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ABSTRACT 
 

This paper deals with the theoretical investigation of the combined effect of electron plasma 
frequency and Coriolis force on the hydromagnetic waves through a self gravitating porous medium 
in the presence of fine dust particles subjected to a transverse uniform magnetic field. A general 
dispersion relation is obtained using the normal mode analysis with the help of relevant linearized 
perturbation equation of motion. This dispersion relation is reduced for longitudinal and transverse 
modes of propagation. Dispersion relations for two modes are further reduced for the axis of 
rotation parallel and perpendicular to the direction of the magnetic field. We find that Jean’s 
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criterion of instability remains valid but the expression of the critical Jean’s wave number is 
modified. The numerical analysis is performed to show the effect of thermal conductivity, relaxation 
time, rotation, Stokes drag and porosity of the medium on the growth rate of instability. 
 

 

Keywords: Electron plasma frequency; suspended particles; magnetic field; thermal conductivity; 
porosity; permeability. 

 

1. INTRODUCTION 
  
Investigation of the self-gravitational instability in 
recent times have acquired considerable 
momentum. Major reason for the spurt in the 
interest is due to it’s an important role in star 
formation in magnetic dusty clouds by gravitation 
collapsing process. The gravitational instability of 
an infinite homogeneous, self-gravitating 
gaseous medium was first discovered by Jean’s 
[1]. It was shown that the disturbances would 
grow if their wavelength exceeded a certain 

minimum wavelength λ� , given by λ� = ����
�� 	
�  

where � and �  denote the density and sound 
velocity respectively and G is the gravitational 
constant. Since several authors have 
investigated this problem under varying 
assumption of hydrodynamics and 
hydromagnetics and a comprehensive account of 
all these investigations has been given by 
Chandrasekhar [2] in his monograph on the 
problem of hydrodynamics stability. He has 
shown that Jean’s criterion remains unaffected 
by the separate or simultaneous presence of a 
uniform rotation and uniform magnetic field. 
Several authors Alfven [3], Lehnert [4-6], Cadez 
[7], Ali and Bhatia [8], Bhatia and Hazarika [9], 
Lima et al. [10], Sheikh et al. [11], Oberoi [12], 
Cohen [13] have investigated the problem of the 
gravitational instability of infinite homogeneous 
gaseous plasma with different physical 
parameter such as viscosity, magnetic field, 
rotation, electrical conductivity, thermal 
conductivity, resistivity and Hall current. 
 

In addition to this, it has been established as fact 
that the Coriolis force plays an important role in 
astrophysics. The effect of Coriolis force is very 
important to understand the relation between 
angular momentum and rotational kinetic energy. 
The magnetic force may be viewed as a kind of 
Coriolis force due to Thomas rotation, induced by 
successions of noncollinear Lorentz boots. In this 
direction many investigators, Bhatia [14], 
Herrengger [15], Lehnert [16], Mattei [17] have 
discussed the effect of Coriolis force in some 
astrophysical problems. 
 

On other hands, it is well known that in 
astrophysical situations, the fluid is often not pure 

but contains suspended particles. Scanlon and 
Segel [18] have considered the effect of 
suspended particles on the onset of Bénard 
convention. Sharma and Sharma [19] have 
studied the suspended particles and the 
gravitational instability of a rotating plasma. 
Recently Kumar [20] discussed Hall current 
effect on the thermal instability of porous 
compressible viscoelastic dusty fluid and 
pointed out that Hall current and suspended 
particles have destabilizing effects whereas 
compressibility and the magnetic field has 
stabilizing effects on the system. The electron 
inertia parameter is important in the problem of 
magnetic reconnection processes, and it gives 
fundamental information about the wave 
propagation in the system with a finite plasma 
frequency. Uberoi [12] have pointed out that the 
finite electron inertia effects modify the Alfven 
compressional wave and it gives new mode of 
wave known as inertial compressional Alfven 
wave (ICW). This inertial compressional Alfven 
wave when interacts with acoustic and 
gravitational modes, interesting characteristic 
changes in Jean’s gravitational instability are 
observed for non-rotating and rotating systems.  
Along with this, the flow through porous media is 
of considerable interest in geophysical fluid 
dynamics. When the fluid slowly percolates 
through the pores of a macroscopically 
homogeneous and isotropic porous medium, the 
gross effect is represented by Darcy’s law. In this 
connection, many researchers Kumar and Singh 
[21], Lapwood [22], Kumar and Singh [23] and 
Kumar et al. [24] have discussed Jean’s 
instability of porous medium with different 
parameters. 
 
Pensia et al. [25] have discussed, the role of 
Coriolis force and suspended particles in the 
fragmentation of matter in the central region of 
the galaxy. 
 
In view of the above investigations, we attempt 
here to discuss the influence of electron plasma 
frequency and Coriolis force on the propagation 
of hydrodynamics waves in the self gravitating 
porous medium. Further, we address the 
problem in the thermally conducting medium in 
the presence of transverse magnetic field to 
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determine a magnetohydrodynamical model 
suitable for a geophysical system. From the point 
of view of astrophysical problems, the present 
study can serve a theoretical support for 
experimental investigations. This problem, to the 
best of our knowledge, has not been investigated 
yet. 
 

2. LINEARIZED PERTURBATION 
EQUATIONS  

 
We consider an infinite homogeneous, viscous, 
self-gravitating, rotating, ionized plasma 
composed of gas and the fine dust particles 
incorporating thermal conductivity and finite 
electron inertia, flowing through a porous 
medium. 
 �����  =  − ∇������ + ∇����φ +  ������� − �� � + 14#� $∇��� × &��' × (��

+ )∇*�� − )�+ �� + 2$�� × Ω����'          �1  

 

- ����� + �∇.���� ��� = 0                                                          �2  

 �� =  0*��                                                                     �3  
 ∇*�φ + 4#2��   =   0                                                   �4  
 34 ���  + 15 ���  =  ��                                                          �5  

 7∇*�8 =  �09 ����� − �����                                            �6  
 ���  =  �88  +  ���                                                              �7  

 �&����  = ∇��� × $�� × (��' + 0*<9=* ��� ∇*&��                                �8  

 

Where, ��$�? , �A , �B', ���$�?, �A, �B',�, �, �, φ, (���0,0, ( ,Ω�����Ω? ,0,ΩB 8, 2, ), 09, 7, C, �+, D,�� , <9=, ���6#ηE FGH &��$&? , &A, &B' , denote 
respectively, the gas velocity, the particle 
velocity, the number density of the particle, 
density of the gas, pressure of the gas, 
gravitational potential, magnetic field, rotation, 
temperature, Gravitational constant, kinematic 

viscosity, specific heat at constant pressure, 
thermal conductivity, gas constant, permeability, 
particles density, plasma frequency of electron, 
the constant in the Stokes drag formula and 
perturbation in magnetic field. 
 

3. DISPERSION RELATION 
 

We analyze these perturbations with normal 
oscillation technique. In a uniform system, we 
can find a plane wave solution, for all variables 
varying as,  
 IJKLM��?J + �BN + <� O                                             �9  
 
Where �? FGH �B  are the components of wave 
numbers of perturbation along the x and z-axis 
respectively, so that �?*  + �B*  =  �*  and <  the 
frequency of harmonic disturbances, Using 
equations (1) to (9), we obtain the following 
algebraic equations for the components. 
 Q+�? − 2ΩB�A  +  M�?�* ΩR* S = 0                             �10  

 2ΩB�?  + Q*�A − 2Ω?�B     = 0                             �11  
 2Ω?�A  +  ξ+�B  + M�B�* ΩR* S = 0                             �12  

 
The divergence of (1) with the aid of (2)-(9) gives 
 M�?�*T*F+ �? + 2M��?ΩB − �BΩ? �A − QUS = 0    �13  

 

Where, S = V��    is the condensation of the 

medium, W =  XYXZ = X�
X ′�  a ratio of the specific heat, 

T = [\]�� is the Alfven velocity, F =  ^_�̀  has the 

dimension of frequency, 4 =  â
_ is the relaxation 

time and D is the mass of the particle. 
 
τF =  �_�  is the mass concentration, b = M< is the 

growth rate of perturbation, c = d�XY  is the 

thermometric conductivity, Ωe =  ) ��* −
+̂

	,    F+ =  bf,     f =  31 + X�^gYh� 5,  C and C’ are the 

adiabatic and isothermal velocities of sound. 
 

ξ+ = �b + Ωe + ijkjkl+	 ,Ω�′* = $0 ′*�* − 4#2�',Ω�* = �0*�* − 4#2� ,             ΩR* = mjΩn�lopΩn′�
jlop q, 

 

Q+ = mξ+ + T*�?*F+ q , Q* = mξ+ + T*�B*F+ q , QU = $-bξ++ΩR* ',   W^ = Wc�*, T* = (*4#� ,   �* = �?* + �B* 
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For the nontrivial solution of equations (10)-(13), the determinant of coefficients of �? , �A , �B  FGH S 
should vanish, leading to the following dispersion relation. 
 

r+ sbr+$Q+Q* + 4Ω*' + 4Ω?*�*T*bF+ + ΩR*- mQ** + 4Ω* − 4��?ΩB − �BΩ? *�* qt = 0                           �14  

 
Equation (14) gives the general dispersion 
relation and it represent the combined influence 
of finite electron plasma frequency, Coriolis 
force, presence of fine dust particles, porosity of 
the medium, viscosity, permeability of the 
medium and thermal conductivity on the 
propagation of the hydromagnetic waves when 
the system is subjected to the transverse 
magnetic field. We find that in this dispersion 
relation the term due to finite plasma frequency 
has entered through the factor f. This dispersion 
relation will be able to predict all information 
about the wave and instability of the 
hydromagnetic fluid plasma considered. The 
above dispersion relation is very lengthy and 
investigates the effect of each parameter we now 
reduce the dispersion relation (14) for two modes 
of propagation. 
 
4. ANALYSIS OF THE DISPERSION 

RELATION  
 
Now we shall discuss the dispersion relation 
given by equation (14) for the following modes. 
Longitudinal propagation i.e. - �? = 0 ,   �B = � , 
Transverse propagation i.e.-�? = �,    �B = 0. 
 
4.1 Longitudinal Mode of Propagation �u ∥ w  
 
For this case, we assume that all the 
perturbations are longitudinal to the direction of 
the magnetic field �M. I. �? = 0, �B = � .  Thus the 
dispersion relation (14) reduces to the simple 
form to give,  
 

bξ+ xmξ+ + �*T*F+ q* + 4Ω*y + 4b�*T*F+ Ω?*

+ ΩR*- xmξ+ + �*T*F+ q* + 4ΩB*y = 0        �15     
 

We find that for the longitudinal mode of 
propagation the dispersion is modified due to the 
presence of fine dust particles, finite plasma 
frequency, viscosity, porosity and permeability of 
the medium, magnetic field, thermal conductivity 
and Coriolis force. This dispersion relation is 
further reduced for rotational axes parallel and 
perpendicular to the direction of the magnetic 
field for simplicity. 
  
4.2 Axis of Rotation Parallels to the 

Magnetic Field  �ΩΩΩΩ ∥ w  
 

When the axis of rotation is along the magnetic 
field, i.e. Ω? = 0 FGH ΩB = Ω. Then (15) reduces 
to as, 
 

mbξ+ + ΩR*- q zmb + Ωe + {bb4 + 1 + �*T*F+ q*  + 4Ω*| = 0      �16  

 

This dispersion relation shows the simultaneous 
effects of, finite electron plasma frequency, 
Coriolis force, the presence of fine dust particles, 
magnetic field, thermal conductivity, viscosity, 
porosity and permeability of the medium on the 
propagation of hydromagnetic waves through the 
fluid. The dispersion relation (16) is the product 
of two independent factors, each representing a 
different mode of propagation. The first factor of 
equation (16) on substituting the values ofξ+ and 
ΩR* , gives the following 4-degree polynomial 
equation. 
 

b]-4 + bU-�1 + { + Ωe4 + + b*4W^ }-LW^�1 + { + Ωe4 + ΩeO + 4Ω�′*~ + b �-ΩeW^ + Ω�* + W^4Ω� ′*	+ W^Ω� ′* = 0                                                                                                                                   �17  
 
The dispersion relation (17) represents a stable damped mode modified by the viscosity, porosity, 
thermal conductivity and fine dust particles. The second factor of (16) gives, on substituting the value 
of F+ the following six-degree polynomial equation. 
 4*f*b� + 24b�f*�1 + 4�{ + Ωe � + b]�f*L1 + 4�{ + Ωe O* + 24�Ωef + 4�*T* + 44*f*Ω*�+ bU�24f�*T* + 84f*Ω* + 2f�fΩe + 4�*T* L1 + 4�{ + Ωe O�+ b*��fΩe + 4�*T* * + 2f�*T*L1 + 4�{ + Ωe O + 4f*Ω*�+ b�2�*T*�fΩe + 4�*T* � + �]T] = 0                                                                               �18  
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The dispersion relation (18) represents a non-gravitating Alfven mode modified by the presence of 
Coriolis force, finite electron plasma frequency, fine dust particles, viscosity and permeability of the 
medium. 
  
4.3 Axis of Rotation Perpendicular to the Magnetic Field �ΩΩΩΩ⊥⊥⊥⊥w  
 
In the case of a rotation axis perpendicular to the magnetic field, we put Ω? = Ω FGHΩB = 0  in the 
dispersion relation (15) and this gives, 
 

$ξ+F+ + �*T*' s$ξ+F+ + �*T*' mbξ+ + ΩR*- q + 4bF+Ω*t = 0                                                                  �19  

 
This dispersion relation is the product of two independent factors. These factors show the                       
mode of propagations incorporating different parameters as discussed below. The first factor of 
equation (19) also represents a stable non-gravitating Alfven mode modified by fine dust particles, 
finite electron inertia, and viscosity but this mode is not affected by Coriolis force. The second factor of 
equation (19) gives on substituting the values of ξ+, F+andΩR* , the following seven-degree polynomial 
equation. 
 4*b�f + b��4fL2 + 4�2Ωe + 2{ + W^ O�

+ b� sfL1 + 24�2Ωe + { + W^ O
+ 4* �f Ω�*- + �*T* + 4fΩ* + f�{ + Ωe �Ωe + { + 2W^ �t
+ b] sf�2Ωe + W^ + 24 �f Ω�*- + �*T* + 4fΩ* + f�{ + Ωe �Ωe + W^ + fΩeW^�
+ 4* �W^ mfΩ�′*- + �*T* + 4fΩ*q + �{ + Ωe mfΩ�*- + �*T* + f{W^ + fΩeW^q�t
+ bU smfΩ�*- + �*T* + 4fΩ* + fΩe* + 2fΩeW^q
+ 4 ��{ + Ωe mfΩ�*- + �*T* + 2fΩeW^q + Ωe mf Ω�*- + �*T*q
+ 2W^ mf Ω�′*- + �*T* + 4fΩ*q� + 4* ��*T* Ω�*- + W^�{ + Ωe mfΩ�′*- + �*T*q�t
+ b* sΩe mf Ω�*- + �*T* + fΩeW^q + W^ mfΩ�′*- + �*T* + 4fΩ*q
+ 4 �2�*T* Ω�*- + 2ΩeW^ mfΩ�′*- + �*T*q� + 4*�*T*W^ Ω�′*- + 4{W^ mfΩ�′*- + �*T*qt
+ b s�*T* Ω�*- + ΩeW^ mfΩ�′*- + �*T*q + 24�*T*W^ Ω�′*- t + �*T*W^ Ω�′*- = 0                       �20  

 
The dispersion relation (20) represents the effect 
of the simultaneous inclusion of the finite electron 
plasma frequency, fine dust particles, Coriolis 
force, viscosity, thermal conductivity, magnetic 
field, permeability and porosity of the medium on 
the propagation of hydromagnetic waves 
propagating through the medium. The condition 
of instability and the expression of the critical 
Jean’s wave number are obtained from the 

constant term of equation (20). In the 
astrophysical situation, we study the effects of 
thermal conductivity, the presence of fine dust 
particles, Coriolis force and finite electron inertia 
on the growth rate of an unstable mode by 
choosing the arbitrary values of these 
parameters in the present problem. We write the 
dispersion relation (20) in nondimensional form 
as. 
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b∗�4∗*f∗ + b∗� s24∗f∗ + 4∗*f∗ m2��∗ + 2)∗ m�∗* − 1�+∗q + 7∗qt
+ b∗� �f∗ + 24∗f∗ ���∗ + 2)∗ m�∗* − 1�+∗q + 7∗� + 4∗* sf∗ ��∗* − 1 - + �∗*T∗* + 4f∗Ω∗*
+ f∗ ���∗ + )∗ m�∗* − 1�+∗q� ���∗ + )∗ m�∗* − 1�+∗q + 27∗�t�
+ b∗] zf∗ m2)∗ m�∗* − 1�+∗q + 7∗q
+ 24∗ xmf∗ ��∗* − 1 - + �∗*T∗* + 4f∗Ω∗*q
+ f∗ ���∗ + )∗ m�∗* − 1�+∗q� m)∗ m�∗* − 1�+∗q + 7∗q + f∗)∗ m�∗* − 1�+∗q 7∗y
+ 4∗* x7∗ mf∗ ��∗* − 1 - + �∗*T∗* + 4f∗Ω∗*q
+ ���∗ + )∗ m�∗* − 1�+∗q� mf∗ ��∗* − 1 - + �∗*T∗* + ��∗f∗7∗ + f∗)∗ m�∗* − 1�+∗q 7∗qy|
+ b∗U zf∗ ��∗* − 1 - + �∗*T∗* + 4f∗Ω∗* + f∗)∗ m�∗* − 1�+∗q + 2f∗)∗ m�∗* − 1�+∗q 7∗

+ 4∗ x���∗ + 2)∗ m�∗* − 1�+∗q� mf∗ ��∗* − 1 - + �∗*T∗* + 2f∗)∗ m�∗* − 1�+∗q 7∗q
+ )∗ m�∗* − 1�+∗q mf∗ ��∗* − 1 - + �∗*T∗*q mf∗ ��∗* − 1 - + �∗*T∗*qy|
+ b∗* s)∗ m�∗* − 1�+∗q mf∗ ��∗* − 1 - + �∗*T∗* + f∗)∗ m�∗* − 1�+∗q 7∗q
+ 7∗ mf∗ ��∗* − 1 - + �∗*T∗* + 4f∗Ω∗*q
+ 4∗ �2 ��∗* − 1 - �∗*T∗* + 2)∗ m�∗* − 1�+∗q 7∗ mf∗ ��∗* − 1 - + �∗*T∗*q�
+ 4∗*�∗*T∗*7∗ ��∗* − 1 - + 4∗��∗7∗ mf∗ ��∗* − 1 - + �∗*T∗*qt b∗ s��∗* − 1 - �∗*T∗*
+ )∗ m�∗* − 1�+∗q 7∗ mf∗ ��∗* − 1 - + �∗*T∗*q + 24∗7∗ ��∗* − 1 - �∗*T∗*t
+ 7∗ ��∗* − 1 - �∗*T∗* = 0                                                                                                             �21  

 
Where, the various nondimensional parameters are defined as, 
 

b∗ = b\4#2� , ��∗ = ����\4#2� , 7∗ = 7�09\4#2�,   �∗ = �0\4#2� , )∗ = )\4#2�0*  ,
�+∗ = �+\4#2�0*  , 4∗ = 4\4#2� , T∗ = T\4#2�0 , Ω∗ =  Ω\4#2�       �22       

 
In Figs. 1-3 we have depicted the nondimensional growth rate versus nondimensional wave number 
for various arbitrary values of the thermal conductivity (7∗), relaxation time (4∗), and rotation (Ω∗ . 
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Fig. 1. The growth rate of instability is plotted a gainst the dimensionless wave number  �∗ with 
variation in the thermal conductivity �∗= 0, 2, 4, with taking the values of ��∗,  �∗, �∗, ��∗ ,ΩΩΩΩ∗ 

and  �∗ as unity 
 

 
 

Fig. 2. The growth rate of instability is plotted a gainst the dimensionless wave number  �∗ with 
variation in the relaxation time �∗= 0, 2, 4, with taking the values of ��∗, �∗, �∗, ��∗ ,ΩΩΩΩ∗ and �∗ as 

unity 
 

 
 

Fig. 3. The growth rate of instability is plotted a gainst the dimensionless wave number  �∗ with 
variation in the Rotation ΩΩΩΩ∗ = 0, 2, 4, with taking the values of  �∗,  �∗, ��∗, �∗, ��∗  and �∗ as unity 

 
Fig. 1 the growth rate of an unstable mode (the 
positive real root of b∗ ) is plotted against the 
wave number (  �∗) for different values of thermal 

conductivity parameter (7∗). From the curves, we 
find that the growth rate of instability increases 
with increase in thermal conductivity. The peak 
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value of the growth rate increases by 
increasing7∗. The peak value of the growth rate 
is minimum for a nonthermal conducting medium 
( 7∗ = 0 ). Thus we conclude that thermal 
conductivity destabilizes the system in the 
longitudinal mode when the axis of rotation is 
perpendicular to the magnetic field.  
 
Fig. 2 we have depicted the growth rate �b∗  of 
instability against wavenumber ��∗  for the 
different value of relaxation time �4∗  parameter. 
It is observed that the relaxation time parameter 
has a reverse effect on the growth rate, as 
compared to that of the thermal conductivity 
parameters. In other words, due to an increase in 
the relaxation time parameter, the growth rate of 
the instability decreases. Thus the relaxation 
time parameter has a stabilize the system. Also, 
the peak value of the growth rate decreases by 
increasing �4∗ .  
 
Fig. 3 the growth rate of instability �b∗  is plotted 
against wavenumber ��∗  for different values of 
the rotation parameter (Ω∗). From the curves, we 
find that the rotation has a reverse effect on the 
growth rate compared to that of thermal 
conductivity parameter. The growth rate of 
instability decreases with increase in rotation 
parameter. Thus, the rotation parameter has a 
damping effect on the growth rate of the system. 
The peak value of the growth rate is unaffected 
by the presence of the rotation parameter and it 
is the same for all the values ofΩ∗. The growth 
rate is maximum for the case of a non- rotating 
medium (i.e. forΩ∗ = 0).Thus we conclude that 
rotation stabilizes the system in a longitudinal 
mode of propagation when the axis of rotation is 
perpendicular to the magnetic field. Hence the 
rotation has a stabilizing effect on the growth rate 
of instability. 
 

5. TRANSVERSE MODE OF 
PROPAGATION �u⊥⊥⊥⊥w  

 
For this case, we assume all the perturbations 
transverse to the direction of the magnetic field �M. I. �? = �,    �B = 0 , the dispersion relation (14) 
gives, 
 

b sξ+�Q+ξ+ + 4Ω*� + 4Ω?*T*�*F+ t + ΩR*- $ξ+* + 4Ω?*' = 0    �23  

 
The dispersion relation (23) represents the effect 
of simultaneous inclusion of the finite electron 
plasma frequency, the presence of finite dust 
particles, Coriolis force, viscosity, magnetic field, 
thermal conductivity, permeability and porosity of 
the medium on the propagation of the 
hydromagnetic wave through the system for the 
transverse mode of propagation. Now we discuss 
this dispersion relation (23) in the case of rotation 
axes parallel and perpendicular to the magnetic 
field.  
 

5.1 Axis of Rotation Parallels to the 
Magnetic Field  �ΩΩΩΩ ∥ w  

 
When the axis of rotation is along the magnetic 
field, we put Ω? = 0 FGH ΩB = Ω   and then the 
dispersion relation (23) becomes, 
 

ξ+ sξ+ �bQ+ + ΩR*- � + 4bΩ*t = 0                   �24  

 

The dispersion relation (24) has two independent 
factors, each representing a different mode of 
propagation. The first factor of this dispersion 
relation is stable mode as discussed in the 
previous case and the second factor of the 
dispersion relations (24) after simplification can 
be written as, 
 4*b�f + b�4f�2L1 + 4�{ + Ωe O + 4W^�

+ b] s4* mΩ�*- f + �*T* + 4Ω*fq + 24Ωef + L1 + 4�{ + Ωe OL1 + 4�{ + Ωe + 2W^ Oft
+ bU s4*W^ mΩ�′*- f + �*T* + 4Ω*fq + 4 mΩ�*- f + �*T* + 8Ω*f + 2ΩeW^fq
+ L1 + 4�{ + Ωe O ��2Ωe + W^ f + 4 mΩ�*- f + �*T* + W^Ωef + {W^fq�t
+ b* sf$Ωe* + 4Ω*' + L1 + 4�{ + Ωe O �Ω�*- f + �*T* + 2ΩeW^f + 4W^ mΩ�′*- f + �*T*q�
+ 4 �Ωe mΩ�*- f + �*T*q + W^ mΩ�′*- f + �*T* + 8Ω*fq�t
+ b sΩe mΩ�*- f + �*T* + ΩeW^fq + 4W^ mΩ�′*- f + �*T*q + W^L1 + 4�{ + Ωe O mΩ�′*- f + �*T*qt
+ ΩeW^ mΩ�′*- f + �*T*q = 0                                                                                                                               �25  
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The dispersion relation (25) is the six degree 
polynomial equation and represents the effect of 
simultaneous inclusion of finite electron plasma 
frequency, presence of fine dust particles, 
thermal conductivity, viscosity, magnetic field, 
permeability and porosity of the medium on the 
propagation of hydromagnetic wave propagating 
through the medium for transverse propagation 
with the axis of rotation parallel to the direction of 
magnetic field. The condition of instability and the 
expression for the critical Jean wave number are 
obtained from the constant term of equation (25) 
and are written as, 
 �0*�* − 4#2� + -f  �*T* < 0                        �26  

and 
 

�� = � ]���
X�lԐ���

                                                          (27) 

 

From above condition, we find that Jean’s wave 
number is modified by a magnetic field, finite 
electron plasma frequency and porosity of the 
medium for the transverse mode of propagation 
with the axis of rotation parallel to the direction of 
magnetic field. 
 

5.2 Axis of Rotation Perpendicular to the 
Magnetic Field �ΩΩΩΩ⊥⊥⊥⊥ w  

 

In the case of a rotation axis perpendicular to the 
magnetic field i.e., Ω? = Ω FGH ΩB  = 0,  the 
dispersion relation (23) reduces to 
 

$ξ+* + 4Ω*' �bQ+ + ΩR*- �  = 0                          �28  

 

The dispersion relation (28) has two independent 
factors, each representing a different mode of 
propagation. The first factor of this dispersion 
relation (28) gives, 

b]4* + bU24L1 + 4�{ + Ωe O + b*�L1 + 4�{ + Ωe O* + 24Ωe + 4*4Ω*� + 2b�ΩeL1 + 4�{ + Ωe O + 44Ω*�+ Ωe* + 4Ω* = 0                                                                                                                                  �29  
 
This represents a rotating mode of propagation which is independent of magnetic field, self-
gravitation, thermal conductivity, the porosity of the medium and finite electron plasma frequency.                    
This is also a stable mode which represents a damping effect due to viscosity, permeability, presence 
of fine dust particles and rotation. In order to see the effects of various parameters on the growth rate 
of instability, we write the dispersion relation (29) in nondimensional form in terms of self-gravitation 
as, 
 

b∗]4∗ + b∗U s24∗ + 24∗* ���∗ + )∗ m�∗* − 1�+∗q�t
+ b∗* �x1 + 4∗ ���∗ + )∗ m�∗* − 1�+∗q�y* + 24∗)∗ m�∗* − 1�+∗q + 44∗*Ω∗*�
+ 2b∗ z)∗ m�∗* − 1�+∗q x1 + 4∗ ���∗ + )∗ m�∗* − 1�+∗q�y + 44∗*Ω∗*| + �)∗ m�∗* − 1�+∗q�*

+ 4Ω∗* = 0                                                                                                                                             �30  
 
Where the various nondimensional parameters are defined as, 
 

b∗ = b\4#2� ,  ��∗ = ����\4#2� , �∗ = �0\4#2� ,  )∗ = )\4#2�0* , �+∗ = �+\4#2�0* ,
4∗ = 4\4#2�, Ω∗ = Ω\4#2�                                                                                                    �31    

 
In order to see the effects of the particular parameter on the growth rate of instability, numerical 
calculations of equation (30) have been performed by varying one parameter and keeping all other 
parameters fixed. From the above-normalized dispersion relation (30), we take the real positive root 
among all other roots of b∗.  The positive roots of b∗are plotted against wavenumber �∗to observe the 
behavior of instability for several values of the different parameters involved. 
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Fig. 4. The growth rate of instability is plotted a gainst the dimensionless wave number  �∗ with 
variation in the relaxation time �∗= 0, 2, 4, with taking the values of ��∗, ��∗ , ΩΩΩΩ∗,    and �∗as unity 

 

 
 
Fig. 5. The growth rate of instability is plotted a gainst the dimensionless wave number  �∗ with 
variation in the Stokes’ drag constant  ��∗ = 0, 2, 4, with taking the values of   ��∗ ,ΩΩΩΩ∗, �∗ and  �∗ as 

unity 
 

 
 
Fig. 6. The growth rate of instability is plotted a gainst the dimensionless wave number  �∗ with 

variation in the rotation ΩΩΩΩ∗= 0, 2, 4, with taking the values of ��∗ ,  ��∗ , �∗ and  �∗ as unity 

Ω
∗ = 0 

Ω
∗ = 2 

Ω
∗ = 4 
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Fig. 4 it is clear that the effect of the relaxation (τ∗) parameter on the growth rate of instability is same 
as shown in Fig. 2 in the case of longitudinal propagation with an axis of rotation perpendicular to the 
magnetic field. Thus the effect of the relaxation time (τ∗) parameter is found to stabilize the system in 
both the longitudinal and transverse modes of propagation. 
 
Fig. 5 the effect of the Stoke drag parameter on the growth rate is shown by the depicting the curves 
between �b∗  and ��∗  for the various values of ��∗ . From the curves, we see that Stokes drag 
parameter shows the similar effect as shown by relaxation time parameter �τ∗ . Thus Stokes drag 
force has a stable influence on the self-gravitational instability of the system.  
 
Fig. 6 shows the variation of the growth rate �b∗  of instability against wavenumber ��∗  for different 
value of rotationΩ∗ parameter. It is obvious that with an increase the value of rotation than the 
decrease in the growth rate of the system. The peak value of the growth rate gets increased due to 
the nonrotating system �Ω∗ = 0 . The value of rotation increasing then the growth rate of instability is 
decreasing. Thus the rotation has also a stabilizing influence in both the transverse and longitudinal 
mode.  
 

b]4f + bUfL1 + 4�{ + Ωe + W^ O + b* s�Ωe + W^ f + 4 mΩ�*- f + �*T* + {W^f + W^Ωefqt
+ b zmΩ�*- f + �*T* + ΩeW^fq + 4W^ �Ω� ′*- f + �*T*�| + W^ �Ω� ′*- f + �*T*� = 0            �32  

 
This is a four-degree polynomial equation and 
shows the combined influence of various 
parameters, fine dust particles, viscosity, 
porosity, magnetic field, thermal conductivity and 
electron plasma frequency in the transverse 
mode of propagation when the axis of rotation 
perpendicular to the magnetic field. 
 
6. CONCLUSIONS 
 
To summarize, we have dealt with the 
hydromagnetic waves in the self-gravitating 
porous medium under the effect of electron 
plasma frequency and Coriolis force. A general 
dispersion relation is obtained which is modified 
due to the presence of these parameters. It is 
found that the viscosity, permeability, and 
suspended particles have a dissipative effect but 
do not affect Jean’s expression. The dispersion 
relation is reduced for longitudinal and transverse 
modes of propagation, which are further reduced 
for axes of rotation parallel and perpendicular to 
the direction of the magnetic field. The dispersion 
relation is converted into the non-dimensional 
form where the physical parameters are put in 
the dimensionless form. The growth rate of 
instability is obtained analytically as a function of 
the physical parameters of the system 
considered. For some special cases, numerical 
solution is obtained to explain the roles that the 
variables of the problem play. Some curves are 
plotted and discussed. From the curves, it is 
found that thermal conductivity has a 
destabilizing influence, while the relaxation time 

and Coriolis force have a stabilizing role on the 
growth rate of the system. It is also found that 
Jean’s criterion of instability is modified due to 
the presence of magnetic field and electron 
plasma frequency in the transverse mode of 
propagation. The Alfven mode is converted into 
inertial compression Alfven mode, which shows 
the remarkable change in Jean’s criteria of 
instability. The interstellar medium is 
approximated to behave like an MHD (Magneto-
hydrodynamics) fluid in the central region of our 
galaxy. Thus as a whole, the application of 
present problem of hydromagnetic waves in the 
central region of our galaxy will help to study the 
outflow of matter from this region. 
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