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Abstract

Let R be a ring and M a left R-module. A module M is called ms*-module if each maximal
submodule is β∗ equivalent to a supplement in M . In this work, we focus on ms*-module and
study various properties of this module.

Keywords: Cofinitely supplemented; cofinitely weakly supplemented; weakly supplemented; Goldie*-
supplemented module.
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1 Introduction

Throughout this paper R denotes associative ring with unity and all modules are unital left R-
modules. For any module M , Rad(M) and Soc(M) denote the Jacobson radical and socle of M ,
respectively. We briefly recall some definitions and properties of (cofinitely) (weak) supplemented
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modules. Let M be an R-module and N,K be submodules of M . A submodule K of a module M
is called small (or superfluous) in M , denoted by K � M , if for every submodule N of M , the
equality K + N = M implies N = M . K is called a supplement of N in M , if K is a minimal
element in the set of submodules L of M with N + L = M . Equivalently, K is a supplement
(weak supplement) of N in M if and only if K + N = M and K ∩ N � K (K ∩ N � M). A
submodule K of M is called a supplement submodule if it is a supplement of any submodule of M .
Obviously, direct summands are supplements. A module M is called supplemented module (weakly
supplemented), if every submodule of M has a supplement (weak supplement) in M . A module M
is ⊕-supplemented module if every submodule of M has a supplement which is a direct summand

in M . A submodule N of a module M is said to be cofinite if
M

N
is finitely generated. A module

M is called a cofinitely supplemented module if every cofinite submodule of M has a supplement
in M . It is clear that every supplemented module is cofinitely supplemented. In [1] Alizade and
Büyükaşık defined cofinitely weak supplemented (or briefly cws-module) module if every cofinite
submodule has a weak supplement. Obviously, cofinitely supplemented module is cofinitely weak
supplemented. For additional properties and results of ⊕-supplemented, cofinitely supplemented
and weakly supplemented modules, we refer to [1], [2], [3], [4], [5], [6].

1.1 β∗ relation

In [7], G.F.Birkenmeier et.al. defined β∗ relation. Some properties of β∗ relation can be found in
[7].

Definition 1.1. Any submodules X,Y of M are β∗ equivalent, Xβ∗Y , if
X + Y

X
� M

X
and

X + Y

Y
� M

Y
.

By ([7], Lemma 2.2), β∗ is an equivalence relation and the zero submodule is β∗ equivalent to any
small submodule.

Proposition 1.1. If a supplement submodule S in M is β∗ equivalent to a cyclic submodule X of
M , then S is also cyclic.

Proof. Let X be a cyclic submodule and S supplement submodule of M such that Xβ∗S. Then
there exists a submodule L of M such that M = S+L and S ∩L� S. So L is weak supplement of
S in M . By ([7], Theorem 2.6), L is also weak supplement of X in M . Thus we have M = X + L
and X ∩ L�M . Since X is cyclic, we find

S

S ∩ L
∼=
S + L

L
=
M

L
=
X + L

L
∼=

X

X ∩ L

is cyclic. By the relation S ∩ L� S, it follows from ([6], 11.6) that S is cyclic.

A module M is distributive if for submodules A,B and C of M , A∩ (B +C) = (A∩B) + (A∩C).

Proposition 1.2. Let M be distributive module. Let M = D ⊕D′ and A,B be submodules of D.
Then Aβ*B in M where B is supplement submodule in M if and only if Aβ*B in D where B is
supplement submodule in D.

Proof. (⇒) Suppose Aβ*B in M such that B is supplement submodule in M . Then M = B + C
and B∩C � B for some submodule C of M . Let D = A+B+X for some submodule X of D. We
claim that D = A+X and D = B+X. Since M = D⊕D′, then M = A+B+X+D′. If Aβ*B in
M , then M = A+X+D′ and M = B+X+D′. By modular law, D = D∩M = D∩(A+X+D′) =
A + X + (D ∩ D′) = A + X and D = D ∩M = D ∩ (B + X + D′) = B + X. Let us show B
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supplement submodule in D. From the modularity, D = D ∩M = D ∩ (B+C) = B+ (D ∩C) and
B ∩ (D ∩ C) = B ∩ C � B . It means that B is supplement of D ∩ C in D.

(⇐) To prove the converse, suppose Aβ*B in D. Then
A+B

A
� D

A
and

A+B

B
� D

B
. So

A+B

A
� M

A
and

A+B

B
� M

B
by ([6], 19.3). Thus Aβ*B in M . We shall show that B is

supplement in M . Since B is supplement submodule in D, so D = B + C and B ∩ C � B for
some submodule C of D. Therefore M = D ⊕D′ = B + (C ⊕D′). It follows from the distributive
condition that B ∩ (C ⊕D′) = (B ∩ C) ⊕ (B ∩D′) = B ∩ C � B. Therefore B is supplement of
C ⊕D′ in M .

2 ms*-Modules

In [7], authors defined Goldie*-supplemented modules using β* equivalence relation. A module M
is Goldie*-supplemented (or shortly G*-supplemented) if for each submodule X of M , there exists
a supplement submodule S of M such that Xβ*S. It is clear that hollow modules and semisimple
modules are G*-supplemented. They showed that for quasi-projective modules, supplemented and
Goldie*-supplemented modules coincide.

We start this section by giving the definition of ms*-module and obtain some results of this module.
We prove that if M is finitely generated refinable module and each maximal submodule is β∗

equivalent to a supplement submodule, then M is G*-supplemented.

Definition 2.1. A module M is called ms*-module if, for each maximal submodule K of M , there
exists a supplement submodule S of M such that Kβ∗S.

Example 2.1. Local modules and semisimple modules are ms*-modules.

Theorem 2.2. ([1], Theorem 2.16) For a module M , the following statements are equivalent.

1. M is cofinitely weak supplemented (cws) module,

2. Every maximal submodule of M has a weak supplement,

3. M/cws(M) has no maximal submodules.

We can use Theorem 2.2 to say ms*-modules imply cofinitely weak supplemented modules.

Proposition 2.1. Let M be ms*-module. Then M is cofinitely weak supplemented module.

Proof. Let K be a maximal submodule of M . It is enough to show that K has a weak supplement in
M . By hypothesis, Kβ*S where S is supplement submodule in M . Then there exists a submodule
L of M such that M = S + L and S ∩ L� S. So it follows from ([6], 19.3) that S ∩ L�M . This
means that L is weak supplement of S in M . By ([7], Theorem 2.6), L is also weak supplement of
K in M . Hence M is cofinitely weak supplemented module.

The following is immediate consequence of Proposition 2.1.

Corollary 2.3. If every maximal submodule of M is β∗ equivalent to a supplement which is direct
summand in M , then M is cofinitely supplemented module by ([8], Theorem 2.8).

The converse of Proposition 2.1 does not hold in general. Cofinitely weak supplemented modules
need the refinable condition to become ms*-module.

A module M is said to be refinable, if, for any submodules U, V of M with M = U + V , there is a
direct summand U ′ of M such that U ′ ⊆ U and M = U ′ + V .
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Proposition 2.2. If M is refinable cofinitely weak supplemented, then M is ms*-module.

Proof. We will show that for each maximal submodule of M is β* equivalent to any supplement
submodule of M . For this, let K be a maximal submodule of M . It is clear that K is cofinite
submodule in M . By assumption, K has a weak supplement A in M . Then M = K + A and
K ∩ A�M . Since M is refinable, there exists a direct summand K′ of M such that K′ ⊆ K and
M = K′ + A. We claim that Kβ*K′. If K ∩ A � M , K′ ∩ A � M , then we have that A is weak
supplement of K′ in M . By ([7], Corollary 2.7), Kβ*K′ where K′ is direct summand supplement
in M .

Theorem 2.4. ([8], Theorem 2.8) Let R be any ring. The following statements are equivalent for
an R-module M :

1. M is cofinitely supplemented,

2. Every maximal submodule of M has a supplement in M ,

3. The module M/Loc(M) does not contain a maximal submodule,

4. The module M/Cof(M) does not contain a maximal submodule.

Proposition 2.3. Let M be refinable module. Then M is ms*-module if and only if M is cofinitely
supplemented.

Proof. (⇒) Let K be a maximal submodule of M . By Theorem 2.4, it is enough to show that
K has a supplement in M . Since M is ms*-module, we can say that there exists a supplement
submodule S of M such that Kβ*S. Then M = S + L and S ∩ L � S for some submodule L of
M . If M is refinable, there exists a direct summand S′ of M such that S′ ⊆ S and M = S′+L. So
M = S′⊕S′′ for some submodule S′′ of M . In this case, S′′ is supplement of S′ in M . If S′ ⊆ S and
S ∩L� S, then S′ ∩L� S. By ([6], 19.3), S′ ∩L�M . This means that L is weak supplement of
S′ in M . If S ∩ L� S, then S ∩ L�M from ([6], 19.3). By ([7], Corollary 2.7), Sβ*S′. Since β*
is equivalence relation, from transitivity, if Kβ*S and Sβ*S′, we get Kβ*S′. It follows from ([7],
Theorem 2.6) that K has a supplement S′′ in M .

(⇐) Since every cofinitely supplemented module is cofinitely weak supplemented, M is ms*-module
by Proposition 2.2.

Proposition 2.4. Let M be finitely generated ms*-module. Then M is weakly supplemented module.

Proof. Let N be a submodule of M . Then
M

N
is finitely generated because M is finitely generated,

so N is cofinite submodule in M . By Proposition 2.1, N has a weak supplement in M .

Corollary 2.5. Let M be finitely generated ms*-module. Then M is semilocal.

Proof. By ([5], Proposition 2.2) and Proposition 2.4, M is semilocal.

Büyükaşık and Pusat Yılmaz [9] introduced the concept of ms-modules and md-modules. A module
M is said to be ms-module if every maximal submodule of M is supplement submodule in M .
A module M is called md-module if every maximal submodule of M is a direct summand in M .
Clearly, md-module is ms*-module. Let K be a maximal submodule of M . If M is md-module, then
K is direct summand in M . Since Kβ*K, M is ms*-module where K is supplement submodule in
M .

Proposition 2.5. Let M be ms*-module with Rad(M) = 0. Then M is md-module.
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Proof. Let K be a maximal submodule of M . Now we shall prove that K is direct summand in
M . Since M is ms*-module, there exists a supplement submodule S of M such that Kβ*S. So we
have M = S + L and S ∩ L � S for some submodule L of M . Therefore S ∩ L ⊆ Rad(M). If
Rad(M) = 0, then the supplement submodule S is direct summand in M , that is, M = S ⊕ L. It
is clear that L is supplement of S in M . By Theorem ([7], Theorem 2.6), L is also supplement of
K in M , that is, M = K + L and K ∩ L� L. In a similar manner we see that M = K ⊕ L.

In [10], authors defined notion of maximally ⊕-supplemented module. A module M is called
maximally ⊕-supplemented if every maximal submodule of M has a supplement that is direct
summand of M . If M is ms*-module with Rad(M) = 0, then we can easily say that M is maximally
⊕-supplemented module by Proposition 2.5.

Theorem 2.6. Let M be finitely generated refinable ms*-module. Then M is G*-supplemented.

Proof. Let N be a submodule of M . By Corollary 2.5, M is semilocal, that is,
M

Rad(M)
is

semisimple. So
M

Rad(M)
is G*-supplemented. Then

N +Rad(M)

Rad(M)
β∗

X

Rad(M)
such that

X

Rad(M)
is

supplement submodule in
M

Rad(M)
. Therefore by ([7], Proposition 2.9), Nβ∗X in M . Let

X

Rad(M)

be a supplement of
Y +Rad(M)

Rad(M)
in

M

Rad(M)
for some submodule Y of M . In this case,

M

Rad(M)
=

X

Rad(M)
+
Y +Rad(M)

Rad(M)
and

X

Rad(M)
∩ (Y +Rad(M))

Rad(M)
=

(X ∩ Y ) +Rad(M)

Rad(M)
� X

Rad(M)
. Thus

M = X + Y and by ([2], 2.2), X ∩ Y � M . Since M is refinable, there exists a direct summand
U of M such that U ⊆ X and M = U + Y . If U ∩ Y ⊆ X ∩ Y � M , then U ∩ Y � M . We can
say that Y is weak supplement of U in M . By ([7], Corollary 2.7), Xβ∗U . Since the relation β∗ is
equivalence relation, Nβ∗X and Xβ∗U imply Nβ∗U such that U is supplement submodule in M .
Hence M is G*-supplemented.

Example 2.7. Let M be a radical module, that is, Rad(M) = M . Then by ([9], 2.3 Proposition),
M is md-module. Hence M is ms*-module.

Example 2.8. The Z-module Q is ms*-module.

Clearly, every G*-supplemented module is ms*-module. Observe that ms*-module need not to be
G*-supplemented.

Example 2.9. Let K be the quotient field of a discrete valuation domain R which is not complete.
Let M = K ⊕K. Since Rad(K) = K, Rad(M) = M , that is, M is radical module. By Example
2.7, M is ms*-module but not G*-supplemented by ([7], Example 3.9 (iii))

Proposition 2.6. M is ms*-module if and only if for maximal submodule K of M , K = S + H
where S is supplement submodule in M and H �M .

Proof. (⇒) Let K be a maximal submodule of M . By assumption, Kβ*S where S is supplement
submodule in M . Then M = S + L and S ∩ L � S for some submodule L of M . So L is weak
supplement of S in M . By ([7], Theorem 2.6), L is also weak supplement of K in M . In this case
we have M = K + L and K ∩ L�M . If M = S + L, by modularity, K = S + (K ∩ L).
(⇐) To prove M is ms*-module it is enough to show that for each maximal submodule K of M ,
there exists a supplement submodule S of M such that Kβ*S. Let K be a maximal submodule of
M . By assumption, K = S +H where S is supplement submodule in M and H �M . Since β* is
equivalence relation, Kβ*K, that is, Kβ*(S+H). By ([7], Corollary 2.12), we say that Kβ*S.
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Proposition 2.7. Let M be ms*-module with Rad(M) = 0. Then any coclosed submodule N of M
with Soc(M) ⊆ N is ms*-module.

Proof. Suppose M is ms*-module with Rad(M) = 0. Then M is md-module by Proposition 2.5.
From ([9], 2.4 Proposition), N is md-module. Therefore N is ms*-module.

Proposition 2.8. Let M be ms*-module. For small submodule N of M ,
M

N
is ms*-module.

Proof. Let
K

N
be a maximal submodule of

M

N
. We note that K is maximal submodule in M .

By assumption, Kβ*S where S is supplement submodule in M . Let σ : M → M

N
be a canonical

epimorphism. By ([7], Proposition 2.9),
K

N
β*(

S +N

N
). From ([11], Lemma 4),

S +N

N
is supplement

in
M

N
. In other words,

M

N
is ms*-module.

Corollary 2.10. Let M be ms*-module with Rad(M)�M . Then
M

Rad(M)
is ms*-module.

For the converse of Proposition 2.8, refinable condition is needed.

Proposition 2.9. Let
M

N
be refinable ms*-module for small submodule N of M . Then M is

ms*-module.

Proof. Let K be a maximal submodule of M containing N . Then
K

N
is maximal submodule in

M

N
. If

M

N
is ms*-module, so

K

N
β*

S

N
where

S

N
is supplement submodule in

M

N
. Then there exists

submodule
A+N

N
in

M

N
such that

M

N
=
A+N

N
+
S

N
and

S

N
∩ A+N

N
=

(S ∩A) +N

N
� S

N
.

This yields M = A + S and S ∩ A � M , i.e., S is weak supplement of A in M . In the refinable
situation, there exists a direct summand S′ of M such that S′ ⊆ S and M = S′ +A. Moreover, in
this case, S′ is a supplement submodule in M . Our claim is to show that Kβ*S′. We know that
S′ ∩ A ⊆ S ∩ A � M implies S′ ∩ A � M , that is, S′ has a weak supplement A in M . By ([7],

Corollary 2.7), Sβ*S′. Let σ : M → M

N
be a canonical epimorphism. By ([7], Proposition 2.9(ii)),

σ−1(
K

N
)β*σ−1(

S

N
). Thus Kβ*S. Since Sβ*S′, we get Kβ*S′ with the property of transitivity of

β*.

Proposition 2.10. Let M be projective and refinable module. Then M is ms*-module if and only
if every simple factor of M has a projective cover.

Proof. (⇒) Suppose that M is ms*-module. Let K be a maximal submodule of M . Then Kβ*S
where S is supplement submodule in M . Then M = S+L and S∩L� S for some submodule L of
M . Since M is refinable, there exists a direct summand S′ of M such that S′ ⊆ S and M = S′+L.
So S′∩L ⊆ S∩L� S, that is, S′∩L� S. It implies that S′∩L�M by ([6], 19.3). We have that
L is weak supplement of S′ in M . By ([7], Corollary 2.6), Sβ*S′. By transitivity of β* relation, we
mention that Kβ*S′. Since S′ is direct summand in M , that is, M = S′ ⊕ S′′ for some submodule
S′′ of M , by Theorem ([7], Theorem 2.6), S′′ is supplement of K in M because S′′ is supplement

of S′ in M . Thus
M

K
has a projective cover from ([6], 42.1).

(⇐) Let K be a maximal submodule of M . With the assumption we can say that
M

K
has a

projective cover. By ([6], 42.1), there exists a direct summand V of M such that M = K + V and
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K ∩ V � V . Since M is refinable, there exists a direct summand K′ of M such that K′ ⊆ K and
M = K′ + V . Then as similar to above K′ ∩ V � M , that is, V is weak supplement of K′ in M .
Since K ∩ V �M , so Kβ*K′ by ([7], Corollary 2.7) where K′ is supplement submodule in M .

Theorem 2.11. Let R be a semiperfect ring. Then every projective refinable module is ms*-module.

Proof. Let M be projective and refinable R-module. Then by ([6], 42.6), every simple factor module
of M has a projective cover. Hence M is ms*-module from previous proposition.

Proposition 2.11. Let M be ms*-module with Rad(M)�M . Then every maximal submodule of
M

Rad(M)
is direct summand. The converse holds if M is refinable.

Proof. Let M be ms*-module with Rad(M)�M . Then by Proposition 2.1, M is cofinitely weakly

supplemented. Then by ([1], Theorem 2.21), every maximal submodule of
M

Rad(M)
is a direct

summand. For the converse, suppose that M is refinable. Let K be a maximal submodule of

M . Then
K

Rad(M)
is maximal submodule of

M

Rad(M)
. By assumption,

M

Rad(M)
=

K

Rad(M)
⊕

A+Rad(M)

Rad(M)
for some submodule

A+Rad(M)

Rad(M)
of

M

Rad(M)
where A is submodule of M . So we

have M = A+K and A ∩K ⊆ Rad(M). Since Rad(M)�M , A ∩K �M , this means that K is
a weak supplement of A in M . By ([1], Theorem 2.21), M is cofinitely weakly supplemented. If M
is refinable, from Proposition 2.2 we say that M is ms*-module.

A module M is said to be coatomic if for every submodule N of M , Rad(
M

N
) =

M

N
implies M = N ,

equivalently, every proper submodule of M is contained in a maximal submodule of M (see [12]).
For instance, finitely generated and semisimple modules are coatomic. It is clear that every factor
module of coatomic module is coatomic.

Proposition 2.12. Let M be finitely generated ms*-module over a Dedekind domain and let K be
a maximal submodule of M . Then the following hold:

1. Every weak supplement of K is coatomic.

2. Every maximal submodule of M is coatomic.

Proof. 1) Let L be a weak supplement of K in M . Then M = K + L and K ∩ L � M . Since

R is dedekind domain, by ([13], Lemma 2.1), K ∩ L is coatomic. Let σ :
M

K
→ L

K ∩ L be an

isomorphism. If K is maximal submodule of M , then
M

K
is simple, that is,

M

K
is coatomic. Then

L

K ∩ L is coatomic. Let

0→ K ∩ L→ L→ L

K ∩ L → 0

be an short exact sequence of modules. By ([14], Lemma 3), L is coatomic.

2) Let K be a maximal submodule of M . Since M is ms*-module, there exists a supplement

submodule S in M such that Kβ*S. So
K

S
� M

S
by definition of β* relation. It follows from

([13], Lemma 2.1) that
K

S
is coatomic. Since S is supplement submodule of M and M is finitely

generated, S is finitely generated too. It implies that S is coatomic. Let

0→ S → K → K

S
→ 0

7
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be an short exact sequence of modules. If S and
K

S
are coatomic modules, then K is coatomic from

([14], Lemma 3).

Proposition 2.13. Let M be projective and refinable module. If M is ms*-module, then every
direct summand of M is ms*-module.

Proof. Let N be a direct summand of M . Then M = N ⊕ L for some submodule L of M . Since
M is projective, so N is projective. By assumption and ([2], 11.31), M has the finite exchange
property. Then N has the finite exchange property from ([2], 11.9). Again by ([2], 11.31), we have
N is refinable. Let K be a maximal submodule of N . To use Proposition 2.10 we want to show that
N

K
has a projective cover. Let π : M → N be a projection and f : N → N

K
be an epimorphism.

Thus g : M → N

K
is an epimorphism such that g = fπ. In this case, Kerg = K ⊕ L. By the

isomorphism theorem,
M

K ⊕ L
∼=
N

K
is simple. By Proposition 2.10,

M

K ⊕ L has a projective cover.

So h : P → M

K ⊕ L is a projective cover of
M

K ⊕ L such that Kerh � P . Let α :
M

K ⊕ L →
N

K
be

an isomorphism. Then αh : P → N

K
is a projective cover of

N

K
with Kerαh� P . By Proposition

2.10, N is ms*-module.

Theorem 2.12. Let M be a finitely generated refinable module. If M is projective, then the
following are equivalent:

1. M is ms*-module,

2. M is cofinitely supplemented,

3. M is supplemented,

4. M is semiperfect.

Proof. (1) ⇒ (4) Let M be ms*-module. By Proposition 2.10, every simple factor of M has a
projective cover. By ([6], 42.5), M is semiperfect.
(4)⇒ (3) If M is semiperfect, by ([6], 42.3), then M is supplemented since M is projective module.
(3)⇒ (2) It is clear that every supplemented module is also cofinitely supplemented.
(2) ⇔ (1) Let M be refinable module. By Proposition 2.3, M is ms*-module if and only if M is
cofinitely supplemented.

3 Conclusion

In this work, we defined ms*-modules using β* relation and investigate some properties of this
module. From results, we see that for a refinable module, ms*-module and cofinitely supplemented
modules coincide. Moreover, we obtain that every finitely generated ms*-module is semilocal and
every projective refinable module is ms*-module over semiperfect ring.
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