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Abstract 

In this work, a proposal of an indirect solar dryer with a vacuum solar collector and storage of water-sensitive 
heater is presented. A mathematical model is presented as the first approximation to evaluate the performance. 
The test climatic conditions are based on the city of Cascavel (Paraná, Brazil) and the resolution of the model 
was aided by the EES program. In order to analyze the performance of the system, a model load was created 
based on the references found in the literature, sample of 80 kg with initial water content of 75% w.b and final of 
10% w.b, for drying time of 4 h and 3 h with air velocity of 0.7 m/s and 1.1 m/s respectively. It was possible to 
simulate the variation of the temperature of the reservoir during the day, as well as the response of the heat 
exchanger to the variation of temperature of entrance of the fluids and the climatic influence, radiation and 
ambient temperature in the participation of the solar energy in the total energy consumption of the drying. The 
simulations suggest good results with solar fraction between 20 and 47 %, meanwhile in the literature the values 
reported are between 10 and 25%. 

Keywords: sensitive heat storage, thermodynamic model, solar energy 

1. Introduction 

The drying process (DP) is one of the most energy efficient operations in the food industry (Feng et al., 2012). 
Where the drying process requires a large amount of energy. The drying process in the medicinal plants is an 
operation of fundamental importance because the dry material presents greater chemical stability, due to the 
interruption of the metabolic processes that occur even after the material collection (Pimentel, 2008). This allows 
for easy storage, conservation and commercialization of medicinal and aromatic plants, which are widely used 
by the pharmaceutical, herbal and cosmetic industries (Lorenzi & Matos, 2008). 

In the DP of medicinal plants, the limits of drying air temperature are determined according to the sensitivity of 
the active principles of the medicinal plant. In such a way to minimize the losses of essential oil and the active 
principles during the process (Branquinho et al., 2018). 

There is a discussion while at the maximum temperature limit (Castro Melo et al., 2004), an ancient paradigm 
defended by some authors who recommend that one should not dry medicinal plants with temperature above 
40 °C. Although, as presented by Melo et al. (2004), several studies show that temperatures between 50 °C and 
60 °C are better suited for drying large numbers of medicinal plant leaves, regardless of the drying method 
employed. Higher temperatures reduce the drying time, so the energy cost per kilogram of water removed 
decreases (Melo, 2002), influencing the final product price. 

By the low temperature, traditionally the drying of medicinal plants has been carried out in the shade or in hand 
dryers. The use of more efficient dryers can be considered as one of the main alternatives considering 
phytotherapeutic extracts in commercial scale, considering the volume of production required and the control of 
the process variables that interfere in the final quality of the product (Goneli et al., 2014). The industrial dryers 
available in the Brazilian market use as fossil fuel energy sources (wood, biomass and gas) or electric energy 
(electric resistances), which in the case of small or medium-sized dryers are generally fixed tray type (Mujumdar, 
2014). 
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The growing market demand for medicinal plants and their derivatives is a profitable alternative to small farmers, 
given the great demand for this type of product (Vasisht et al., 2016; Tripathi et al., 2017). It is also worth noting 
that the agribusiness sector consumes about 30% of the world's energy demand, according to the Energy, 
Agriculture and Climate Change Report of the United Nations Food and Agriculture Organization (FAO, 2016). 
In Brazil, the products generated by the agricultural chain contributed 23.9% of the Gross Domestic Product 
(GDP) of the country in 2018. About 70% of these products come from family farming or small rural producers. 
On the other hand, the electricity distribution infrastructure in rural areas of Brazil is precarious, especially with 
regard to the stability of the supply, service replenishment when there are falls due to inclement weather and 
quality of the building electrical installations (Ivanov, 2017). 

In this context, aiming to solve a productive and infrastructure problem that exists in Brazil and throughout Latin 
America. This research presents the proposal and development of a solar dryer that excels in energy efficiency 
and sustainability, whose operation is based on the use of solar energy as a sustainable alternative that allows 
maintaining the temperature between 50 °C and 60 °C during the whole process of drying and reducing CO2 
emissions. Therefore, it is a viable and attractive technology for the drying of medicinal plants for small 
producers or a rural cooperative adapted to the reality of Latin America. 

The present article presents the design and modeling of an indirect solar dryer that is a technical arrangement 
composed of: sensitive heat storage system having water as the working fluid, using vacuum tube solar collectors 
and commercial thermal reservoir. In order to validate the proposal, a thermodynamic model is used to analyze 
the performance of the proposed system. 

2. State of the Art 

In this chapter the state of the art on the development and modeling of solar dryers is presented, in order to 
support the proposed technological development and present its respective contribution to recent studies. 

Prakash and Kumar (2013) have done a comprehensive review on recent trends and reported that forced 
convection of solar dryers is effective and more controllable than natural circulation. The authors also point out 
that solar energy can be effectively used for low temperature drying and there is a huge demand for efficient 
solar dryers incorporated with thermal energy storage medium. To address or limit the intermittent nature of 
solar energy, as analyzed by Prakash and Kumar (Prakash & Kumer, 2013), thermal energy storage is proposed 
as a technical and economically feasible solution for food and agricultural products in general by several 
researchers (Bennamoun, 2013; Agrawal & Sarviya, 2016; Bal et al., 2010). Different types of materials such as 
rock, water, sand and granite, pure paraffin wax and aluminum blend with paraffin wax have been used as 
thermal storage materials in solar dryers by researchers in the last decades (Agrawal & Sarviya, 2016). Most 
sensitive heat storage systems use rocks and water (Bennamoun, 2013; Agrawal & Sarviya, 2016). 

Fudlholi et al. (2015) carried out a technical and economic study of four types of solar dryer systems based on 
solar water collectors and thermal reservoir for the climatic conditions of Malaysia. The systems compared were: 
(1) hybrid photovoltaic system with heat pump, (2) system with chemical heat pump, (3) system with 
dehumidifier and (4) system with heat exchanger. According to the authors, all the evaluated systems presented 
high performance and stable output temperature suitable for drying process up to 60 °C. 

Nems et al. (2018) presented a concept of vertical flow high temperature solar dryer with granite balls in the bed 
of the dryer acting as thermal storage. Experimental results have shown that granite can prolong the operation of 
the dryer in two hours. 

Considering the medicinal herb market and the desired characteristics, the proposed system differs from other 
existing technologies by: (i) By the use of individual components (solar collector, reservoir and exchanger) 
commercially available for confection of the system which the facilitates the customization and replicability of 
the proposal; (ii) The auxiliary heating system supplies thermal energy directly to the air before entering the 
drying chamber, allowing greater temperature control and stability; and (iii) Due to the relation between 
collector and reservoir volume, there is a high solar participation in the final consumption of reducing the use of 
auxiliary heat source and consequently operating costs. 

3. Design of Solar Dryer 

This chapter presents the design and modeling of the technical arrangement of an indirect solar dryer composed 
of: sensitive heat storage system having water as working fluid, using solar collectors of vacuum tube and 
commercial thermal reservoir. 

The model proposed in this research will be designed and evaluated for the environmental conditions of the city 
of Cascavel (Paraná, Brazil) located at coordinates 24°57′21′′ S and 53°27′18′′ W. The climatic data used as 



jas.ccsenet.

reference 
Paraná Me

In order to
influences
favorable 
July and A

In order t
software, 
collector a
the heat ex

With the a
conditions
literature a

3.1 System

3.1.1 Weat

For the rad
the averag
data period
temperatur

 

 

 

It was obs
during wh

org 

for calculation
eteorological S

o validate the 
. In the perfo
operating con

August, as the m

to complemen
which allows 

arrangement, d
xchange. 

aid of this tool
s, including sim
and/or actual d

m Parameters 

ther Data 

diation was us
ge of the eleven
d is 2001-2010
re respectively

served that the
hich the dryer 

ns (solar radia
System (SIMEP

proposal, a th
ormance, two 
dition, and the
most unfavorab

nt the modelin
to change th

dryer operating

l, it is possible
mulating load 
data. 

sed the historic
n years for eac
0. In Figure 1 a
y of the months

Figure 1. Hou

Figur

e monthly hou
will operate, d

Journal of A

ation, ambient
PAR). 

ermodynamic 
situations wil

e second for th
able condition t

ng, a routine 
he following i
g parameters f

e to represent a
variation of th

cal of 2002-20
ch hour of the 
and Figure 2 a
s to be used in

urly average of

re 2. Hourly av

urly average of
does not have

Agricultural Sci

82 

t temperature 

model is used
ll be consider
he three mont
the Brazil. 

was develope
input and infl
flow rate, dryi

and/or estimat
he proposed d

013 of the hour
year. For the t

are presented th
n the calculatio

f the radiation 

verage ambien

f the ambient 
 a significant 

ience

and relative h

d to evaluate t
red: the first 
ths with the lo

ed in the Engi
luence variabl
ing temperatur

te the energy c
drying system 

rly average, th
temperature an
he monthly ho

ons. 

in the horizont

nt temperature

humidity duri
variation. The

V

humidity) wer

the system’s re
for the month

owest radiation

ineering Equa
les of the sys
re, geometry o

consumption in
according to v

he data were pr
nd relative hum
ourly average o

 
tal plane 

 

ng the central
erefore, it was

Vol. 11, No. 16;

re provided by

esponse to clim
h of January, 
n of the year, 

ation Solver (E
stem: climate 
of the reservoir

n various oper
values found i

rocessed, obta
midity of the ai
of the radiation

l period of the
s decided to fix

2019 

y the 

matic 
as a 

June, 

EES) 
data, 
r and 

rating 
n the 

ining 
ir the 
n and 

day, 
x the 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 16; 2019 

83 

values of this variable throughout the day, being 67%, 68%, 50% and 56% for the months of January, June, July 
and August respectively. 

3.1.2 Design Parameters of Solar Dryer 

To carry out the study of dryer performance, it is necessary to identify the different components that integrate the 
system. In Table 1 the main data of the arrangement are presented that are necessary for the modeling, which 
was previously defined based on a preliminary study. 

The adopted dryer is a parallel flow tray type with capacity for two trolleys each with 15 trays separated by 6 cm 
with a total load of 80 kg of wet material. The physical dimensions were determined according to commercial 
models presented by Perry and Green (2008). To reduce energy consumption, the dryer has 85% air 
recirculation, a typical value for this type of dryer (Perry & Green, 2008). The losses to the environment were set 
at 12% and 8% for the winter and summer months respectively (Costa, 2007). While the dryer is operating, it 
was considered a loss of 10% of the total energy that enters the solar collectors that represents the losses in pipes 
and reservoir (Duffie & Beckman, 2013; Muller & Heindl, 2006). 

 

Table 1. Characteristics of the solar dryer 

Description  Unit  Characteristic 

Type of manifold   Vacuum tube 

Collector area m2 5 

Number of collectors  4 

Parallel Collectors  2 

Reservoir volume L 100 

Diameter of the Reservoir mm 520 

Reservoir length mm 980 

Material of reservoir insulation   Polyurethane 

Insulation thickness mm 50 

Type of drying chamber   Parallel flow tray 

Number of trolleys  2 

Tray per trolley  15 

Tray dimensions mm 1200 × 800 × 50 

Nominal load kg 80 

 

3.1.3 Dryer Operation Conditions 

Among the several species of medicinal plants known in Brazil, the main cultures whose timing and drying 
temperature were compatible for the use of solar drying were mapped in the literature, being these used as 
reference of the calculation basis of the dryer. Table 2 presents this survey. 

Based on this survey, two operating times are considered, ts = 3 h and ts = 4 h, with drying air temperature Ts = 
65 °C. The initial moisture content considered is 75% b.u, the mean value of the data presented in the graph of 
Figure 3 and the final drying humidity considered and 10% b.u, the maximum final content allowed for 
commercialization of several medicinal plants 20. The air velocity was pre-calculated in such a way that the 
energy balance and mass of the dryer allow to satisfy the estimated drying time, taking into account that the air 
has less than 90% relative humidity at the exit of the drying chamber to avoid condensation from water. The 
calculated velocities are Var = 0.7 m/s for ts = 4 h and Var = 1.1 m/s for ts = 3 h, both within that used by 
several researchers (Table 2).  

Aiming at the best possible use of the solar resource, the dryer will remain on at the highest radiation hours of 
each month. For January it will be from 1:00 p.m. to 5:00 p.m. for ts = 4:00 p.m. and from 1 p.m. to 4:00 p.m. 
for ts = 3:00 p.m. For the rest of the months the dryer will call from 12:00 h to 16:00 h for ts = 4 h and from 
12:00 h to 15:00 h for ts = 3 h. 

The drying kinetics considered is of constant drying rate since the period of constant drying rate predominates in 
materials with high initial moisture content (Rubio et al., 2018), as is the case of medicinal plants. In the graph of 
Figure 3, which was elaborated from the survey of several experimental studies, it is indicated that considering 
linear drying as constant is a good approximation for the purposes of this work. 
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Table 3. Abbreviations and acronyms used for solar dryer size 

Parameter Description 

cp Specific heat  
h Enthalpy  
ts Drying time 
zint Internal Length 
Acol Collector Area 
As Effective drying area 
Frvl Solar collector thermal losses 
Fr(τα) Optical Efficiency of Solar Collector 
Cq Heat capacity rate of hot fluid 
Cf Rate of heat capacity of cold fluid  
FS Solar fraction  
G Mass air flow in kg/h.m2 
I Solar irradiation on the collecting surface  
Qmax Maximum possible rate of heat transfer  
Qp Thermal losses from the reservoir  
Qsolar Rate of solar energy captured 
Qτ Actual heat exchange rate  
Rc Drying rate 
Tamb Local temperature  
Tmod Dimensional temperature 
Tres Reservoir temperature 
Ts Drying temperature 
Twb Wet bulb temperature 
Var Drying air speed 
∆T Temperature variation 
� Thermal efficiency of collectors 
φi Initial moisture content of the material 
Φf Final moisture content of material 
ω Absolute humidity 
γev Latent heat of vaporization of water at wet bulb temperature 

 

4.1 Thermal Reservoir 

Under the following hypotheses: Uniform flow; Water as incompressible fluid; Water well mixed when the 
system is operating, then the water temperature is uniform with the position in the reservoir and varies only with 
time, T = T (t) and with the relation between mass flow rates shown in Figure 4 energy rate is defined as: 

)()( 5433 TTcpmTTcpmQ
dt

dT
cpm Pres    (1)

Where, T represents the uniform temperature of the water at time t. 
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evSwbSSC TThR /)( 4,4  (20)
For the purpose of estimation, the convective coefficient of heat transfer for the case of air flow parallel to the 
drying surface (Daghihi & Shafieian, 2016) can be calculated by: 

8.00204.0 GhS  (21)
The power supplied by the auxiliary system to keep the constant inlet temperature in the dryer (TS4 = 65 °C) is: 

tSSSauc QhhmQ   )( 243 (22)
As a consequence of the above equation, the total power supplied to the dryer can be written as: 

tauxTOTAL QQQ   (23)
The solar fraction is defined as the ratio between the energy supplied by the solar heating system (Qt) and the 
energy demand of the dryer, mathematically: 

)( 243 SSS

t

hhm

Q
FS






(24)

4.6 Dimensioning the Controller 

For dimensionametno controller are defined three expressions logics IF to represent the dryer control system and 
determining, for example, when only is connected to pump 2, or when the unfavorable irradiation conditions or 
low water temperature in the reservoir, it is not convenient to switch on the dryer. 

IF1: Links the pump 2 within a predefined time interval. This allows the pump 2 to function independently of the 
dryer, heating the water in the tank in the morning, before the start of the drying, and in the afternoon, after the 
drying has finished. Also, it limits the temperature of the water in the reservoir to 95 °C to avoid the boiling 
point. 

IF2: This expression attempts to determine or predict a day with low radiation to the point that it does not 
compensate for turning on the dryer and thus avoid overuse of the auxiliary system. The condition used is based 
on the monitoring of the reservoir temperature at a given time of day before the start of drying. Then, if the 
temperature of the reservoir is less than 90 °C 15 minutes before the start of the drying, it is understood that the 
radiation will remain low throughout the day. In this way, the program understands that only B1 will remain 
connected, water passing through the collectors, and B2 will remain off, even if it is the pre-programmed drying 
schedule. 

IF3: Due to the high reservoir temperature and low irradiance conditions, the efficiency of the collectors can be 
very low or even to the point where the water is cooled rather than heated. So pump 2 will turn on, not only if it 
is within the scheduled time and water is below 95 °C (IF2), but if the efficiency of the collectors is greater than 
5%. 

5. Results and Discussion 

The Figure 7 shows the hourly mean of the water temperature in the reservoir for the four months and the two 
drying times evaluated. At dawn, the system only has the loss of energy by heat transfer to the environment, 
which depends not only on Tamb but also on Tres.  

Therefore, as in January the temperature in the reservoir is higher, the fall is not accentuated in comparison to the 
other months. From 9:30 a.m., water begins to circulate through the collectors, increasing Tres up to 95 °C, 
maximum setpoint temperature. 

For the case of ts = 3 h (Figure 8), the temperature drop at the beginning of the drying is more pronounced as the 
increase in flow increases the energy demand required to heat the air and improves the heat transfer in the 
exchanger. 
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Table 4. Results for Ts = 4 h and Var = 0.7 m/s 

  t = 1 h t = 2 h t = 3 h t = 4 h 

January, days without operation = 0 
Tres  [°C] 86.6±5.0 75.7±2.57 71.0±2.4 68.0±2.6 
η 0.49±0.02 0.53±0.01 0.53±0.0 0.52±0.0 
Qcol [W] 7332±1049 7893±1054 7409±110 6791±122 
Qt  [W] 1379±1746 9720±878. 8158±812 7179±892 
Qaux  [W] 6832±1742 10580±876. 1182±816 1328±901 
QTOTAL [W] 2063±1744 20301±877. 1998±814 2046±897 
FS   0.66±0.08 0.48±0.04 0.40±0.0 0.35±0.0 

June, days without operation = 16 
Tres  [°C] 81.2±7.59 65.2±2.84 59.2±1.6 56.1±1.3 
η 0.37±0.04 0.45±0.01 0.47±0.0 0.44±0.0 
Qcol [W] 3306±706. 4213±565. 4097±575 3221±579 
Qt  [W] 1452±3229 7814±1154 5426±641 4189±544 
Qaux  [W] 1879±3204 2543±1143 2782±651 2918±583 
QTOTAL [W] 3331±3216 3325±1148 3325±646 3337±563 
FS   0.43±0.09 0.23±0.03 0.16±0.0 0.12±0.0 

July, days without operation = 14 
Tres  [°C] 83.5±16.6 69.2±2.89 62.8±1.9 59.1±1.7 
η 0.37±0.04 0.44±0.02 0.45±0.0 0.44±0.0 
Qcol [W] 3496±834. 4199±701. 4096±635 3337±598 
Qt  [W] 1274±2179 7817±977. 5692±653 4484±575 
Qaux  [W] 8823±2165 1372±975. 1585±659 1713±590 
QTOTAL [W] 2156±2172 2153±976. 2155±656 2161±582 
FS   0.59±0.10 0.36±0.04 0.26±0.0 0.20±0,0 

August, days without operation = 2 
Tres  [°C] 84.8±5.77 72.0±2.59 66.3±1.8 62.7±1.9 
η 0.43±0.03 0.48±0.01 0.49±0.0 0.46±0.0 
Qcol [W] 5015±786. 5789±667. 5576±763 4504±821 
Qt  [W] 1318±2008 8758±879. 6863±633 5651±648 
Qaux  [W] 8375±1994 1278±877. 1468±639 1596±663 
QTOTAL [W] 2156±2001 2153±878. 2155±636 2161±656 
FS   0.61±0.09 0.40±0.04 0.31±0.0 0.26±0.0 
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Table 5. Results for Ts = 3 h and Var = 1.1 m/s 

  t = 1 h t = 2 h t = 3 h 

January, days without operation = 0 

Tres  [°C] 84.5±6.2 71.5±2.6 66.7±2.1 

η 0.50±0.02 0.54±0.01 0.54±0.00 

Qcol [W] 7287±1126 7995±1031 7802±1093 

Qt  [W] 15888±2661 10406±1095 8446.±878. 

Qaux  [W] 15969±2654 21426±1091 23401±885. 

QTOTAL [W] 31857±2657 31833±1093 31848±881. 

FS   0.49±0.08 0.32±0.03 0.26±0.02 

June, days without operation = 15 

Tres  [°C] 80.8±7.3 65.1±2.8 59.1±1.6 

η 0.37±0.04 0.44±0.03 0.45±0.04 

Qcol [W] 3474±730. 4197±611. 3974±667 

Qt  [W] 14333±3137 7772±1148 5369±666 

Qaux  [W] 18978±3112 25473±1137 27876±676 

QTOTAL [W] 33311±3125 33246±1142 33246±671 

FS 0.44±0.09 0.25±0.10 0.19±0,11 

July, days without operation = 11 

Tres  [°C] 81.3±7.31 65.6±2.7 59.7±1.5 

η 0.39±0.04 0.46±0.01 0.47±0.01 

Qcol [W] 3733±766. 4480±576. 4321±536 

Qt  [W] 14531±3113 8000±1129 5622±625 

Qaux  [W] 18749±3091 25237±1125 27629±635 

QTOTAL [W] 33281±3102 33238±1127 33252±630 

FS 0.43±0.09 0.24±0.03 0.16±0.01 

August, days without operation = 1 

Tres  [°C] 82.5±6.9 68.0±2.6 62.7±1.7 

η 0.44±0.03 0.50±0.01 0.51±0.01 

Qcol [W] 5108±925. 6020±721. 5847±720 

Qt [W] 15037±2954 8973±1075 6836±693 

Qaux  [W] 17648±2977 23665±1227 25805±950 

QTOTAL [W] 32685±2965 32638±1151 32642±821 

FS 0.46±0.09 0.27±0.03 0.20±0.02 

 

The average energy consumption per kilogram of evaporated water was 6220 kJ/kg, a value close to that 
described by Melo et al. (2002) which shows an average consumption of 7256 kJ/kg of water removed for the 
guaco using 55 °C air temperature and upflow LPG drier. 

Under the loading condition, the arrangement in question can not keep the FS high during the entire drying, and 
the auxiliary heat source must be increased at the end of drying. This is reflected in the rapid fall of the FS 
shown by Figure 10. 

In order to show the versatility of the proposal and the model as an optimization tool, we present the result of the 
comparison between the arrangement of 4 collectors and the 100 L reservoir already analyzed, Ncol = 4 and Vres = 
100 L, and an arrangement of 8 collectors Ncol = 8 and volume of reservoir of 400L, Ncol = 8 and Vres = 400 L. 

In Figures 11 and 12 it is observed that with Ncol = 8 the lower temperature variation is presented in the tank 
and consequent greater participation of solar energy in the total energy consumption. Even so, FS is less than one, 
due to the limited temperature gradient between water and the air outlet temperature, requiring the auxiliary 
source to reach 65 °C. 
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to control the exit temperature of the drying air and therefore also does not allow to control the drying time being 
a great operational disadvantage. 

5. Conclusions 

The proposed dryer presented a satisfactory performance and superior when compared to the results found in the 
bibliography and recent research. The temperature of the affected water allows to maintain a favorable 
temperature differential with the drying air in the heat exchanger, which benefits the thermal exchange and 
elevates FS. The temperature at 65 °C avoids prolonging the drying process for more than a day of sunshine, as 
is often the case in indirect solar dryers without energy storage and without an auxiliary system. 

In the current operating condition, due to the temperature gradient between drying air and water, it is not 
possible to obtain a 100% solar share, even with the use of a large number of collectors. Even so, solar FS is high 
which translates into a reduction in operating cost between 20 and 47% when compared to conventional systems. 

It is worth noting that the proposed model can aid in the development and optimization of solar drying systems, 
making possible the analysis of the effect caused by the customization or adequacy of the project, whether due to 
climatic conditions or structural changes. 

As a continuation of this research, we intend to prepare the experimental model of the system for convalidating 
the numerical results presented in the article. 
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