinear interactions. However, in the
next section we show that the observed variability is too small
to be nonlinear.

3. Internal Gravity Wave Nonlinearity

In the previous section, we showed that linearly propagating
waves have a surface luminosity spectrum inconsistent with
observations. Here we will investigate possible nonlinear
effects. We argue that traveling waves do not become strongly
nonlinear, i.e., break. While standing waves could in principle
experience weak nonlinearities, we show that the observed
luminosity fluctuations are so low that an equivalent standing
wave would be stable to nonlinear instabilities. Thus, all the
peaks of the predicted spectrum should be observable.

3.1. Traveling Wave Breaking

In the absence of damping, waves conserve the wave
luminosity as they propagate outward,

p rw
x=L

r

Nk

4
. 2

h
hwave

2 4
2∣ ∣ ( )

Here ξh is the horizontal wave displacement, ω is the wave’s
angular frequency, N is the Brunt–Väisälä frequency, and

º Lk rh and kr are the horizontal and radial components of
the wavenumber. In deriving Equation (2) we have approxi-
mated the dispersion relation as w = Nk kh r.
As waves propagate outward, ρ decreases, leading ξh to

increase. When ξh kh∼1, waves break quickly in about a wave
period (e.g., Staquet & Sommeria 2002; Liu et al. 2010; Eberly
& Sutherland 2014). Thus, the criterion for wave breaking is

p rwL
r

Nk

4
. 3

h
wave

2 4

3
( )

The total wave luminosity is expected to be smaller than the
convective luminosity by a factor of the convective Mach
number (e.g., Goldreich & Kumar 1990; Lecoanet & Quataert
2013); this scaling was verified in the simulations of Rogers
et al. (2013) and Couston et al. (2018).
Radiative damping is significant for some waves. Waves are

weakly affected by damping if they propagate further than one
pressure scaleheight H over a damping time,

w 
k H

K k , 4
r

rrad
2 ( )

where Krad is the radiative diffusivity. This is a conservative
estimate: waves need to propagate many scaleheights for them to
reach the surface without damping. We can rewrite this in terms
of the radiative luminosity using p r~L r K N H4rad

2
rad

2( ) . Then
a requirement for waves to not experience significant damping is

p rw r

Nk
L

4
. 5

h

2 4

3 rad ( )

If waves are radiatively damped, they will not reach sufficient
amplitudes to break. So combining this with Equation (3), we
find a requirement for waves to break is

L L . 6wave rad ( )

Since the wave luminosity is significantly smaller than the
convective luminosity, this relation is not satisfied in almost all
stars (some stars in the last year of their life may have

>L Lwave rad; see Quataert & Shiode 2012). Thus, traveling
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waves will not experience wave breaking. Note, however, that
many numerical simulations artificially increase the convective
luminosity by many orders of magnitude (e.g., Rogers et al.
2013; Jones et al. 2017; Edelmann et al. 2019), which likely
explains reports of breaking waves generated by convection in
Rogers et al. (2013) and Edelmann et al. (2019). Artificially
increasing the convective (and hence wave) luminosity makes
it difficult to study wave excitation and propagation, because
the wave physics can be very different.

3.2. Nonlinear Stability of Standing Waves

Figure 1 shows that waves excited near the star’s g-mode
frequencies can experience resonant amplification. Because the
resonant waves are coherent for many wave periods, weakly
nonlinear effects can build up over time, and lead to significant
transfer of energy between frequencies without necessitating
wave breaking.

However, the observed luminosity fluctuations are very
small. Even if the entire luminosity variation was due to
standing modes, the modes would be stable to nonlinear
instability for most low-ℓ standing modes in 10Me ZAMS
stars. As discussed in Weinberg et al. (2012), nonlinear
instabilities of a “parent” mode with frequency f and amplitude
ξh kh requires the existence of two other modes satisfying

x k g g
d

g g
> +

+
k f

f
1 , 7h h 1 2

2

1 2
2

1 2⎡
⎣⎢

⎤
⎦⎥( )

( )

where κ is a spatial overlap integral, γ1 and γ2 are the damping
rates of the two “daughter” modes, and δf is the frequency
difference between the parent and daughter modes, all
measured in units of day−1. The difference between the ℓ of
the daughter modes can be no greater than the ℓ of the
parent mode.

We calculate the threshold for nonlinear instability by
finding the smallest possible ξh kh satisfying Equation (7) for
each mode. We search over modes with ℓ�20 with daughter
mode frequencies less than the parent mode frequency so they
can efficiently damp. We assume that the spatial overlap
integral κ is small if the difference between the radial mode
orders is greater than two; otherwise we take κ=1. In
Figure 3, we plot the surface luminosity fluctuations associated

with these marginally stable modes. All but one ℓ=1 mode
would be nonlinearly stable, even if we assume the observed
fluctuations are entirely due to those modes. We also find
nonlinear stability for modes with f�1 day−1.
Less-massive and more evolved stars have more weakly

damped modes, so some standing modes experience nonlinear
instabilities in these stars. We also note that some stars in B19
show several peaks, likely due to linearly unstable g-modes. In
many cases, those peaks are at amplitudes that are similar to the
marginally stable amplitude calculated in Figure 3. Many other
stars show signatures of nonlinear wave interaction (e.g.,
Degroote et al. 2009; Bowman et al. 2016). In pulsating white
dwarfs (ZZ Ceti stars), the mode amplitudes are also believed
to be limited by weak nonlinearities (e.g., Wu & Goldreich
2001; Luan & Goldreich 2018). However, in none of these
cases is there any indication that these interactions can produce
the “red noise” spectra observed in B19.

4. Subsurface Convection

We have argued that the observed low-frequency variability
is massive stars is unlikely due to internal gravity waves
generated by core convection. Another possible source of the
variability is surface phenomena.
Stars with spectral types later than F have well-developed

surface convection zones driven by hydrogen ionization. In
these stars, turbulent convection results in a specific photo-
metric signature: granulation. In the power spectrum, granula-
tion shows up as an excess of power at low frequencies (red
noise). 3D radiative hydrodynamical simulations of surface
convection can match observations of the disk-integrated
intensity of main-sequence stars and red giants (e.g., Samadi
et al. 2013a, 2013b, and references therein). Convective surface
velocity fluctuations also affect stellar spectra. If the surface
velocity fluctuations are correlated over the entire line-forming
region, this is referred to as macroturbulence. Otherwise it is
referred to as microturbulence.
Both micro- and macro- turbulence have also been observed

in OB stars, with amplitudes ranging from a few to tens of
km s−1. These stars are not convective at the surface, but
possess subsurface convective layers due to partial ionization
of helium and iron group elements (Cantiello et al. 2009;
Cantiello & Braithwaite 2019). Cantiello et al. (2009) and
Grassitelli et al. (2015a, 2015b) show that the presence and
vigor of subsurface convection is correlated to spectroscopi-
cally derived surface velocity fluctuations in OB stars. This is
true for all stars except those with magnetic fields strong
enough to substantially affect the iron subsurface convection
zone (Sundqvist et al. 2013). This suggests that subsurface
convection could play an important role in inducing stellar
surface variability, even for OB stars.12

It is thus natural to ask if the observed low-frequency
variability in massive stars is also caused by subsurface
convection. This was discussed in Bowman et al. (2019a),
which showed that the variability in massive stars has a
characteristic frequency νchar of a few tens of μHz, with little
dependency on the star’s position on the HR-diagram. This is
inconsistent with the “KB-scaling” of convective frequency
with stellar properties derived in Kjeldsen & Bedding (1995)
(see Figure 8 in B19).

Figure 3. Stability threshold of weakly nonlinear standing waves in
comparison to the observed spectrum for EPIC 234517653 from B19. The
symbols show the luminosity variation of a marginally stable standing mode of
a given ℓ. Most modes require greater-than-observed luminosity variations to
be unstable to weakly nonlinear instabilities.

12 At the same time, the collective effect of gravity modes could also explain
the macroturbulent velocities in these stars (Aerts et al. 2009).
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However, Kjeldsen & Bedding (1995) derived this scaling
for surface convection. The KB-scaling matches observations
of stars with surface temperatures below approximately
10–11,000 K, which have surface convection driven by
hydrogen and helium ionization. For hotter stars, convection
occurs below the surface around temperatures corresponding to
partial ionization of He II (≈45 kK) and Fe (≈150 kK). These
subsurface convective regions (He IICZ and FeCZ) occur at the
specified temperatures; if a star expands, they will move to
deeper mass coordinate. As such, they do not directly trace
stellar surface properties, and one does not expect their induced
surface photometric fluctuations to follow the KB-scaling.
Instead, models predict a fairly constant value of their
characteristic frequency as function of the stellar parameters,
with typical frequencies of 6–60 μHz (Cantiello et al. 2009;
Cantiello & Braithwaite 2011, 2019), which are consistent with
the range of characteristic frequencies observed in the Bowman
et al. (2019a) sample. Hence, we argue the distribution of
characteristic frequencies of the observed low-frequency
variability may support a subsurface origin.

The low-frequency variability is also observed in low-
metallicity Large Magellanic Cloud (LMC) stars (B19). Since
the occurrence of the FeCZ is metallicity dependent, this could
rule out subsurface convection as the cause of the variability. In
1D stellar evolution calculations, the FeCZ occurs above a
luminosity of »L L103.2

 for solar-metallicity stars, corresp-
onding to a ZAMS star of about M7 . At the lower metallicity
of the LMC, the FeCZ appears at higher luminosities
(L≈103.9 L), corresponding to a ZAMS star of about

M11  (Cantiello et al. 2009). However, it is unclear if the
objects in the TESS LMC sample of B19 are hot, main-
sequence stars probing this FeCZ transition luminosity. For
example, if the sample contains mostly luminous giants and
supergiants, then the stars could be either above the FeCZ
luminosity threshold for LMC metallicity, or posses surface
convection due to H and He ionization. This would also be
consistent with the much larger amplitude of the photometric
variability of the LMC sample, as expected in more massive,
brighter stars, independent of the scenario considered (subsur-
face convection or core internal gravity waves).

Finally, some of the stars showing low-frequency, stochastic
variability are low-mass, main-sequence A stars. These are not
expected to show the presence of an FeCZ. However, they
are affected by other (sub)surface convection zones due to
the ionization of H and He (Cantiello & Braithwaite 2019).
While the amplitude of the velocity fluctuations induced by
these convective regions tend to be smaller than for the FeCZ,
characteristic frequencies are also in the range of tens of μHz.

Therefore, subsurface convection remains a viable explana-
tion for the observed variability. More work is required to test
this hypothesis and firmly establish—or rule out—a connection
between subsurface turbulent convective motions and the wide-
spread, low-frequency photometric variability observed in
massive stars.

5. Summary

1. We argue that the low-frequency variability presented in B19
is not due to linearly propagating waves from the core.
i. At low frequencies, linear waves have a smooth
spectrum, but very little surface luminosity variation
due to strong radiative damping. This is not observed.

ii. Linearly propagating waves at frequencies f0.5 day−1
form many standing modes (Figure 2), which are also not
observed.

2. Wave propagation can be approximated as linear.
i. Low-frequency traveling waves do not break.
ii. If high-frequency variability was due to standing

modes, many would be at such low amplitude they
would be stable to nonlinear interactions.

3. We conclude that the spectra presented in B19 are not due
to IGWs generated by core convection.

4. However, almost all massive stars have subsurface
convection zones that could produce the observed low-
frequency variability.
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Appendix A
Bulk Forcing of IGWs

We use the non-adiabatic g-mode oscillations of a star as a
basis to expand velocity perturbations. For a given spherical
harmonic degree ℓ, we have

å w w w= ¢ ¢ - ¢
w¢

u ur t A t r i t, ; ; exp , 8ℓ ℓ ℓ( ) ( ) ˜ ( ) ( ) ( )

where uℓ˜ corresponds to the velocity eigenfunction, and w¢ its
(complex) frequency. For simplicity of notation, here we will
write frequencies in terms of the angular frequency w p= f2 ,
and write velocity perturbations as u, instead of du as in the
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main text. The velocity eigenfunctions are related to the
displacement eigenfunctions via xw= - ¢u iℓ ℓ˜ ˜ . All vectors are
assumed to be composed of two components: a radial
component, e.g., ur; and a horizontal component which is
assumed to be proportional to the horizontal gradient of a
spherical harmonic function, e.g., q f=u u Y ,h h h ℓ m, ( ), where
h represents a horizontal angular derivative.

The eigenfunctions satisfy

w- ¢ = u ui , 9ℓ ℓ˜ ( ˜ ) ( )

where  is the linear wave operator. We define the dual basis
uℓ˜

† by

w w dá ¢ ¢¢ ñ = w w¢ ¢¢u u, , 10ℓ ℓ ,˜ ( ) ˜ ( ) ( )†

where δ is the Kronecker delta function, and the inner product
is defined as

ò prá ñ º


f g f gr dr, 4 . 11
R

0

2 * · ( )

We can define the dual basis in this way because the
eigenvalues are non-degenerate. The set of all adiabatic modes
are a complete basis (e.g., Eisenfeld 1969). Non-adiabatic
modes are likely not complete (R. H. D. Townsend 2019,
personal communication). Nevertheless, we expect they can
represent almost all functions in the regions of the star that do
not experience strong damping. The good agreement with
calculations using Dedalus indicates the non-adiabatic modes
can faithfully represent traveling waves.

We now introduce a forcing to the system,

w¶ = +u u fr t r t, , ; . 12t ℓ ℓ ℓ( ) ( ) ( ) ( )

The forcing has magnitude wF ℓ, , is assumed to act in only the
horizontal directions, at the forcing radius rf, and at frequency ω,

w d w q f= - -wf t F r r i t Y; exp , , 13ℓ ℓ f h ℓ m, ,( ) ( ) ( ) ( ) ( )

where δ is the Dirac delta function. We can solve Equation (12)
by using the expansion in normal modes (Equation (8)) and
projecting out with wuℓ˜ ( )† . This gives

w w w w
w w w w w

- ¢ ¢ + ¶ ¢ - ¢

= - ¢ ¢ - ¢ + á ¢ ñu f

i A t A t i t

i A t i t

; ; exp

; exp , . 14
ℓ t ℓ

ℓ ℓ

[ ( ) ( )] ( )
( ) ( ) ˜ ( ) ( ) ( )†

Defining q f=u u Y ,h h h ℓ m,˜ ˜ ( )† † and assuming ρ is a function of
radius, we can simplify this to

w pr w

w w

¶ ¢ = ¢ +

´ - - ¢
wA t r r u r ℓ ℓ F

i t

; 4 ; 1

exp . 15

t ℓ f f h f ℓ
2

,( ) ( ) ˜ ( ) ( )
[ ( ) ] ( )

†

This can be solved together with the boundary condition
Aℓ=0 at t=0,

w pr w

w w
w w

¢ = ¢ +

´
- - ¢ -

- ¢

wA t i r r u r ℓ ℓ F

i t

; 4 ; 1

exp 1
. 16

ℓ f f h f ℓ
2

,( ) ( ) ˜ ( ) ( )
[ ( ) ] ( )

†

Substituting this into Equation (8), we find

å

pr

w w
w w
w w

= +

´ ¢ ¢
- - - ¢

- ¢

w

w¢

u

u

r t r r ℓ ℓ F

iu r r
i t i t

, 4 1

; ;
exp exp

.

17

ℓ f f ℓ

h f ℓ

2
,

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

˜ ( ) ˜ ( ) ( ) ( )

( )

†

If all the eigenmodes are damped, the imaginary part of w¢ is
negative. As  ¥t , the second exponential term drops out,
and we find

å

pr

w w
w w

w

= +

´
¢ ¢

- ¢
-

w

w¢

u

u

r t r r ℓ ℓ F

iu r r
i t

, 4 1

; ;
exp . 18

ℓ f f ℓ

h f ℓ

2
,

⎡
⎣⎢

⎤
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( ) ( ) ( )

˜ ( ) ˜ ( )
( ) ( )

†

The surface luminosity fluctuations are then

å

d pr

w d w
w w

w

= +

´
¢ ¢

- ¢
-

w

w¢





L R t r r ℓ ℓ F

iu r L R
i t

, 4 1

; ;
exp ,

19

ℓ f f ℓ

h f ℓ

2
,

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

˜ ( ) ˜ ( )
( )

( )

†

where d w¢L R ;ℓ˜ ( ) is the surface luminosity perturbation of the
mode with frequency w¢. In practice, for many stellar models,
we find that all modes calculated using GYRE are damped.
Some stellar models do have some unstable modes with small
positive growth rates. Nevertheless, we treat the time depend-
ence of these modes in the same way as damped modes.

Appendix B
Connection between Bulk Forcing and Interface Forcing

Theories (e.g., Lecoanet & Quataert 2013) and simulations
(e.g., Rogers et al. 2013) make predictions for how the radial
velocity perturbations at the radiative–convective boundary
depends on frequency and spherical harmonic degree,

wu r ℓ; ,r RCB( ). To use Equation (19), we need to establish a
link between the radial velocity perturbations and the forcing
amplitude wF ℓ, .
To illustrate this connection, we will solve the bulk and

interfacing forcing problems for an inviscid, adiabatic,
Boussinesq fluid in Cartesian geometry. We assume the
background has a constant Brunt–Väisälä frequency, N, ranges
from z=0 to L, that gravity is in the z direction, and that the
perturbations are periodic in the horizontal directions. For
impenetrable boundary conditions (uz(0)=uz(L)=0), the
eigenmodes are

=u z k k z; sin , 20z h z( ) ( ) ( )

where

w
w

= -k k
N

1 . 21z h
2 2

2

2

⎛
⎝⎜

⎞
⎠⎟( ) ( )

The horizontal wavenumber kh is defined by - = k u uh z h z
2 2 .

The eigenvalues are frequencies ω which satisfy kz L=nπ, for
an integer n.
Now consider the problem with boundary forcing. Our new

boundary conditions are w=u F t0 sinz B( ) ( ), and uz(L)=0.
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The solution to this new problem is

w= -u F k z
k L

k L
k z tcos

cos

sin
sin sin . 22z B z

z

z
z

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( ) ( ) ( )

Recall that kz is a function of the forcing frequency
(Equation (21)). One can verify that this satisfies the boundary
conditions. We can calculate the amplitude of uz using

ò = + -
L

u dz
F

k L
k L

1 1

2 sin
. 23

L

z
B

z
z

0

2
1 2

1 2
⎛
⎝⎜

⎞
⎠⎟ ∣ ( )∣

(( ) ) ( )

The amplitude diverges when kz L=n π, for n an integer. This
corresponds to the frequencies of the eigenmodes of the system
with impenetrable boundary conditions. Thus, the solution to
the forced problem is related to the unforced eigenvalue
problem, even though they have different boundary conditions.
Because the problem has no dissipation, the amplitude
divergences when forced at an eigenfrequency; if thermal
dissipation is included, the divergence is regularized as the
eigenfrequencies become complex.

Next consider the bulk forcing problem. Here we solve the
problem with impenetrable boundary conditions, but including
a forcing term to the horizontal velocity equation, similar to
Equation (12),

d w ¶ + = -wu xp F z z t gcos , 24t h h k f h h, h ( ) ( ) ( ) ( )

where xg h( ) satisfies  = -g k gh h
2 2 . Away from zf, uz is

sinusoidal with wavenumber kz. There are two additional
conditions on uz at z=zf. The first is that ¶ uz z is continuous,
and the second is

w¶ D = w xu k F t gcos , 25t z h k h
2

, h ( ) ( ) ( )

whereD = + - - u u z u z ,z z f z f( ) ( ) in the limit that  0.
The solution is

where for simplicity we have dropped the horizontal depend-
ence. Averaging over the region above zf, we find

ò
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= +w
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L z
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As in the boundary-forced problem, we find a divergence in the
response when p=k L nz , for n an integer (assuming k zcos z f( )
is not also zero). If we also average uz over a rangeDz of zf, we

find

ò p wD
=

+ D

w
+D

-
z

u z dz
k

F
k L

k z

1 2 1

sin

, 28

z

z z

z f f
h

k
z

z

2

,

1 2

h
0

0

( )
∣ ( )∣

(( ) ) ( )

provided kzΔz ? 1.
Thus, if we average over a sufficiently large range of forcing

locations, we find the boundary-forced and bulk-forced
responses are equivalent, with the identification

p w
=wF

k
F

2
. 29k

h
B, 2h ( )

One can perform similar calculations including the results of
thermal diffusivity (not shown here), and find the same relation
between the boundary-forced and bulk-forced responses. We
hypothesize that this relation is universal, and also carries over
to the more realistic calculations with density variation,
spherical geometry, etc. Then we have the following equation:

p w
w=

+
wF

r

ℓ ℓ
u r ℓ

2 1
; , . 30ℓ

f
r, RCB( )
( ) ( )

Substituting into Equation (19), we find
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Finally, we have that the transfer function w pºT f T 2( ) ( ),
defined in Equation (1) of the main text, is given by

ò
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Appendix C
Stellar Structure Models

We calculate the transfer function for twelve stellar structure
models generated by MESA (Paxton et al. 2011, 2013, 2015,
2018, 2019). We use models with ZAMS masses of 3Me, 7Me,
10Me, and 20Me, at three different evolutionary stages during
the main sequence: when their core H fraction is about 0.66 (near
the ZAMS), 0.33, and 0.01 (TAMS). Models were calculated
assuming a metallicity Z=0.02. Convective boundaries were
determined using the Schwarzschild criterion, with convective
velocities calculated using the mixing length theory in the Henyey
formulation with αMLT=1.6. Above the convective core, a step

w
w

w
w

=
- + <

- - >

w

w

u

k
F k z k z k z t z z

k
F k z L t z z

cos sin sin sin

sin sin
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k z f
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k L z f z f
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2
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2
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h
z

z

h

z f

z

⎧
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⎩
⎪⎪
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( ( )) ( )
( )

( )
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overshooting with αov=0.29 was included. The models were
computed using gold tolerances and the dedt-form of the energy
equation, which provides superior results for energy conservation
(Paxton et al. 2019). Details of the calculations, including a typical
inlist, can be found athttps://github.com/matteocantiello/
gyre_igw.

Appendix D
Bulk Forcing Calculations with GYRE

We use GYRE (Townsend et al. 2018) to calculate non-
adiabatic normal modes for each stellar model. We use a second-
order Gauss–Legendre collocation scheme, which we found to
give more robust eigenfunctions than higher-order schemes. The
grid is calculated using n_inner=5, alpha_osc=20, and
alpha_exp=4. Increasing the grid resolution did not change the
transfer function at high frequencies, but leads to more numerical
noise at very low frequencies. We search for modes using the
grid_type=‘‘INVERSE’’ method, and pick the maximum
frequency such that we find all of the highest-frequency g-modes,
and the minimum frequency such that we can resolve the fast
decay of the transfer function for strongly damped modes.
Although p-modes are important for the (near) completeness
of the eigenmode basis, we find that they have a negligible
contribution to the transfer function. This is because u rh f˜ ( )† is
small for p-modes, which are localized near the surface of the
star, and there is poor frequency matching, so w w- ¢ is large.
All GYRE inlists are at https://github.com/lecoanet/massive_
star_igw.

Once we have the g-mode eigenmodes, we calculate the dual
basis according to Equation (10). We then calculate the surface
luminosity perturbation for a single rf. Although convection
likely forces waves simultaneously over a range of radii, we
use a delta-function forcing as we only study the propagation of
the waves after they have been excited. To calculate the transfer
function, we average over 50 equally spaced values of rf with
Δr=0.02Rå. All our stellar models have sharp composition
gradients just outside the convection zone. We find that if we
pick rf below this composition gradient, the transfer function is
dominated by numerical noise. Thus, we pick r0=0.25Rå for
all models except the 20Me model near the ZAMS, for which
we pick r0=0.35Rå. Increasing r0 above these values changes
the overall normalization of the transfer function—waves
experience less amplification if they are generated at larger
radii—but not the shape.

At the lowest frequencies, we sometimes find the transfer
function abruptly changes slope. This stems from numerical
errors in the eigenfunctions and/or eigenvalues. The exact
position of this region changes with any change in numerical
method (e.g., changing the grid resolution, number of modes,
or r0). We expect this region would not be present in more
accurate calculations.

The transfer function becomes extremely large near the
standing-mode frequencies at high frequencies. To find these
peaks, we initially calculate the transfer function for a grid of
frequencies which are roughly equally spaced logarithmically.
Then we recalculate the transfer function on a grid which is
refined near the peaks. We recursively refine until the peaks
of the transfer function are well resolved. It is important to
resolve the peaks of the transfer function to ensure we correct
measure the frequency-integrated power in each peak.

Appendix E
Interface Forcing Calculations Using Dedalus

We now describe the solution of the forcing problem via
numerical integration of the evolution equations using Dedalus.
Here we force the waves with a bottom boundary condition,
which is equivalent to the bulk forcing used in GYRE
(Section B). There are two important reasons for performing
these calculations using Dedalus. First, we can test the
robustness of the GYRE calculation by comparing with a
second calculation using a completely different method.
Second, the Dedalus calculations make a different set of
simplifying assumptions than the GYRE calculations, so that
we can test the sensitivity to assumptions made when using
GYRE. The GYRE calculations assume the g-modes form a
basis for the traveling wave calculation, and they also force
waves at rf, which is above the radiative–convective boundary.
In contrast, our calculations with Dedalus expand perturbations
in Chebyshev polynomials, which are known to form a
complete basis, and we force the waves at the radiative–
convective boundary. On the other hand, some shortcomings of
the Dedalus simulations include the following. (1)We solve the
equations in the Cowling approximation. (2) Our simulations
domain does not extent to r=0 or r=Rå, because if it include
a convection zone, simulations become dominated by expo-
nentially growing convection modes. (3) Very long integrations
are required to resolve the standing-mode peaks. (4) The
Dedalus calculations are much slower than the GYRE
calculations.
We use Dedalus to solve the linearized evolution equations

in the Cowling approximation,
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Here ur is the radial velocity and uh is the horizontal velocity
given by q f=u u Y ,h h h ℓ m, ( ), and ϒ is the divergence of the
velocity. The background density ρ0, pressure p0, gravitational
acceleration g0, temperature T0, luminosity L0, and specific heat
at constant pressure cp, are all taken from the MESA model, and
are all normalized to their values at the bottom of the domain (at
the radiative–convective interface). Their values at the bottom of
the domain are denoted with subscript c. The thermodynamic
quantities are defined as n r= - ¶ ¶ Tlog logT p( ) ,  =ad

¶ ¶T plog log s( ) , and rG = ¶ ¶plog log s1 ( ) , where s is the
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entropy. Radii are normalized to the stellar radius Rå. p and ρ are
the Eulerian pressure and density perturbation, both normalized
to ρ0. T and L are the Eulerian temperature and luminosity
perturbations, normalized to Tc and Lc, respectively. The
normalized adiabatic sound speed squared is r= Gc ps,0

2
1 0 0.

The constant C is given by

r
=


C

L

T c p R
. 40c

c p c c c,
2

( )

We normalize time using

r
= t R

p
. 41c

c
norm ( )

For boundary conditions, we use

w= +
-
D

u r t
t t

t
sin

1

2
1 tanh , 42r bot

0⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
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= = =u r s r s r 0, 43r top bot top( ) ( ) ( ) ( )

where r= -s p cs,0
2 is related to the entropy perturbation. We

ramp up the boundary forcing starting at time t0≈10P over a
timescale Δt≈P, where P is the wave period.

We discretize the problem by representing all background
and perturbation variables in terms of Chebyshev series. We
split up the domain into three segments. The first segment
comprises r between ≈0.216Rå, the top of the convection zone,
and 0.5Rå, and is represented using 512 Chebyshev modes. The
second and third segments comprise r between 0.5Rå and
0.8Rå, and between 0.8Rå and ≈0.976Rå, which is just below
the surface convection zone; both are represented using 256
Chebyshev modes. Boundary conditions impose continuity of
all perturbation variables at the matching points, 0.5Rå and
0.8Rå. Background quantities are expanded in Chebyshev
polynomials, but coefficients less than 10−5 of the maximum
coefficient in each segment are set to zero to make the problem
sparser. For timestepping, we use a four stage, third-order
accurate implicit-explicit Runge–Kutta timestepping scheme
(Ascher et al. 1997), with timestep ≈P/100. We also ran
simulations with double the spatial resolution and smaller
timestep size, and found neither led to significant changes in
the transfer function.

To calculate the transfer function, we wish to evolve the
oscillation equations until they reach a statistically steady state.
Unfortunately, this takes a very long time, especially when the
forcing frequency is close to the oscillation frequency of one of
the higher-frequency standing modes. For low-frequency
modes, we evolve the system for ≈100P, which long enough
for the luminosity amplitude at the top boundary to saturate.
For higher-frequency waves, we evolve for ≈550P. This
integration time is sufficient, except for forcing frequencies
very close to the oscillation frequencies of a standing mode.
We have integrated as long as ≈104P for some frequencies, but
the luminosity at the top boundary still continues to grow with
time. Thus, we can only provide lower limits on the transfer
function near the four highest-frequency standing waves. We
also only calculate the transfer function up to ≈1 days−1. To
calculate the transfer function, we calculate the root-mean-
square luminosity perturbation at the top boundary (recall that
the velocity perturbation at the bottom boundary has an
amplitude of unity), over a portion of the integration time.

Appendix F
Comparison between GYRE and Dedalus Calculations

Because the Dedalus calculations are more computationally
expensive, we only calculated the transfer function for the
10Me stellar model near the ZAMS. In Figure 4 we compare
our two methods for calculating the transfer function. We
report the transfer function based off the luminosity in two
locations: at r=0.85Rå, and also at r≈0.976Rå (at the top of
the Dedalus simulations). Note that in GYRE, the transfer
calculation evaluated at r≈0.976Rå is nearly identical to the
transfer calculation evaluated at the surface.
The transfer functions measured with the two numerical

techniques are very similar. At low frequencies, the transfer
functions are very small, and there are regularly spaced peaks at
high frequencies.
However, the peaks are at different frequencies in the two

codes. We believe this is due to differences in boundary
conditions. At the surface, GYRE assumes no lagrangian
pressure fluctuations, and a perturbed Stefan–Boltzmann
equations; in Dedalus we set the radial velocity and eulerian
entropy perturbation to zero at r≈0.976Rå. At the inner
boundary, GYRE includes a convection zone, whereas the
Dedalus domain does not. We do not expect the standing
modes of the two problems to be the same, so the peaks in the
transfer function should be at different frequencies. Note that
there is always a Dedalus peak between every pair of GYRE
peaks; this suggests that the period-spacing between the modes
in the two calculations is very similar. Also recall that the
amplitude of the four highest-frequency peaks in Dedalus are
lower bounds on the transfer function, as we were not able to
integrate long enough to establish the height of the peak. For
this reason, we also did not calculate the transfer function in
Dedalus for frequencies greater than ≈1 days−1.
The two calculations’ transfer functions also have different

amplitudes. In both panels of Figure 4, we divided the Dedalus
transfer function by six. With this normalization, we find
excellent agreement between the amplitudes of the two signals
at r=0.85Rå. We expect the Dedalus transfer function to
be larger because the waves in Dedalus are excited at
r≈0.216Rå, whereas in GYRE we excited waves between
r=0.25Rå and r=0.27Rå. However, the waves only amplify
by a factor of ≈2 between these points. Future work should
examine the remaining difference in normalization between the
calculations. In this work, we do not use the transfer function in
any way that depends on its overall normalization.
We believe the difference between the normalization of the

transfer functions calculated at r≈0.976Rå is also due to
differences in outer boundary conditions. It appears that the
choice of boundary condition in Dedalus leads to luminosity
fluctuations which are smaller by a factor of ≈3 at the upper
boundary than the choice used in GYRE. We find that the
eigenfunctions in both codes match very well until they reach
the surface. This explains the agreement at r=0.85Rå.
Although there are some differences between the GYRE and

Dedalus calculations, we find them to be minor. In fact, it may
even be surprising that the agreement is so good, given the
completely different numerical methods and the various
inconsistent assumptions made in the two calculations. This
good agreement gives us confidence in the main features of the
transfer function: the transfer function is small at low
frequencies due to damping, and is characterized by regularly
spaced peaks due to standing modes at high frequencies.
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Appendix G
Transfer Functions for Stars of Different Masses and

Evolutionary Stages

In Figure 5, we plot the transfer function, calculated using
GYRE, for a range of stellar models of different ages and initial
masses. We only plot the transfer function for ℓ=1 so it is
easier to identify the trends with mass and age. The ℓ=1
modes are expected to dominate the disk-averaged luminosity
variation, as higher ℓ modes have significant cancellation. The
three ages we include correspond to core hydrogen fractions of
0.66 (near the ZAMS), 0.33 (labeled “mid”), and nearly zero
(TAMS). In all cases, we find a smooth transfer function
corresponding to traveling waves at low frequencies. These
waves are strongly damped, so the transfer function is small. At
higher frequencies, the transfer function is dominated by
regularly spaced peaks corresponding to standing modes.

More massive stars have fewer standing-mode peaks. This is
because the luminosity of these stars is larger, so radiative
damping is more important. Thus, damped traveling waves
exist at higher frequencies for higher-mass stars. Nevertheless,
there are always several weakly damping standing modes, at
least up to 20Me. Lower-mass stars have an extremely large
number of weakly damped standing modes. It is likely that
≈100 days TESS or K2 observations of 3Me stars would not
be able to resolve most the individual standing-mode peaks.
However, lower-mass stars also have a larger Brunt–Väisälä
frequency, so g-modes extend to higher frequency. We thus
believe that standing modes peaks with frequencies ∼4–5 days−1

should be detectable in observations of ≈3Me stars, if such
waves were efficiently excited by convection.

There are only minor changes in the transfer function as
the stars evolve from the ZAMS to midway between ZAMS
and TAMS. The frequencies of the highest modes increase

modestly, and radiative damping becomes somewhat weaker,
leading to more standing modes. However, we find substantial
changes when the stars reach TAMS. Radiative damping
becomes significantly weaker at TAMS, leading to many more
standing modes. The frequency spacing between the modes
also seems smaller. Thus, it may be more difficult to detect
individual standing modes for stars at the TAMS.
Several of our transfer functions have an abrupt change of

slope at ≈0.05 day−1, e.g., ZAMS stars �7Me. This is a
numerical effect; this feature changes magnitude and frequency
range when we change the resolution of the modes, the number
of modes used, etc. The Dedalus calculation shows the transfer
function decreases smoothly past these frequencies (see
Figure 4, left panel). We believe the uptick in the transfer
function for our 7Me TAMS model at the lowest frequencies is
also due to this type of numerical error. For our 3Me TAMS
model, we were not able to calculate the transfer function at
low frequencies due to repeated floating-point exception errors
thrown by GYRE.
At high frequencies, the transfer functions are dominated by

very sharp peaks corresponding to standing modes. For many
stellar models, the transfer function between these peaks seems to
be nearly constant. We do not understand this behavior, but note
that it seems to be robust to changes in numerical parameters,
e.g., the resolution of the modes, the number of modes used, etc.
It is unlikely that the behavior of the transfer function between
the peaks have any observational implications.
Finally, we note that our 10Me TAMS model and 20Me

“mid” model have well-defined peaks at ≈0.04 day−1. These
appear to be numerically robust. We do not have a physical
understanding of these features. If these features are physical,
they may be detectable in long-duration observations of
massive stars.

Figure 4. Comparison of the transfer function calculated in GYRE (red) and Dedalus (blue) for ℓ=1 motions for a 10 Me model near the ZAMS. In both panels, the
Dedalus transfer functions are divided by 6. In the left (right) panel, we plot the transfer function where the luminosity is evaluated at r=0.85Rå (r≈0.976Rå). With
the normalization factor of one-sixth, there is excellent agreement at r=0.85Rå between the two methods for low frequencies, and the two curves follow the same
trends at higher frequencies. We believe the differences between the calculations at higher frequencies and also at r≈0.976Rå is due to different in boundary
conditions between the two calculations.
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Appendix H
Overall Spectrum Normalization

Both LQ and R spectra have the normalization (Lecoanet &
Quataert 2013; Rogers et al. 2013)

~F F , 44w c ( )

where Fw is the total wave flux, and Fc is the convective flux.
The efficiency of wave generation is given by , the
convective Mach number, which we calculate using ωc/N0,
where ωc is the convective frequency, and N0 is a typical value
of the Brunt–Väisälä frequency in the radiative zone. The wave
flux is dominated by waves near the convective frequency ωc

and ΛH/rRCB∼1, where rRCB and H are the radius and the
scaleheight at the radiative–convective boundary, and
L = +ℓ ℓ 1( ) as above. Thus, we have

r~F HN u , 45c rRCB 0
2 ( )

where ur is the radial velocity of waves with frequencies near
ωc and L ~H r 1RCB , and ρRCB is the density at the radiative–
convective boundary. We define r=F uc cRCB

3, and w = u Hc c .
Then we have

~ u u . 46r c ( )

Recall that this estimate is only for the most energetic waves
with frequencies near ωc and L ~H r 1RCB .
We can now combine this with the predicted frequency and

wavenumber scalings (Section 2). The predictions for the radial
velocity spectra are

~
L -

u u
H

r

f

f
R spectrum , 47r c

cRCB

0.9 0.4⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )

Figure 5. Transfer functions calculated in GYRE for ℓ=1 modes, for stellar models of different masses and ages. The three ages correspond to core hydrogen
fractions of 0.66 (near the ZAMS), 0.33 (labeled “mid”), and nearly zero (TAMS). Less-massive stars have less radiative damping, and thus have more standing modes
than more massive stars. Radiative damping is also weaker at TAMS. However, all models show the same characteristic patterns: at low frequencies, the transfer
function is smooth but small due to efficient wave damping, whereas at high frequencies, there are regularly spaced peaks corresponding to standing modes.
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To evaluate these expressions, we calculate the average
convective velocity using

ò

ò p r
=u

L dr

r dr4
, 49c

r
c

r
3 0

0
2

RCB

RCB
( )

where Lc is the convective luminosity. The convective angular
frequency is w = u Hc c , and the convective frequency is

w p=f 2c c ( ). We use + =N r H NRCB 0( ) as our estimate of
the Brunt–Väisälä frequency.

We calculate each of these terms using our 10Me MESA
model near the ZAMS. We find » u R d0.01c , » 0.002,

»r H 2.3RCB , and fc≈0.018 days−1. Thus, the theoretical
predictions for the radial velocities are

~ ´ L- -
u R d f R2 10 spectrum , 50r

4 0.9 0.4( ) ( ) ( )

~ ´ L- -
u R d f6 10 LQ spectrum . 51r

12 5 2 13 4( ) ( ) ( )

For comparison, in Figure 2, we use a multiplying prefactor of
5×10−8 Rå/d for the R spectrum, and 2×10−11 Rå/d for the
LQ spectrum. Thus, the R spectrum predicts surface variability
that is many orders of magnitude higher than what is observed.
It may seem that the LQ spectrum predicts a similar magnitude
to the observed variability, even if the shape of the spectrum is
very different. However, we believe this is likely coincidental,
as the very steep frequency dependence of the LQ spectrum
makes it difficult to predict the overall amplitude of the
spectrum. For instance, if we had used a different definition of
the convective frequency, leading to a change by 2π, the
overall amplitude of the spectrum could be as low as
2×10−14 or as high as 3×10−9. However, such a change
in the definition of the convective frequency would lead to a
very minor change in the R spectrum, because it has a very
weak dependence on fc. This illustrates the need to calibrate the
spectrum and convective frequency from 3D simulations of
core convection.

Appendix I
Rotation

We have not included the effects of rotation in any of our
calculations. Rotation plays an important role in the convective
excitation of internal waves (Mathis et al. 2014). First, rotation
can strongly constrain the convection, leading to flows that
mostly align with the rotation axis (e.g., Augustson et al. 2016).
This will modify the wave excitation process. Second, rotation
changes the internal waves themselves. The eigenvalue
problem for oscillation modes is 1D without rotation, but

becomes 2D with rotation. This is because rotation couples
together modes with different spherical harmonic degree ℓ, but
does not couple modes with different azimuthal degree m.
Oscillation modes with rotation can have non-trivial latitudinal
structure.
Because of the 2D nature of the oscillation problem with

rotation, it is difficult to calculate the transfer function.
However, we will comment on some expected properties of
the transfer function with rotation. Internal waves cannot
propagate at the poles for f<2/Trot, where Trot is the rotation
period (not to be confused with the transfer function, T). The
waves concentrate closer and closer to the equator in the limit
that f Trot/2 goes to zero. These waves will cause negligible
surface variability in stars observed from the poles. It is likely
that at least some of the stars observed in B19 are observed
nearly pole-on. These stars would show very little power at
frequencies less than 2/Trot if the low-frequency variability was
due to waves. However, a sharp decline in variability at low
frequencies due to rotation is not observed in any of the stars,
again suggesting that the variability is not due to waves.
If rotation is sufficiently weak (i.e., f? 2/Trot), then oscillation

modes are Doppler-shifted by rotation,  +f f m Trot, where
m is the azimuthal degree of the mode. If the convection is
approximately isotropic, energy will be distributed between the
different m modes evenly. Thus, each peak in the non-rotating
transfer function will be evenly split into 2ℓ+1 peaks under the
influence of weak rotation. This will cause more peaks in the
spectrum, and will change the spacing between peaks.
To illustrate these two effects, we plot rotationally modified

surface luminosity spectra in Figure 6. This requires choosing
nominal rotation periods for massive stars. Dufton et al. (2013)
and Ramírez-Agudelo et al. (2013) measured the rotation
velocities of B & O type stars as part of the VLT-FLAMES
Tarantula Survey. In both cases, they find rotation velocities
around 100–300 km s−1. Assuming a typical radius of 10Re,
these roughly correspond to rotation rates of 2–5 days. This is
in line with Nielsen et al. (2013), who reported a typical
photometric rotation period for B stars of around 4 days. With
this in mind, we consider two possible rotation periods, 2 days
and 5 days, to demonstrate the possible effects of rotation. For
frequencies less than 2/Trot (shaded in gray) we do not modify
the spectrum. However, waves at these frequencies would be
localized near the equator, and would have negligible surface
manifestation for stars viewed pole-on. For frequencies greater
than 2/Trot, we split the power of each peak evenly into 2ℓ+1
peaks with frequencies f+m/Trot for m ℓ∣ ∣ , assuming the
weak-rotation limit. This leads to more peaks at high
frequencies, and a more complicated spectrum. However, most
of the individual peaks should still be resolved by the
observations, so the theoretical spectra still do not resemble
the smooth observed spectra of B19.
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