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Abstract

Let T be a B-Fredholm operator on a Banach space X. We say that T is rootless if there is
no bounded linear operator S and no positive integer n ≥ 2 such that T = Sn. In this note,
some properties of the uniform topological descent are used to give some sufficient conditions for
B-Fredholm operators to be rootless.
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1 Introduction

Conditions for the existence of roots of operators are of interest in the study of algebraic properties
of operators, and this problem have been investigated for several special classes of operators (see,
for instance, [1], [2]). In the case of matrices, the roots problem has several applications such as
the the matrix sign function, which is an useful tool in several problems (see, for instance [3], [4]).
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In [5] some conditions were given for a Fredholm operator to be rootless. For this, the index, ascent
and descent play a key role. In this note, we prove a similar result for B-Fredholm operators. In
this case, the uniform topological descent comes into play.

2 Preliminaries

Let X be a Banach space, and let us denote by B(X) the set of all bounded linear transformations
T : X → X. Let R(T ) denote the range of T and N(T ) its null space. For T, S ∈ B(X) the
following holds:

R(TS) ⊆ R(T ),

N(S) ⊆ N(TS).

In particular, defining T 0 = I, with I ∈ B(X) the identity operator, we have the following chains:

X = R(T 0) ⊇ R(T ) ⊇ R(T 2) ⊇ · · · ⊇ R(Tn) ⊇ R(Tn+1) ⊇ · · ·

{0} = N(T 0) ⊆ N(T ) ⊆ N(T 2) ⊆ · · · ⊆ N(Tn) ⊆ N(Tn+1) ⊆ · · ·
The ascent of T , denoted by a(T ), and the descent of T , denoted by d(T ), are defined by:

a(T ) = inf{n ∈ N0 : N(Tn) = N(Tn+1)},

d(T ) = inf{n ∈ N0 : R(Tn) = R(Tn+1)},
with inf ∅ = ∞ and N0 = {0} ∪ N.

Recall an operator T is Fredholm if α(T ) := dimN(T ) < ∞ and β(T ) = dimX/R(T ) < ∞. For a
Fredholm operator T , the index is i(T ) := α(T )− β(T ).

There are several ways to “generalize” Fredholm operators. In this paper we are concerned with
B-Fredholm operators, which were introduced in 1999 by M. Berkani([6]): Let T ∈ B(X) and
Tn : R(Tn) → R(Tn) the operator given by Tnx = Tx. We say that T is a B-Fredholm operator if
for some n ∈ N the range of Tn is closed and Tn is a Fredholm operator.

Let T be a B-Fredholm operator such that Tn is Fredholm, then Tm is Fredholm and i(Tn) = i(Tm)
for every m ≥ n ([6]). Thus, we can define the index of the B-Fredholm operator T as the index of
the Fredholm operator Tn.

In a similar way as for Fredholm operators, if T is a B-Fredholm operator, then i(Tn) = ni(T ) for
n ∈ N. However, we don’t have an analogue for the following: if S and T are Fredholm then TS is
Fredholm and i(TS) = i(T ) + i(S) ([7]).

3 Topological Uniform Descent

Let T be a B-Fredholm operator, then Tn is a Fredholm operator for some n ∈ N. Now, we are
interested in α(Tn) and β(Tn) with respect to R(T j) and N(T k) for j, k = 0, 1, 2, . . .

Recall that if the ascent and descent of an operator T ∈ B(X) are finite, then they coincide.
Moreover, these quantities are related to α(T ) and β(T ) as follows ([8, Theorem 3.4]):

• If a(T ) < ∞ then α(T ) ≤ β(T );

• If d(T ) < ∞ then β(T ) ≤ α(T );

• If a(T ) = d(T ) < ∞ then α(T ) = β(T ), but it can happen α(T ) = ∞;

• If α(T ) = β(T ) < ∞ and if a(T ) or d(T ) is finite, then a(T ) = d(T ).
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Related to these quantities, we have the following ([9]):

αn(T ) = dim
N(Tn+1)

N(Tn)
;

βn(T ) = dim
R(Tn)

R(Tn+1)
.

Notice that α(T ) = α0(T ) and β(T ) = β0(T ).

Recall from [9, Lemma 3.1] that we have

αn(T ) = dim[N(T ) ∩R(Tn)] = α(Tn),

and by [9, Lemma 3.2]

βn(T ) = dim
X

R(T ) +N(Tn)
= β(Tn).

If T is of finite ascent, say a(T ) = n, then αn(T ) = 0. In a similar way, if T is of finite descent,
then βn(T ) = 0. Now, following Grabiner ([10]) we are interested in the case when αn(T ) is not
zero but constant: An operator T ∈ B(X) is of topological uniform descent if there exists d ∈ N0

such that N(T ) ∩ R(Tn) = N(T ) ∩ R(Tn+1) and R(Tn) is closed for all n ≥ d. Equivalently, if
αn(T ) = αn+1(T ) for every n ≥ d.

It is well known that B-Fredholm operators are of topological uniform descent ([6]). Here we offer
a proof for the sake of completeness (see the proof of Proposition 2.6 in [6]) :

Theorem 3.1. Let T ∈ B(X) a B-Fredholm operator. Then T is of topological uniform descent.

Proof. Since R(Tm) ⊇ R(Tm+1) we have that

N(T ) ∩R(Tm+1) ⊆ N(T ) ∩R(Tm).

Since T is B-Fredholm, there exists m such that R(Tm) is closed and Tm is a Fredholm operator.
It follows that dimN(T ) ∩ R(Tm) = dimN(Tm) < ∞. Hence, there exists d ∈ N such that
N(T ) ∩ R(Tm) = N(T ) ∩ R(T d) for every m ≥ d. That is, αm(T ) = αd(T ) for m ≥ d. Thus, T is
of topological uniform descent.

Now we prove the result that will enable us to study the “roots” of B-Fredholm operators.

Theorem 3.2. Let T ∈ B(X) be a B-Fredholm operator. Then, there exists d ∈ N0 such that
αd(T

n) = nαd(T ) for every n ≥ d.

Proof. From the previous theorem, T is of topological uniform descent. Using [11, Lemma 2.1]
repeatedly, we have that if M0 ⊂ M1 ⊂ · · · ⊂ Mn are subspaces of X, then

dim
Mn

M0
=

n∑
k=1

dim
Mk

Mk−1
.

From

αd(T
n) = dim

N(Tn(d+1))

N(Tnd)
= dim

N(Tnd+n)

N(Tnd)
,

and
N(Tnd) ⊆ N(Tnd+1) ⊆ · · · ⊆ N(Tnd+n),
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it follows

αd(T
n) =

n∑
j=1

dim
N(Tnd+j)

N(Tnd+j−1)

=
n∑

j=1

αnd+j−1(T )

=

n∑
j=1

αd(T )

= nαd(T ).

The following known theorem illustrates the use of the results of this section:

Theorem 3.3. Let T ∈ B(X) be a Fredholm operator. If α(T ) = 1 and T is not of finite ascent,
then α(Tn) = n.

Proof. Recall

αn(T ) = dim[R(Tn) ∩N(T )].

Since R(Tm) ⊇ R(Tm+1) for every m ∈ N, we have

α0(T ) ≥ α1(T ) ≥ · · · ≥ αd(T ) = αd+1(T ) = · · · ,

where d corresponds to the topological uniform descent.

Since α0(T ) = α(T ) = 1, then αd(T ) = 0 or αd(T ) = 1. But a(T ) is not finite, so N(Tn) ̸= N(Tn+1)
for every n, and

dim
N(T d+1)

N(T d)
̸= 0.

Hence, αd(T ) = 1.

Now, since α0(T ) = αd(T ), then

α(T ) = αd(T ).

thus, by Theorem 3.2,

α(Tn) = αd(T
n) = nαd(T ) = nα(T ) = n.

4 Roots

Let n ≥ 2, we say that T ∈ B(X) have n-th root if there exists S ∈ B(X) such that T = Sn.
Of course, the study of the roots of an operator is deeply related to the properties of the ascent,
descent, nullity and defect we have discussed so far. For instance, if T ∈ B(X) is a Fredholm
operator and S ∈ B(X) is a root for T , then it is well known that S is a Fredholm operator.

Of course, T is rootless if there is no bounded linear operator S and no positive integer n ≥ 2 such
that T = Sn. We are especially interested in rootless B-Fredholm operators:

Theorem 4.1. Let T ∈ B(X) be a B-Fredholm operator. If i(T ) = ±1, or if αd(T ) = 1, then T is
rootless.
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Proof. Suppose i(T ) = ±1 and there exists S ∈ B(X) and n ∈ N such that T = Sn. Since T is
B-Fredholm, then S is B-Fredholm (see [6, Proposition 2.8]) and by Theorem 3.2 we have

i(T ) = i(Sn) = ni(S).

Hence ni(S) = ±1, and it follows n = 1 and T = S. Therefore, T is rootless.

Now suppose αd(T ) = 1 and T = Sn, for S ∈ B(X), n ∈ N. Since T is B-Fredholm we have

αd(T ) = αd(S
n) = nαd(S).

Then nαd(S) = ±1, and it follows n = 1 and T = S. Therefore T is rootless.

Since Fredholm operators are B-Fredholm, we recover a result from [5].

Corollary 4.2. Let T ∈ B(X) a Fredholm operator. If α(T ) = 1 and T is not of finite ascent, then
T is rootless.

Proof. From the proof of Theorem 3.3 we have αd(T ) = 1, and from Theorem 4.1 it follows that T
is rootless.

Example 4.3. LetX = ℓ2, the space of square summable sequences, and let us consider the operator
T ∈ B(X) defined by

T (x1, x2, x3, · · · ) = (x1, x3, x4, x5, . . .).

Then α(T ) = 1, R(T ) = X and β(T ) = 0. It follows i(T ) = 1 and hence T is rootless.

5 Conclusion

B-Fredholm operators are a generalization of Fredholm operators. So far, several properties of
Fredholm operators have found analogues for B-Fredholm operators. In this paper, we extended a
result of Yood concerning roots of Fredholm operators to the case of B-Fredholm operators. We
gave sufficient conditions for a B-Fredholm operators to be rootless using some properties of the
uniform topological descent. In the future, more examples and applications will be investigated.
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