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Abstract

An innovative approach that treats prime numbers arperimental data and as elements of larger|and
larger finite sequences {P={P(my)} is shown in the present report. The modified chi-squanction
XKZ(A,mp/xo) with its three parameters A, k angkx,(k) is the best-fit function of the finite sequenges
{pmy={lgPw/lgmy} from the analytical viewpoint thus showing that the map of scale invariance dogs
not hold for the finite sequences of this prime variednie so for primes themselves. In addition|an
injective map can be set between thgsg sequences and the {inprogressions with domain N and cp-
domain R beinga€(-1,0cR™ through the parameter k=2e®f their common fit function X(A,mp/xo).
All that leads to induction algorithms and to relationshipsthe kind B=P(m,), though within the|
precisions of the calculations and holding locally.

Keywords: Prime number sequences; modified chi-square functionerical progressions; computational
mathematics.
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1 Introduction

The problem of prime numbers in number theory has always@eballenge to face and still nowadays it
remains one of the major open problems notwithstanding the nha@oyetical successes achieved both
historically and recently [1-13]. The main problem concetms fact that, unlike all the numerical
progressions, neither an exact relationship that links theeafla prime R to its counter mi.e. R=P(m,)

has yet been found at present (or simply it does not existhare is an analytical law that links any prime
number B to its preceding Ri. In other words it is not possible at present to state tHetinduction
principle holds for prime numbers. Moreover, there arengtrdoubts about the nature itself of prime
numbers, whether deterministic or stochastic, in thai@numbers on one hand seem to obey to firm laws
on the other they seem to appear in a random way one afitrea Thus the present article is aimed at
introducing a new viewpoint on prime numbers which makes of an innovative methodology, never
adopted before now, that can describe prime numbers atdo#ing at its initial stage, can lead, after due
refinements, to more precise calculations of their vallnes maybe saving computer memory. Besides, this
methodology might lead in the future to further unexpectsdlteand findings in addition to that already
found of the scale non-invariance of the finite sequencpsog numbers.

In previous articles and reports by the same author [14hg7friite sequences of prime numberg){Rave
been examined from both the statistical viewpoint andttadytical one fitting their differential distribution
functions and the finite sequences of their frequencigs={my/Py} by the modified chi-square function
sz(A,mp/xo) thus finding remarkable unexpected results among which the soa-invariance [18,19] of
the finite sequences of primes, their scaling laws heitl torrespondence with the finite progression&{m

In addition, the same methodology as applied to the tredgabgressions {fi} and their summations}n~

“ has led to find an elementary (that is not using tleeth of complex functions) and general (that is valid
for all the non-trivial zeroes of thgs) function up teo) proof of Riemann’s hypothesis [20,21] by means of
the modified chi-square function.

In the present report this same innovative approach isestegy again, starting from the computational
viewpoint [22-26] and making use of the modified chi-squaretfan with k degrees of freedom

XEAMX(K)] = AR Tigo) [y 2, (K] “2 e ™2 @

with ke(1.0, 2.0ER" as the best-fit function along the whole study to maheh finite sequences of
{pm}={lgPw/lgmy} from the analytical viewpoint, that is fitting/interpsilag the actual data point$y, =
p(my,) by the analytic function (1).

The aim is to construct a computational model of thedfiséiquencespf} ={ p(my)} ={IgP /Ilgm}.

The function (1) is used as the best-fit function along thdendtady to match the finite sequencesf{and
the truncated progressions {frhaving domain N and co-domain’Rvith a€(-1, 0x=R™ which can also be
written as {m*} with —ae(-1, 0)=R". The rationale underlying the entire matter has beeséddhis function
taking advantage of the adjustment of its three paemkt A, and k) which allow to optimize the fits as
much as possible up to 99% and even more whenever possibteetnwords glot&fit algorithm has been
set up.

Furthermore the inverse ]ﬁ[(A,mp/xo(k)] of this function (1) can fit both the progressioms'{} with a€(0,
+1)cR" and the prime sequencqsn{l}z{lgmp/Ing} with the values of its parameters A, k angkx,(k)
equal to those of the corresponding,,f sequences and {if} progressions fitted by X[A,mp/xo(k)] what
proves all its flexibility and efficacy. This is not atal concern, as it might look, but an important topic of
the research as shown later on.

The accuracy and precision (i.e. uncertainties), random an@gnstic errors, error sources, error
propagations and reliability of the results have been inwstlg being these issues crucial to the whole
algorithm as explained in detail in the Methods section.
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After all, what has been done is just what is usually dongesting experimental raw data [27-29], a
procedure that is common to all the fields of experimeptigbics. The only difference has been to treat the
data pointp,,=lgP./lgm, just like a set of experimental data, in a broad sensehich all these concepts
and criteria can be applied, with the further undisputable radga of having zero inaccuracy (i.e. no
systematic errors) and zero imprecision (no randomsyroor the base data, whereas zero inaccuracy though
not zero imprecision (owing to the approximations of thiewdations and of the fits) are present in the final
results. In such a manner a computer simulation modelbbas set up and applied to the truncated
numerical progressions {if} and the finite prime sequences.{}. Some websites have been used to get the
values of tha@ function [30,31].

However, while for any finite progression {f the results in no way depend on the number of the terms
(apart from the usual improvements of the fit valuesgwddence of the improvement of the statistics) what
is a consequence of the scale invariance of any spiglgression, in the case of prime numbers larger and
larger finite sets of them have been taken into acconatat a time. The reason for such an unconventional
choice is a strict consequence of the scale non-invariehpeimes and an evidence of the existence of
scaling laws holding for them, as shown later on.

2 Methods

The modified chi-square function (1) with k degrees of foeedhas been already examined and described in
the previous works by the same author with all itguiess; here it is enough to remark that in the plane
(x,X?) the coefficient A (which usually is at one’s own cleim all the calculations) shifts rigidly the
corresponding curve up or down, the decay paramgtgtretches or compresses it along the x axis and the
k parameter (the number of degrees of freedom) detesnthe shape of the curve (more or less rounded).

The entire methodology is applied to the analysis of theeprinmber sequenceg,.{ and of the finite
progressions {ff} with meN and a€(-1, 0=R getting remarkable results. Larger and larger finite
sequences of prime numbers, subsets of their whole infiagaence, have been examined that is sequences
ofthekind: {2 3 5 7 11 ....... R P} =={Py} c{P}c{P}c..... c{P.}c....... being of course h <

I <j<iiiiiinnn <n<..... and afterwards the finite sequesifp}={lgP/lgmy} that is {pr} < {pi} = {pj}
Cod c {pn} c<....... being R = P(m) = mp"(m”) have been investigated. Apart from the usual
improvements of the statistical values, the reason fdr ancunconventional choice is a strict consequence
of the scale non-invariance of prime finite sequenoelsad scaling laws holding for them as shown later on.
Of course, just few (typically 4¥200) equally spaced data points have been examined for mpy {
sequence, being ygan,'A=200A and having verified that this choice does not affect thiability of the
results.

Also any {nf} progression with a finite number of terms has been é@dnat n (again typically 200)
equally spaced data points and it has been fitted, data points, by the modified chi-square function with
the appropriate values of the parameters k, A atleoflecay parameteg x X,(k). Speaking in a rigorous
and formal way any {if} progression can be analytically continued from the N dantaithe R domain,
that is to the function f(x)=xand also to the function F(x)#{A,mp/xo(k)]. Both functions are analytic on
the whole R plane.

Maximizing the two statistical markers, R and |, meamaking both of them to approach the value ofad
much as possible by adjusting the value gf far any value of k in order to match the data po@p,

and the fitting curve F:X[A,mp/xo(k)] as much as possible, as well as to balance tlveirage values
<C>:<pm>:<F>:<Xk2[A,mp/xo(k)]> up to the 12 decimal digit, as already said. In addition, even e t
standard deviations of the meang,w=oc. andos=cr have been examined in order to ascertain that each of
them would be much lower than its respective mean <C> &nrdand thats, ~ of. Finally, two further
gauges of the fit have been minimizing the values of #est. Square Sum (LSS) according to the principle
of maximum likelihood and of the 2%s.vaein that both of these variables measure the goodness df.the f
Just to summarize, many statistical tools have been nsemlér to do the best fits at the utmost statistical
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reliability. Though complex and time-consuming, this figtiprocedure has proven all its effectiveness and
reliability in finding out not only the best values of ikdaof the decay parametey for any data set but even
the two fundamental relationships kaeltk, and k=k(rg)=k; for the progressions {fpand the sequences
{pm} respectively, as well as ®x,(a) and x=x,(my), showing that this basic parameter k depends only on
a and m respectively while thexdecay (or growth in other cases) parameter can be regaslexs a local
parameter.

Hence for most cases it is possible, by this methodolagyeduce the problem of prime numbers to a
problem of precision of the calculations, though still hard aot yet fully solved. However, in comparison
to other approximate methods of prime number evaluation, geepr one has the advantage of showing a
wide spectrum of possibilities, about six or seven or reoreng which it is possible to choose according to
the best results. In addition, using a mainframe anch@ain the initial fits, there is the possibility to
increase the precisions of the final results, i.e. oPthealues got in such a manner, as much as possible.

One of the backgrounds of the study has been the use ofitkgle of extrapolation and interpolation of
the data points by means of the fits that has been widelyalkegler the report whenever required and
possible even though not explicitly cited, a principle widggled in all experimental science.

3 Analytical Treatments

The attention has been focused on the prime number firdteesees §n}={ p(My)}={lgP/lgmy} and on
the {m} truncated progressions havinged andae(-1, 0)cR™ also written as {f} with —ae(-1, 0cR™
with the purpose of fitting them by the modified chi-squaretion and linking the former to the latter from
the analytical viewpoint. The analytical aspects ol in the frame of computational mathematics
represent an attempt to reach an algorithm of thd Kip=P(m,) for the construction of a prime number
starting from its own counter gy the present method, though approximate and valid locally.

The plot of the actual values ofp.{} for the first my~ 100-200 primes (not shown) displays wide damped
oscillations or fluctuations which tend to disappear comiyi¢tenceforward that is exhibiting a much more
regular trend at higher values as in the two plots of Fig. Irevtie actual R values vs. m(a) and the
actualpy, vs. m, (b) are shown for all the prime numbers studied fro@m1@0 up to rg=2E15 [32,33]. It is
just this regularity that leads to examine the trenpl,ofersus rp starting from the alleged relationship#

P(mp) = my® being p = pm = p(Mp) = Ig(Pr)/Ig(my).
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Fig. 1. The actual values of prime numbers P (a) and of p,=p(m,) (b) vs. m from 100 up to 210"

Looking at these two plots of data points it would seemehah of them is fitted by just one single curve
(whatever it might be) i.e. that each of these two data may be interpolated by just one single analytic
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function. It is not so. As a matter of fact one can labkhe two plots of the next Fig. 2 showing the huge
difference between the two cases of:

a) The progression {M={m'%*% (a=1.6357 is a randomly chosen value) with=200 for
m=500—100,000 and for m=2T=2E12—400T=400E12;

b) The two prime number finite sequences,5200) for the sequence ,#500—100K that is
P»=3,57151,299,709 and for the sequence,=8T=210"-400T=410" that is B =
61,427,839,512,229> 14,472,680,634,646,931 [34].
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Fig. 2. The actual values of the progression {fh= {m"°**4 (a) and of prime numbers {R,} (b) both for
the two cases m=508-100K and m=2-10">-400T

While in the first plot (a) there is no difference atl@tween the two sequences of data points, apart from
the scale of course, and their perfect superposition caadilg ehecked despite the huge difference of their
values, in the second plot (b) there is a clear evidendediifference between the two data point sequences
of primes. This is the proof of the scale non-invaz@aof prime numbers, a property already found in the
previous works by the same author. Such a property appglrsiore evident in examining the finite
sequences of the prime variablgJ={ p(m,)}={Ig(Pm)/lg(m,)} as shown in the next Fig. 3 which reports
some sequences ofp(fny)}={pm} vs. the ordinal number that is the counter of the datatpdrom 1 up to
n,=200 the number of the cells of the spread-sheet used fdreatlalculations. Thus, otherwise from any
progression {rf} which can be fitted by just one analytic function indegently from the number of its
terms, that is f(x)=%of course and alsoF(x)=X[Ax/x,(K)] as shown later on (as a matter of fact
lg(m®“)/lgm=a), in the case of prime numbers any finite sequensg={lg(Pm)/lg(m,)} has to be fitted by a
different analytic function, that iski"{A,mp/xo(k)] with the ad-hoc values of k ang being the value of A

at one’s own choice and having chosen A=1 once for all iprésent study.

Thus, again the same algorithm as already used in pregames [14-17] has been applied in the current
case, i.e. choosing larger and larger setpgfd{p}c{p}c...... c{p}c ....... Covennn. <{pm} -ee-ee {pop}

with {p2e}={p1 p2 pP3 .- Pheee Picee Pjeeees [V pm ... p2r}, fitting the relationshippm=p(m,) and the
associated plot vs. yifor any of them by the modified chi squared functiqﬁ[lx,mp/xo(k)] where again
k<2". Of course, as already told, for any sequemg® € {pa p2a P3a Pap - eeeenvn. P2ocn} DEING M =R-A
=200A vm.

In addition, also the finite progressions{fnwith —a€(-1, 0cR™ m=m,eN k=2+2a have been identified
as well-fitting the $.,} sequences though with a coefficient=C(a) so that

{Pm} = XTAM/Xo(K)] = C{m™} = {C,m ™}
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and the previous scheme of Fig. 4 can be highlighted whezé-%, O-R™ m=meN k=2+2a and the
single arrows reveal the one-way correspondence, tha isjection map, while the double one reveals the
one-by-one correspondence, i.e. the bijection map.
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Fig. 3. Some sequences of the actual prirpevalues pm}={lg(Pm)/Ilg(m;)} vs. the ordinal counter n,
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Fig. 4. Fits of the sequencep{}} ={lg(Pm)/1g(mp)} with k = 2 + 2a

Thus the aim of the whole research is to fit, that isnterpolate and locally extrapolate, any of the 63
sequences ofpf,} examined (this number has been considered adequate tar@btdliable fits) by the
analytic functions identified as the modified chi-square ﬁonctxkz[A,mp/xo(k)] and x*.

Some examples are reported and discussed in the followieg pad in Fig. 5.

The first example concerns the first 40G valuespgf fand it is shown in Fig. 5a where the parameters of
the fit by the modified chi-square are A=3%.95028704889E+102 k=1.992244%,,=1.00225325280911
R=0.998706 1=0.997413 <C>=<F>==1.1385831810495/60.004232 5=0.004227 LSS=0.257949
XZestvaus8.02996E—6 while the linked parameters for the fit by thegmession {Gm® =
{1.246867803387n *°%%®""¢ are: R=0.998706 1=0.997413 LSS=0.25794%csXxu=8.024956E—6.
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Fig. 5. Fits of the first {psoc} (@) and of the first {p-7} (b) by the sz[l,mp/xo(k)] and by {C,m"}

The same Fig. 5b shows the first 7T values pf}{with the parameters of the fit by the modified
chi-square function are A=1,x7.72278352265E+135 k=1.9943278(,=1.0016450175479 R=0.999107
1=0.998214 <C>=<F>=1.1201664597493860.0030425-=0.003039 LSS=0.177957°%;.vans2.91714E—
6 while the same parameters for the fit by the -#C} function are: G=1.214790079786 a= —
0.002836108 R=0.999107 1=0.998214 LSS=0.17795%.%u52.916049E—6.

It is interesting to remark, just in these few examptleat the fit parameters tend to improve in choosing

larger and larger sequences off what is a clear evidence of the improving of the f@gcourse, and of
the goodness of the method.

In such a manner many (i.e. 63) sets of values of dh@npeters k and,xhave been gathered, anyone for
any set of p(my)}, which can be plotted as reported in Fig. 6 showing thads of kk(my) (a) and of
lgx.=lgx,(lgm,) (b) for the 63 sequences of.{ examined.
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Fig. 6. Data points and fits of k (a) and of the decagyarameter x, (b) of sz[l,mp/xo(k)] ={pm}

It is remarkable to highlight that both trends k=K(rand x=x,(m,) resemble those previously found in
other cases [14-17] with the same limit values

a) i wok(my) = 2 b) i, s Xo(Mp) = o0
a) i, lAk(mp)/Am,] = 0" b) M. sl AXo(Mp)/ AM] = 0

The best fit of the 63 data points gives the followingtiefeship of k vs. m(Fig. 9a):

k = k(m) =~ 1.87715 + 0.0398@&), — 0.00598n,> + 4.77556E-4n,® —1.95679E-4&n," +
+3.23842E—,’
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with R=0.99997 6=6.000E-5 N=63 p<1E-4

As for the decay parameteg=x,(mp) (Fig. 9b) it is possible to see that the follownegationship holds on a
log-log scale:

log(x,) = log[x(my)] =~ 14.13218 — 2.4981@ogm,) + 1.99422(Iognr1))2 - O.1557£(Iogma)3 +
+0.00758(logm,)* — 1.47285E—4logm,)°

where  R=1.000000000000 ¢=0.06784 N=63 p<I1E-4
where nonetheless it should be kept into account thatixheosfficients depend again on,what means
that both for k and for xscaling laws hold. Of course, in both the relationshipscbefficients are affected
by uncertainties which are approximately between some dsame %.
The variabldly, is highly dependent on k, its law being well-known. Howerethe present context, being
the plots of the data points as reported in the next two g&fgfig. 7a and 7b, it can be approximated that
is fitted by the local (i.e. holding for I%,<1.016) relation ofl, vs. m.

Ti2(mp) = 1.03412 — 0.009981, + 0.0123m,> —7.03545E—5n,’° + 1.53074E—6n,’

with RF=0.998 ¢ = 453E-5 N=63 p<lE—4 and the uncertainties on the cieetf are about 1%o or
less. The linear regression bf,, vs. k (Fig. 10b) in the same range leads to the law

Twa(K) = (1.59804+0.000728) — (0.29906+0.0003689)
~ (1.59804+0.455%o) — (0.29906+1.22%)

with RF=0.99995 ¢ = 2.973E-5 N=63 p<lE-4
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Fig. 7. Data points and fits ofl", of sz[l,mp/xo(k)] for the 63 sequences of pf,} vs. m, (a)
and vs. k (b)

Thus, at least in principle, it would be possible to caleuthe value of a prime numbey, Starting from its
counter g using the above reported relations and plots andptaieng and/or interpolating them, apart
from precision problems.

What means that the following scheme can be assumedgéysof Figs. 6 and 7):

Xo

1 !
m— kK—— Iir— sz[lxmplxo(k)] = p(my) — m;:»p(mp)z P
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Using the best fit of the data points to evaluate bojhamd k (independently one from each other) from
m, in order to get the value of the modified chi-square fonctand thus the value gf=p(m,) and of R.
Otherwise, the value of Ican be attained again as k=kjmfrom which the value of )= X,(k) can be
derived, finally getting the value of J1,my/x,(k)] = p(m,) leading to ™= P, according to this
alternative scheme

My —— k= k(M) —— X = %(k) —— XILmyxo(K)] = p(mmp) — m, ™= R,
or even according to this further scheme (just interchariti@ roles of k andx
Mp —— Xo = X(Mp) —— k= k(%) —— XL mpxo(K)] = p(mp) —— my ™= Py,
the choice among these options laying on the best eattained for the final fits of
Another example of the great flexibility and usefulnesthefmethodology is given in Fig. 8 where the plots

of log(x) vs. k (a) and of kvs. log{x (b) are shown, once again each with its own polyniofihiand its
fit parameters.
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Fig. 8. Plots of log(y) vs. k (a) and of k vs. log@ (b)
For instance, the fit of plot (b) is {R0.99902 6=3.3517E-4 N=63 p<lE-4)

k ~ 1.89783 + 0.0040Rjx, — 7.3543E-8g°, + 6.8046E—1gx, — 3.0908E—9g’x, + +5.4618E—
121g°%,

The two limits liMg_+K(Xo) = 2 limyo+.[AK(X,) / AX] = 0" are noticeable in both plots, though not in
the fit relations. As a matter of fact, just like in theevious plots 6a and 7a, the fitting function, got
automatically by the computer code used, is not capablesofidiemg the limit behaviour (for gasco or
k—2") of the plots. This aspect of the research will be éicat the future with the aim of correcting it.

It has to be remarked that, though at the present time thesiprexcbf the many methods here shown are not
very satisfying, nevertheless one of the main advastaf¢his approach to the problem of primes is given
just by the many options by which the final value®gftan be obtained. That leads to get also many checks
on the final results in addition to the possibility of cingsamong the many alternatives of calculating P
from m,, though approximate.

For instance, the latest method here explained gieesamb plots (a) and (b) of Fig. 9 where for the former
the difference between the actual values and the cadulatiues op,, (a) is shown vs. the prime counter
m,, while for the latter (b) the difference between theualcvalues and the calculated values pf ¥
reported versus g
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Nonetheless all these evaluations are still under examinatithe present time, in that the error propagation
from the values opy, to the final results Ris very high, that is there are high enhancementsl|dheal
inaccuracies in passing through the many steps illusteditede. As a matter of fact it is easy to remark that,
there is a ten-fold increase at least in the two leftescof Fig. 9a and b, while in other cases the situasi

even worse.

a) b)

01 . 1 P,

%A p,
7
7
% Delta Pm
pd

0,01 o \
) .
Y _

0,1

1k 10k 100k 1M 10M100M 1G 10G100G 1T 10T100T 1P 10P 1k 10k 100k 1M 10M100M 1G 10G100G 1T 10T100T 1P 10P
m

m
P p

Fig. 9. Error propagation from p, (a) to B, (b)

Thus another method has been examined. For any sequ€ngg} the fit has been made also by the finite
progressions &{m*®}, as already said, thus finding further interesting retathips.

Hence, again for any sequengg,) the corresponding progression {&1"}=C,-{m°} has been examined
optimizing the fit, again finding the 63 values of batland G. The next Fig. 10 plots the related 63 data
points and the two fits for the relationshigsa(m,) and G =C,(m;). The first set of data points (a) can be
fitted by the relationship

a = a(my) = — 0.0593 + 0.0180, — 0.00237m,° + 1.33511E—4n,’ — 2.84515E-Tn,* —
2.73375E—7n,° + 7.95901E-9n,°

where R=0.99997 c =2.8805E-5 N=63 p<1E-4
while the analogous fit for the 63 data pointsv€. m, (Fig.10b) is

C, = G(my) = 1.73777 — 0.0778), — 2.1417E-4n,* + 7.58061E—4n,> — 5.82459E-4n,"* +
+1.38533E-6n,

with RE=0.99994 6=7.01773E-4 N=63 p<1E-4

Once again, the errors (or uncertainties) on the cdefiie are between 1%o. and few % and again the limits
are

a)  limyp,e0(my) = 0 b)  ipLCa(my) = +1°
8) I, [ Aa(my)/amy] = 0° b) TR [AC(mp)/Amy] = 0"

10



Lattanzi; BJMCS, 20(5): 1-19, 2017; Article no.BJBIG1589

a) b)
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Fig. 10. Data points and fits ofx (a) and of the coefficient G (b) both vs. m for the 63 sequences of
{Com’}

Hence, in this case too, a relationship, though approxiarateholding locally, has been found that can be
used to calculate the value of a prime numbefr®m its counter iy thatis R ~ mp”(mp) and

pm = p(My) = Cy(my) - M™ = C(my) - [mPa(my)] = [1.73777 — 0.0778n, — 2.1417E—4n,° +
7.58061E—4n,® — 5.82459E—%n,* + 1.38533E—6n,’] - my"[— 0.0593 + 0.0180ih, — 0.00237m,’
+1.33511E—4n,® — 2.84515E~Tn,* — 2.73375E-M,” + 7.95901E-9n,’]

Also the relation between, (&) ando. can be verified as in the next Fig. 11 leading to the fit

Cq(0) = (1.10405+0.00088) — (46.309+0.460)- (2,920.27+77.26)° — (117,419.8+4,879.6)° —
(1.913+0.103)E6G*

with R =0.999956=6.85E-4 N=63 p<1E-4

1,55
150 =

1,45 \'\
1,40 \
1,35 \-\‘-
1,30 "-..‘_\

1,25

C_ coefficient

a

1,20 \

1,15

0,024 -0020 -0016 -0012 -0,008 -0,004 0,000
a exponent

Fig. 11. Data points and fits of the coefficient Cvs. a for the 63 sequences of {&m*}

The comparison between the factual values and the vallgegated by this methoq)(mp):C“(mp)-mp“(m”)
and RB,= m(C,m") leads to the two plots of Fig. 12 where the formersf@ws the two trends of the
actual and the calculaté®}, vs. m on a linear scale (the two plots are undistinguishablelog-kog scale)
and the latter (b) displays the relative error betwé®fip,, and @} that is %p, and between
actap - and @ that is %P, both on the same scale and vs, thus displaying the high error
propagation from p,, to B, The relative difference between actual and calcdldg by this method

11
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remains still too large (some %) as well as the erropauyation that ranges from A, € (=1%o, 0.1%o0) to
%APy € (—2.7%, 4.6%) within the range ,&(1K, 2P) that is neglecting the first data pointg<in000 i.e.
Pn<7,919.

a) b)

80P 80P 5 5

4 4
70P 70P N
3 3 b
g ki el
60P 6op £ .2 2 , 3

z € I

50P 50P T c o1 1
: k) ,,'4 ;o

& 40P q0p T i =0
o a ¢ n
£ o ,u o e, —_

] A o N g

E 2 117 : 13
s 30P 30P ¥ 1Ak # S

7 3 o L]k £ i ;
Zi N < 2T B ol 2 o
20P > 20P 2 ] Ly o k
/%ﬂ 311 3 3
10P / 10P M IT 4 =

.
047 0 5 5
0,0 200,0%00,0600,0B00,0T1,0P 1,2P 14P 1,6P 18P 2,0P 100 1k 10k100k 1M 10MLOOM1G 10GLOOG 1T 10T100T 1P 10P
m m

p P

Fig. 12. Comparison between actual Pvalues and {G-m®} (a) and error propagation (b) from p,, to
PmVvs. m,

Thus a further approach has been attempted by examirrtgetid of the whole functionkXC,rrb/xo(k)] =
p(mg) vs. m, with C=1, where in this caseyns the maximum (or end) value of the counter of any @rim
sequence. The Fig. 13 (plot a) shows the result where agmityrromial regression analysis returns the fit
for the data points

p(my) = XJIC,myx(K)] = X%(m,) =~ (1.5008660.0029) — (0.0956+0.0015§(m,) +
(0.01039+2.87E-4)lgm,)* — (5.7181+0.221F—4(Igm,)® + (1.22892E-5+6.036E-Tgm,)* =
(1.500866+1.932%0) — (0.0956+1.6219fm,) + (0.01039+2.762%{igm,)*> — (5.7181E—
4+3.865%)(Igm,)° + (1.22892E-5+4.911%)gm,)*

with the following fit values: B=0.99989 ©=5.37937E-4 p<lE-4 N=63

a) b)
1,30 \ 4 4
N
1,28 \- 3 [ |3
1,26 X 7!
3 2 2
> 124 by
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o 122 %W s Ji 3
% 1l A,é’AA E 4
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m mp

P

Fig. 13. Data points and fits op(m,) = sz[C,mp/xo(k)] (a) and error propagation from p, to P, (b)
both vs. m,

Thus, the value op = p(mp) = sz[l,mp/xo(k)] can be directly estimated leading to

Pu= P(mp) = mP™= mAX,[1,my/x,(K)] ~ my"[(1.50086+0.0029) — (0.0950620.0015§()m,) +
(0.01039+2.87E-4)lgm,)* — (5.7181+0.221F—4(Igm,)° + (1.22892E-5+6.036E~Tlgm,)"]

12
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Of course taking into account, here too, both the gmwarthe fit coefficients and their propagation as well a
the scale non-invariance problem. As a matter of faetgecond plot (b) of Fig. 16 shows the error
propagation fronp,, = sz[C,mp/xo(k)] to P,= rr?Pm vs. m, that is the comparison between the percentage
difference between tH&"%,, values and th&'"'**}, . values (% pn ranging from —3.5%o up to 0.86%.) and
the percentage difference between¥t8P,,values and th&““*p_ values, ranging from ¥P,=—3.27%

up to YAP,,=+3.41% thus displaying the downgrading of the precision, appreedyna tenfold increase of
the uncertainties in passing frgmto Py in the range ge(1K, 2P).

Despite the fact that the final precision is not so satisfg, nonetheless it is better than the difference
between the actualPvalues and thePvalues calculated by the standard PNT method (thamfPinm,)
which ranges from 12.77% up to 6.88% (again frop¥IK up to m=2P) as shown in Fig. 14 illustrating
the comparisons among the three different methqﬁ@nPsz[C,mp/xo(k)] Pr=p"Cym* and PNT.

Yet, it should be considered that at the present skegprecisions of the results are not so good as those got
by other valuable methods [12]. This constraint of theystuill be the focus of a further deepening and
development later on.
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Fig. 14. Comparisons among the imprecisions of the theemethods R~=p,"X 2 Prepn"Coem® Pp=
mp-In(mp) vs. m

Thus the relationships got in such a way and reportedeirptésent article should be considered just as
preliminary attempts to evaluate a prime numbgrstrting from its counter grusing the method of the
modified chi-square function.

However, the methodology here shown offers a wide rangéfefent options to calculate the approximate
value of a prime number,From its counter mwith the additional advantage that the precisions of all th
results can be improved by the use of a more powerful emnpthat is a mainframe or even a

supercomputer, just by acting on both the initial fitshef {p,,} sequences and the final fits of the results as
well as on the value of\n

Moreover, a whole set of further useful relations are obdaimaddition to those reported previously.

The relationships between the decay parametgrsgot by the ¢m® method and by the X method are
shown in the plot (a) of Fig. 15 with the fit given by

lgxo(cr) = — 3.29733 + 0.746H§x,(X?) + 4.23628E—-4g*X,(X?)

with R* = 0.999986 = 0.18127 N=63 while the plot (b) of Fig. 15 reports the Ik(@)=2+2x as got by the
calculations that is

13
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k(o) = (2 + 2.925E-17) + (2 + 2.292E-15)

with R=1.000000000000 arnct1.333E-16 just a validation of what already told (k =@+&ith negligible
errors.
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LOG_x (X?) a

Fig. 15. Plot of Igx(a) vs. Ig%(X? (a) and plot of kvsa k=2+2a (b) as got by the calculations

In addition, it can be easily ascertained that alsodhewiing scheme of Fig. 16 holds just like the one of
Fig. 4 yet with the difference that now&(0, +1) and k=2—2 and again the single arrows reveal the one-
way correspondence (injective map) while the double arrflecte a one-by-one correspondence (bijective
map). That is not a trivial concern as it might look butrapdrtant finding of all the research taking into
account that both the values of the parameter k and those @édhg or growth parameter, are equal in
the two casespf,} and {p, }. The only difference between the two cases of Fig. 4 agdlb are that the
coefficients obey to the two different laws k=2+fhe former and k=2-62 the latter.

f 2
(Upn}={lemy/I1gP,.} |

7 N

IXGAmy 0] || {C7m™)
\ J

Fig. 16. Fits of the sequences {d4}}={lg(mp)/Ig(P)} with k = 2 — 20,

Now, just a trivial remark is due to highlight the facatththe fit of any {mi"} progression by the
(L)X (A, m/x,) function, according to the range, has fit parameteris R60000000000000 up to the™2
digit i.e. up to the chosen precision, even for so few termbefprogression as 50,000; this is a strict
consequence of the features of the modified chi-squardidaoncAs a matter of fact choosing in (1)
A=2T",,/(2%,)"** and being always.x>m it is easy to get S '=x** the natural interpolating function of
the {m™} progressions, as already shown [20,21].

Therefore, passing to the geometric representation otthéts in the planewk) as in the next Fig. 17, with
the two half-lines k = 2 + @ crossing one each other at the poink)=(0,2), at this stage of the current

14
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study it has been ascertained that the left lower neighbodrbf the pointd,k)=(0",2") is a pillar of the
whole matter of prime numbers examined in such a way it dhpable of directly fitting the finite
sequences pf,} by the progressions {f4 with any number of terms and by the fitting function
XiT(AMp/xo(K)].

Consequently it is possible to summarize the resultstendindings of the present article and of the whole
research [14-17,20,21] in Fig. 17, where the two half-lirgs &k 20 (according to the range¢ < 0 ora >

0) are shown together with all the fits of the,J or {1/pn} sequences, that is the kz)(A,mp/xo) or the
1/Xk2(A,mp/x0) function as well as the {@n™} or {C,m"™} progressions in the left neighbourhood of the
point @, k) = (07, +2) and in the right neighbourhood of the same painkf = (0", +2) respectively. In
Fig. 17 the neighbourhoods of the poimt K)=(0, 2) that is ¢, k)}=(0%, 2) are enhanced for clearness.

k
T+2
1P N Vpm}
{ﬁn}E{mp/Pm {IA’EA}E{Pm‘Jmp}
XA my/x (k)] XD&! [A.m,/x (k)]
RH.
" =)
{m™} {m*}
k=2+2a k=2-2.q
| 05025 0 1025405 +1 =

Fig. 17. The plane ¢,k) in the ranges a € (-1, +1) and ke (0, +2) withk=2+ 2

It is interesting to remark that, while the fits gf.§ or {1/pn} sequences by the k3(A,mp/xo) or the
1/Xk2(A,mp/x0) functions are valid just in the left or right neighbourhoodthefpoint ¢, k)=(0*, 2), the fits

of the finite sequences {if} or {m*} by the functions X*(A,m/x,) or 1/XZ(A,m/x,) are valid in the whole
rangesa€(—1, 0) and k(0O, 2) ora€e(0, +1) and k(0, 2) respectively. This feature has been used as the
starting point for an elementary proof of Riemann’s hlgpsis [20,21] at the pointa,k)=(-1/2,+1).
Additionally, Fig. 17 is interesting in that already usedhie fits of the finite sequences of prime number
frequencies {f}={m//Py} [16,17] again by the modified chi-square function and by’ progressions in

the ranges€(-0.25, 0)c(-1,0) and k(1.5,+2)(0,+2) along the half-line k=2+& while the examination

of the frequency inversesn{fi}E{Pmlmp}:llxkz(A,mp/xo): ~{m™} in the rangesi€(0, +0.25)=(0, +1) and
ke(1.5, 2)=(0, 2) is still in progress with the goal of reaching a mefmed version of the PNT.

Lastly, many ways of approximating, that is interpolatargl locally extrapolating, the values of prime
number finite sequences are possible by the methodology weédere, a methodology which, though still

at its early stage, is liable of many interesting feitdevelopments and that deserves to be further deepened
in the next future.

4 Conclusions and Future Developments

The algorithm presented in this report as applied to tHinite sequences opf}={lgP(m)/lgm,} and

the progressions {ff}} by the modified chi-square function k%(A,mp/xo) constitutes an innovative
methodology for the former and the latter that with nobl@an be applied to many other cases. In the same
manner such an algorithm, that makes a wide use of thdietbdhi-square function (A, m/x,) is suitable

to fit some basic structures of the finite sequencesimfepnumbers.
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Therefore, the major findings of the present article lba summarized as the following ones also looking at
the previous Fig. 17:

The finite sequencespf}={lgP/lgmy} of prime numbers R do not show the property of scale
invariance holding for them the scaling laws given twe modified chi-square function
+xk2(A,mp/xo) and by the progressions {f}

The sequencesf}={lgP./lgm,} are best fitted by the function t?(A,mp/xo) with k=2+2r i.e.
a=k/2-1 in the lower left neighbourhood @f, k) = (07, 2') and also by the progressions{ in
other words fm} =X 2(A,my/Xo) ~{C,m™};

The sequences p{,’l}z{lgmp/Ing} are best fitted by the modified chi-square function
+UXEAMYX) = +1% 22 (A,my/x,) with o = 1-k/2 in the lower right neighbourhood of
ga,k)E(OﬁZ ) and also by the progressions iy in other words pp}= :1/Xk2(A,mp/xo):{C(
.m+a};

The present methodology allows to get the value of mepriumber R from its counter min an
approximate way and valid locally however in many differgays, five or six using the scheme of
Fig. 4 and double using also the scheme of Fig. 16;

One of the main advantages of the methodology is that thefifinacertainties can be reduced by
more precise determinations of all the initial fits atmbancreasing the value of, thus leading to
more precise estimates of thg Values.

In addition to these conclusions and final results concernisigtiie present article, the following ones
should be considered as a summary of the main findingseofvtiole study, at this early stage, having
examined the problem of prime numbers from a statistichbaalytical viewpoint:

1-

2-

Prime numbers have not, from either the statisticah@manalytical viewpoint, the property of scale
invariance holding for them the scaling laws given by k2k(of the modified chi-square function
X &(AXIXo) [14-17);

Both the statistics of the progressions“frand the statistics of prime numbers,§Pare best fitted
by the modified chi-square functionA,x/x,) with the ad-hoc parameters A k, 0 that the
statistics of prime numbers {P are best fitted by the statistics of the progressifm§} with
a€(l%, 1.12) [14,15];

The progressions {ffi} are analytically best-fitted, according to the rangeby one of the four
forms, either (+3) or (+1/), of the modified chi-square function®®,m/x.) with the appropriate
parameters A, k and, xolding k=212 according to the range<0 o>0) examined [20,21];

The finite sequences of prime number frequencigs=fm /P,} are analytically best fitted by the
modified chi-square function XA x/x,) with ke(1.50, 2) hence by the progressions“{mwith
a€(-0.25, 0) holdingk=2+ 2 [16,17];

The finite sequencepf}={lg(Pm)/Ig(m,)} are best fitted analytically by the function(ZX(C,m)/xo)
with ke[1.952, 2) thus also by {rf} with a€[-0.024, 0) being k=2 + 2;

It is possible to find many inductive algorithms which allmnaget the value of a primeg,Pstarting
from its counter mi.e. such that P~ P(m,) though with values affected by uncertainties and usable
locally;

As a matter of fact all that holds just taking into@aat all the approximations adopted, as well as
the inaccuracies and propagations of the errors as uslally in experimental physics. However
future researches and refinements of the method will beotapo reduce all the uncertainties.

An elementary (that is not using the theory of complextfans) proof can be given of Riemann’s
hypothesis implementing this methodology to the progressiorty > n} and {N™/(a+1)}
[20,21].

However much more is still to be done in the matter while intapic here shown many aspects must be
developed and deepened, first of all the accuracy ofatailations. Anyhow it is the author’s opinion that
the algorithm and the methodology here shown can open a nelvofiedtudy in number theory and
computational mathematics which can reveal all its poweeraond more in the future.
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The use of a much more powerful computer, that is a naaigy would increase the final precisions a great
deal, first of all by allowing to increase the valofethe n data points making it as high as reasonably
attainable (a 1000-fold increase or more). In this framéhdurefforts could be focused on the development
of an ad-hoc computer code capable of automatically smgéepe plane (kg and possibly the 3D space
(Ak,xo) in order to find, at any point, the parameters of théufiction X*(A,x/X,) and to choose among
them identifying the best ones.

As for the next future developments, one of the fimliés will be the examination of the finite sequences of
{Pu}=Bp{m ™} or {P,}={m "™ ™)} in order to get more precise evaluations gfP(m,) and the
examination of the finite sequences {3}4{P/my}~ :1/Xk2(A,mp/xo)z{m o '} a€(0, +1)cR" thus obtaining

a more refined version of the PNT. At the present timework is in progress on behalf of the author.

Further investigations are still in progress on the ensirea especially for what concerns the best
methodology, among all the described ones and not only, o wdiconcentrate the efforts to reduce the
uncertainties in order to get a highly precise formulePgf~ P(m),) at the utmost precision achievable.

Additional work will be dedicated to the topic of fittitige many decay or growing plots of the final results -
see Figs. 6a, 7a, 8a and b, 10a and b, 11, 13a, ag#e Inodified chi-square function in one of its four

forms +(1/)X,4(Q.x/»), instead of a polynomial sum, in that those plotartyeshow a finite limit like 2, 0"

and T. This is a very interesting topic in that, if so, theaaoé prime numbers would present a kind of

iteration and maybe even of self-similarity. Moreoverisithighly probable that these polynomial sums
themselves may be responsible for the large error propagasind the great uncertainties on the final
results.

In addition, many further areas of investigation seem dodisclosed by this advanced and original
methodology concerning also the many integer sequencesvfB&h can be treated in an innovative way,
thus maybe revealing undisclosed properties, if any.
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