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ABSTRACT 
 

In this work the author derives the Galilean limit of the quantum gravity obtained by using the 
hydrodynamic approach. The result shows that the quantum interaction generates, in the limit of 
weak gravity, a non-zero contribution. The paper derives the small deviation from the Newtonian 
law due to the quantum gravity and analyzes the experimental features to validate the theoretical 
model. The work also shows that in the frame of the quantum gravity the equivalence principle 
between the inertial and gravitational mass can be violated in very extreme conditions. 
 

 

Keywords: Newton law; cosmological constant; quantum gravity; Galilean gravity; dark energy; motion 
of galaxies. 

 

1. INTRODUCTION 
 

One of the main problems of the quantum gravity 
is to produce theoretical outputs that lead to 
experimental confirmation or to cosmological 
evidence [1-8].  

The real difficulty is to find the physical                             
ambit where the quantum mechanics and the 
gravitational effects are contemporaneously 
important. This happens because the                      
general relativity and the quantum mechanics 
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describe events of different physical              
scale.  
 
The Planck scale is one of the possible contexts 
where they become physically coupled and it 
offers a possibility of investigation. 
 
By using the quantum-gravitational equations 
(QGEs) obtained with the help of the 
hydrodynamic quantum formalism, the author 
showed [9] that the quantum effects play an 
important role in the formation of a very                        
small black hole since the spreading of the 
quantum wave opposes itself to the                  
gravitational collapse by generating a repulsive 
force. This fact, in the case of a very small 
quantity of mass (below the Planck mass) 
prevents the formation of the black hole             
[9]. 
 
Another measurable output that can come from 
the quantum gravity is the detailed behavior of 
the gravitational field of antimatter. Many and 
discordant are the hypotheses on the 
gravitational features of the antimatter [10-14] 
and they cannot be resolved without a defined 
set of quantum-gravitational equations. Actually, 
Cabbolet [5] claims that the CPT symmetry is 
incompatible with the matter-antimatter 
gravitational repulsion, while Villata and the 
author himself [15-17] show that the CPT agrees 
with anti-gravity.  
 
In this paper the author derives the weak limit of 
the quantum gravity, compares it with the 
Newton law and gives physical outputs that can 
be experimentally verified.  
 
The paper is organized as follows: in the section 
2 the equations of the hydrodynamic QGEs are 
resumed; in the section 3 the Galilean limit is 
calculated for the gravitational potential of a 
particle with a pseudo-Gaussian localization; in 
section 4 the new features of the weak quantum 
gravity are discussed.  
 
2. THE QUANTUM GRAVITATIONAL 

EQUATION DERIVED VIA THE 
HYDRODYNAMIC APPROACH 

 
In preceding papers [9,17-18] the author has 
shown that the quantum-gravitational equation 
(QGE) in the form of the Einstein one  
 

  (1) 

can be obtained with the help of the 
hydrodynamic representation of quantum 
mechanics [9,18], where 
 

,                              (2) 

 
(the minus sign refers to antimatter) and  
 

 ,       (3) 

 
where the quantum energy-momentum tensor 

(QEMT) 
ν

µT  is defined below by (7).  

 
The hydrodynamic representation of quantum 
mechanics (HQM) [9,17-19], describes the 
quantum evolution of a mass distribution  

2||ψρ =  by using a self-interaction (the so 

called quantum-potential quV  given by (8) [18-
20]) leading to the mass motion with a moment 

 , where S   is the 

action of the mass distribution described by the 
wave function  
 

 .            (4) 

 
The hydrodynamic quantum equations are 
described in the Euclidean space by the equatin 
of motion [9] 
 

        (5) 

 
coupled to the continuity equation of the mass  
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the mass density)  where the QEMT 
ν

µT  reads 

[9,18-19] 
 

        (7) 

 

and where the quantum potential quV  reads 
 

.           (8) 

 
where, in the hydrodynamic notation, the 4-
velocity reads [9,18-19]  
 

.                       (9) 

 
It is worth noticing that in the classical limit (i.e., 

0→h ) the right hand part of (1) leads to the 
classical energy-momentum density tensor so 
that the Einstein equation is obtained. 
 
The HQM in non-euclidean space, coupled          
to the Einstein equation (1), is given in        
appendix. 
 
3. THE GALILEAN LIMIT OF QUANTUM 

GRAVITY 
 
By using the quantum energy-momentum density 
tensor (QEMDT) (3) that, for a scalar, uncharged, 
particle reads [19] 
 

.
    

(10) 
 

where +ψ  and −ψ  are the wave functions of the 
matter and antimatter, respectively, the QGE for 
particles read  [9-17] 
 

    (11) 
 
By introducing, the Galilean limit (i.e., low      
energy and low velocity limit: 

( ) ( )( )0 1 0 0 0iu u , u , , ,µ = − ≅  and  

 

                                                        
 
 in (11), it follows that [17,23] 
 

(13) 
 
where G is the gravitational constant. 
 
Furthermore, following the procedure in ref [23], 

the dependence of  ϕ  from the component 00g  
of the metric tensor reads  
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whose trace can be approximated as 
 

.                        (15) 

  
Moreover, since in the Galilean limit it holds 
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it follows that 
 

. (17) 

 
The deviation from the Newton’s law of (17) is 
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value of the Plank constant). Nevertheless, since 
macroscopic bodies are actually granular (i.e., 
made of atoms of elementary particles of very 
small masses) a more mathematically correct 
condition has to be assumed.  
 
Actually, the classical properties come from the 
fact that the quantum potential has a finite range 
of interaction [9,24-28] and it goes to zero at 
infinity so that, when the mean particle distance 
is larger than the range of quantum potential, 
they are quantum decoupled and lead to a 
classical matter phase [24-28]. 
 
More precisely, it is possible to show that for 
pseudo-Gaussian particles [24-28] with tails that 
go to zero more slowly than the Gaussian law 
does, in the large-scale physics the classical 
macroscopic behavior is warranted if the 
condition  
 

        (18) 

 
is satisfied. It is noteworthy to mention that the 
condition (18) is not fulfilled by linear systems, 
given that in this case the quantum potential is 
quadratic and diverges at infinity [24-27]. 
 
Since the Newtonian gravity is the weak limit of 
the classical general relativity, we have to 
warrant the classical limit (18) in order to retrieve 
the Newtonian gravity in the more general 
quantum gravity.  
 
To this end, we consider the case of pseudo-
Gaussian particles localized in a sphere of radius 

R∆  located in R  with spatial densities of type  
 

  

   (19) 
 
where f ( r R )−  is an appropriate regular 
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where ( ) r' r R= − , and where 2m =  in order 

to have a normalizable wave function squared 
modulus in 3-d space.  
 

3.1 Galilean Gravitational Potential  
 
By using equation (17), in the Galilean limit, we 
can write  
 

        (30) 

       
that, for radially symmetric mass distribution (19) 
and its associated quantum potential 
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3.1.1 Large-distance GQG  
 
In order to evaluate the gravitational potential at large distance  we derive the limiting 
expression of the modulus of the wave function and the quantum potential that read 
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(where ) that, being both the mass distribution and the quantum potential central-

symmetric, leads to 
 

.                    (45) 

 

Moreover, by using for r' Rα≤ ∆  the approximation (24) we can write 
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(50) 

 

and given that for r' → ∞  and 0=h  (see section 3.4) the Newton law must be obtained, it follows 
that 
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In order that (55) furnishes the best value of the 
parameter f  for the approximated formulas 

(44,54) we must require that for r' Rα< ∆  the 

mass density distribution 2| |ψ  is well 
approximated by the Gaussian behavior (24) 
while for r' Rα> ∆  it is well approximated by the 
hyperbolic behavior (26). The search for best 
value of α , that can be found by a least-mean 
squares procedure, leads to  and hence 
to 
 

                                   (56) 
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where , and, finally, to 

 

.        (62) 

 
Expression (62) contains a small repulsive 

quantum contribution that goes like 
2

1

r
∝ in 

addition to the Newtonian potential. 
 
From (62) we observe that, for highly localized 
particles for which we have for instance 
 

,                       (63) 
 
the gravitational potential at large distance does 
not converge to the Newtonian one and reads 
 

         (64) 

where the term 
2

2

3
1

2
clm
R

 
− 

∆ 
, basically, is the 

gravitational mass of the particle, showing that, in 
the frame of the quantum gravity, the breaking of 
the equivalence principle, between the inertial 
and gravitational mass may happen for very 
localized particles. 
  
3.2 The Classical Limit  
 

In the classical limit, that is obtained for  0cl

r
→

and 0
R

r

∆ → , the identity (42) leads to 

  (65) 

 
and to 
 

,  (66) 

 
while (19) leads to the mass density distribution 
on the large-scale that reads 

 

( )

0
2

2

1 2 2

1

4

qu( )

r '

R /

V

mcGm

r' r' R
f dr'

r 'α

ϕ

π∆
∞

  
− +  

∂   ≅  ∂ ∆ +
 
 
∫

0
2 2 1 2

4
1 qu( )

/

VGm f R

r' rr ' mc

ϕ
π

  ∂ ∆≅ − −   ∂   

2
0
2 2

3
1 1

2
qu( ) c

V l

mc R

 
− ≅ −  ∆ 

2

2

3
1

2
 clGm R

r rR
ϕ ε

   ∆= − − −   ∆  

1 2

4
0 23

/

f
,ε

π
≅ ≅

1R

lc

Gm R
lim

r r
ϕ ε∆ →∞

∆ = − − 
 

2

2

3
1

2
clGm

r R
ϕ

 
= − − 

∆ 

2

0 2
2 0qu c

lc

V l
lim

rmc
→

 
= − = 
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0 3
4 0qu c
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V l
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→
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                    (67) 

 
that finally leads to 
 

                     (68) 

 
and, by integrating, to 
 

                      (69) 

 
that represents the classical Newtonian law. 
 
3.3 Weak Quantum-gravity in a 

Fluctuating Environment  
 
If we consider the gravitational potential in an 
open environment, we must take into account for 
the spontaneous localization of particles due to 
thermal fluctuations [24-28].  
 
The quantum coherence in a fluctuating 
environment is maintained up to distances of 
order of the De Broglie thermal length cλ [24-

28,31,32] and it is possible to show [24-28], for 
particles interacting through a weak potential, 
that the quantum localization 2 R∆ is of order of 
 

,  (70) 

 
and that the upper limit of the spontaneous 
enlargement of a pseudo-Gaussian wave packet 
when subject to external fluctuations (stationary 
condition at infinite time) is [24-28]  
 

2

2 4 4 c
mc

Max{ R } l
kTmkT

π π∆ ≈ =h

  

(71)  

 

Moreover, by the indetermination principle that 
requires 2 R p∆ ∆ ≥ h , where for the thermal 

fluctuations 2p mkT∆ = , the minimum limit for 

R∆  [31] is 
 

,          (72) 

 
that, for  

, leads 
to  
 

.           (73) 
 
Condition (73) is practically always fulfilled for 
any physically attainable temperature. In fact, we 

have that 183 5 10  cT , x K≅ °  for a proton, 

152 2 10  cT , x K≅ °  for an electron and 

113 10  cT x K≅ °  for a neutrino. 

 
3.3.1 Weak gravity at large-distance in a 

fluctuating environment  
 
In this case, from (61,71) the gravitational 
potential reads 
 

(74) 

 

that, for  (i.e., ), leads to 
 

.

                      (75) 
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Table 1. Values of 
2

kT

mc
and  2R

mkT
π∆ ≅ h

 for various particles 

 
  

        m (Kg)  cl mc
= h

(m)         
2

kT

mc
 2R

mkT
π∆ ≅ h

(m)      

 
Proton 

 

  1,6726 x 10-27 
 

   2 x 10-18  

 

    T  x 2,7x 10-11 
1

T
x 4,4x 10-9   

 
Neutron 

  
  1,6749 x 10-27 

 
   2 x 10-18  

 
    T  x 2,7x 10-11 

1

T
x 4,4x 10-9   

 
Electron 

    
    9,1 x 10-31 

  
 3,5 x 10-15  

 
     T  x 4,7 x 10-8 

1

T
x 1,8x 10-7   

 
Neutrino 

 
    1,2 x 10-35 

 
  2,7 x 10-10  

 
     T  x 3,6 x 10-3 

1

T
x 5 x 10-5  

 

In Table 1, for instance, the values of 
2

kT

mc
and  

2R
mkT

π∆ ≅ h
 for various particles are 

reported. 
 

4. CHARACTERISTICS OF THE 
GALILEAN QUANTUM-GRAVITY AND 
ITS EXPERIMENTAL VALIDATION  

 
In order to build up experimental tests that can 
validate the theory, it is helpful to discuss some 
features of the Galilean quantum gravitational 
potential (GQGP) that are quite different from 
those of the classical limit. 
 
The most important one is that, actually, the 
GQGP is not a real gravitational potential as we 
mean in the classical theory.  
 
In fact, the GQGP has been derived (see section 
3) just for an isolated particle and it is not 
independent of the test particle that has to be 
introduced in order to experience it.  
 
This fact is a consequence of the presence of the 
quantum potential in the Ricci tensor component 

0
0R  (13) that changes with the evolution of the 

quantum wave function.  
 
In the presence of another particle (e.g., the test 
one or a colliding one) due to their mutual 
interaction, the wave function undergoes the 
quantum coupled evolution so that the quantum 
potential, as well as the gravitational potential, 
are not assigned functions of the coordinates but 

change according to the quantum interaction of 
the particles (e.g., the radial symmetry of the 
quantum potential of a single particle (used to 
derive (31-35)) is not applicable). 
 
On the other hand, if the distance of the particles 
r fulfils the condition , for a pseudo-
Gaussian distribution (19), the quantum potential 
reads 
 

   (76) 

 

and can be neglected under the spontaneous 

mass localization  due to the 
environmental fluctuations. In this case, it follows 
that the particles acquire the classical behavior 
and the gravitational potential becomes classic. 
 
Generally speaking, we observe that the GQGP 
contains additional non-classic parameters, such 
as the localization R∆  and Compton’s length of 
the particle, with respect to the classical 
Newtonian gravity. 
 
In the case of a pseudo-Gaussian particle, the 
first order correction to the Newtonian potential is 
given in Table 2. 
 
Among the cases in Table 2, we can retrieve the 
Newtonian law by imposing the classical 
conditions (i.e., 0→h  (and, hence, both 0cl →

and  with 
2

2
c

R mc

l kT
π∆ = → ∞ ) and  

). 

2 2

2 2 2

2
0         qu c

r R
,

R lc

V l R
lim

mc R r
∆→∞ →∞

∆

∆= − =
∆

0R∆ →
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Table 2. Newton law, with first order quantum corre ction, for free particles (i.e., 
c

R
lim

l

∆ → ∞ ) 

and for highly localized particles ( )  
 
                                       

c

R
lim

l

∆ → ∞  

 
 

 

 
2

2

3
1

2
 clGm R

r rR
ϕ ε

   ∆= − − −   ∆  
 

 

 

        1  
Gm R

r r
ϕ ε ∆ = − − 

 
 

 

 
Moreover, the localization of the particle is 
determined by the environmental fluctuations 

(i.e., 2R
mkT

π∆ ≅ h
), hence at first order it 

follows that   
 

        (77) 

 
with 
 

                      (78) 
 
Expression (77) has to be considered the 
generalization of the Newton law (at the first 

order in 
R

r

∆
) for particles with free quantum 

localization. 
 
4.1 The Breaking of Equivalence Principle 

in Quantum-Gravity   
 
From Table 2 we can see that for particles whose 
spatial localization is a few times its Compton’s 
length (e.g., ) the Galilean limit of 
quantum gravity (64) breaks the classical 
principle of equivalence between the inertial and 
gravitational mass.  
 
Even if it is very interesting to experimentally 
verify this theoretical output, such a goal faces 
the quite difficult problem of fixing the particle 
localization.  
 
From a general point of view, the spatial 
localization can be achieved by the use of a 
physical potential (e.g., a square well potential of 

infinite height) or by modulating the amplitude of 
the stochastic noise [24,31].   
 
If the first method can be used for particles that 
carry a (repulsive) force in addition to the 
gravitational one (e.g., the electromagnetic one) 
the weakness of the gravitational constant poses 
some difficulties in measuring the gravitational 
interaction.  
 
On the other hand, for a particle sensible just to 
the gravitational force, its localization can only be 
achieved by modulating the thermal fluctuations 
of the vacuum [24,31].  
 
Even if theoretically possible, the physical 
conditions are practically unrealizable even on 
cosmic scale. In fact, for instance, for the neutron 

a temperature of 1017 °K is required for the 
breaking of the equivalence principle (see table 
1), while for the neutrino, the lowest critical 
temperature, is of order 1010 °K. 
 
5. DISCUSSION AND CONCLUSION 
 
The present work shows that the quantum 
gravitational effects, stemming from (2) that is 
able to justify the astronomical observations on 
the velocity of galaxies rotation [18], lead to 
corrections of the classical Newtonian gravity 
that in principle can be measured in a particle-
particle interaction experiment on earth 
laboratories.  
 
At very short distance the gravity force and the 
quantum mechanics are coupled to each other 
and the definition of a classic-type of potential is 
not possible.  
 
At large distances, and in a fluctuating 
environment, the first order correction to the 

1
1 2  

Gm

r rmkT
ϕ πε = − − 

 

h
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Newtonian law is proportional to the ratio 
between the quantum localization of the particle 
and the distance from its position. 
 
In freely localized particles, a slight temperature 
dependence of the gravitational potential is 
introduced by the first-order correction. 
 
When the particle localization is very high, the 
quantum contribution becomes physically 
important: In this case, the theory output shows 
that the equivalence principle between the 
gravitational and inertial mass can be violated. 
The paper shows that this occurrence can 
happen when the particle localization is a small 
fraction of Compton’s length.   
 
COMPETING INTERESTS 
 
Author has declared that no competing interests 
exist. 
 
REFERENCES 
 
1. Wald RM. General relativity. University of 

Chicago Press. 1984;382.  
2. Corda C. Bohr-like model for black-holes 

Class. Quantum Grav. 2015;32(19):5007. 
3. Corda C. Time dependent Schrodinger 

equation for black hole evaporation: No 
information loss. Ann. Phys. 2015;353:71. 

4. Hartle JB, Hawking SW. The wave function 
of the universe. Phys. Rev. D. 
1983;28:2960. 

5. Susskind L. String theory and the principle 
of black hole complementarity. Phys. Rev. 
Lett. 1993;71(15):2367-8. 

6. Nicolai H. Quantum gravity: The view from 
particle physics. arXiv:1301.4381 [gr-qc]; 
2013. 

7. Hollands S, Wald RM. Quantum field in 
curved space time; 2014. arXiv 1401.2026 
[gr-qc]. 

8. Finster F, Kleiner J. Causal Fermion 
systems as a candidate for a unified 
physical theory; 2015. arXiv:1502.03587v3 
[mat-ph] 

9. Chiarelli P. The quantum lowest limit to the 
black hole mass derived by the 
quantization of Einstein equation. Phys. 
Sci, Int. J. 2016;9(4):1-25. ArXiv: 
1504.07102 [quant-ph].  

10. Cabbolet MJTF. Elementary process 
theory: A formal axiomatic system with a 
potential application as a foundational 
framework for physics underlying 

gravitational repulsion of matter and 
antimatter. Annalen der Physik. 2010; 
522(10):699-738. 

11. Morrison P. Approximated nature of 
physical symmetries. Am. J. Phys. 
1958;26:358-368. 

12. Schiff LI. Sign of the gravitational mass of 
positron. Phys. Rev. Let. 1958;1:254-255. 

13. Good ML. K20 and the equivalence 
principle. Phys. Rev. 1961;121:311-313. 

14. Chardin G, Rax JM. CP violation: A matter 
of (anti) gravity. Phys. Lett. B. 1992;282: 
256-262. 

15. Villata M. CPT symmetry and antimatter 
gravity in general relativity. Europhysics 
Lett. 2001;94. 

16. Villata M. On the nature of dark energy: 
The lattice universe. Astrophysics and 
Space Science. 2013;345:1. 

17. Chiarelli P. The antimatter gravitational 
field. J. Appl. Phys. Sci. Int. 2016;6(1):6-
73. 

18. Chiarelli P. Theoretical derivation of the 
cosmological constant in the framework of 
quantum gravity: The solution of the 
vacuum catastrophe? Galaxies. 2016;4:6. 

19. Chiarelli P. The CPT-Ricci scalar curvature 
symmetry in quantum electro-gravity. Int. 
J. Sci. 2016;5:36-58. 

20.  Bialyniki-Birula M, Cieplak J, Kaminski. 
Theory of Quanta. Oxford University 
Press, Ny. 1992;87-111. 

21. Tsekov R. Bohmian mechanics versus 
Madelung quantum hydrodynamics; 2015. 
arXiv:0904.0723v8 [quantum-ph].  

22. Jánossy L. Zum hydrodynamischen Modell 
der Quantenmechanik. Z. Phys. 1962;169: 
79-80. 

23. Landau LD, Lifsits EM. Course of 
theoretical physics. Italian Edition, Mir 
Mosca, Editori Riuniti. 1976;2:322. 

24. Chiarelli P. Can fluctuating quantum states 
acquire the classical behavior on large 
scale? J. Adv. Phys. 2013;2:139-163. 

25. Chiarelli P. Quantum to classical transition 
in the stochastic hydrodynamic analogy: 
The explanation of the Lindemann relation 
and the analogies between the maximum 
of density at lambda point and that at the 
water-ice phase transition. Phys. Rev. & 
Res. Int. 2013;3(4):348-366. 

26. Chiarelli P. Quantum coherence induced 
by fluctuations. Open Access Library 
Journal. 2016;3:e2466. 
Available:http://dx.doi.org/oalib.1102466 



 
 
 
 

Chiarelli; PSIJ, 13(2): 1-16, 2017; Article no.PSIJ.31114 
 
 

 
14 

 

27. Chiarelli P. The quantum potential: The 
missing interaction in the density maximum 
of He4 at the lambda point? Am. J. Phys. 
Chem. 2013;2(6):122-131. 
DOI: 10.11648/j.ajpc.20130206.12 

28. Chiarelli P. The classical mechanics from 
the quantum equation. Phys. Rew. & Res. 
Int. 2013;3(1):1-9. 

29. Bressanini D. An accurate and compact 
wave function for the 4He dimer. EPL. 
2011;96. 

30. Chiarelli P; 2016. arXiv:1610.07873 
[phys.gen-ph]  

31. Zijun Yan. General thermal wavelength 
and its applications. Eur. J. Phys. 2000;21: 
625–631. 

32. Chiarelli P. Relativistic causality versus 
superluminal communications: Is the 
quantum mechanics a semi empirical 
theory? Int. J. Phys. Sci. 2015;10(8):289-
302. 

33. Le Bellac M. Quantum and statistical field 
theory. Oxford Science Pubblications, 
Oxford; 1991.  
ISBN 0198539290. 

34. Chiarelli P. 
is the mass contained in the sphere of 
radius 
Available:https://www.researchgate.net/pro
ject/The-interplay-between-the-minimum-
action-principle-and-the-quantum-
gravity?_esc 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Chiarelli; PSIJ, 13(2): 1-16, 2017; Article no.PSIJ.31114 
 
 

 
15 

 

APPENDIX 
 
The quantum hydrodynamic description in non-euclide an space  
 
Since equation (1) (containing the QEMDT (3)) determines the metric of the space, equations (5-8) or 
(10 -13) have to be generally written in the non-euclidean co-ordinates and they read [9] 
 

                
(A.1) 

 
with the conservation equation that reads 
 

    
              

(A.2) 

 
where  
 

,   
              

(A.3) 

 

where νµg  is the metric tensor and where
1 2

acg | g | Jνµ
− −= = − , where  is the Jacobian of the 

transformation of the Galilean co-ordinates to non-euclidean ones [23]. 
 
Connection with the standard quantum mechanics   
 
It is noteworthy to observe that, due to the biunique relation between the quantum hydrodynamic 
approach and the standard quantum mechanics [20-22,24-26], the solutions of the coupled equations 
(1-3,5-8) are equivalent to the QGE (1) coupled (through (13)) to the Klein-Gordon equation that in 
non-euclidean space reads 
 

                (A.4) 

 
Moreover, the fully independence of the quantum gravity equation by the hydrodynamic approach is 

achieved by deriving the quantum energy impulse tensor density (QEMDT) µνT  (3) as a function of 
the wave function (as given in reference [19]) that reads 
 

      (A.5) 

 
However, the quantum field approach does not contradict the Schrödinger one. Both define a field that 
becomes quantized by external imposed conditions [33] (i.e., quantization). In the quantum field 
theory, the quantization condition is introduced in a more clear and standardized way.  
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The same happens for the quantum hydrodynamic approach. The equations define a field (that 
contains also non-quantum solutions). The restriction to the quantum ones is obtained by the 
quantization conditions [26]. 
 
The analysis how the quantization is introduced in the hydrodynamic approach to quantum mechanics 
(and how it modifies the minimum action principle) is matter of underway work whose objective is to 
derive the quantum gravity equation by a minimum action principle [34]. When we do that, a 
cosmological term as given by (2), that is able to solve the conundrum of the huge order of maglitude 
of the quantum vacuum energy, appears.  
 
Once this aspect is analitically and quantitatively made clear, the comparison with the outputs in 
modified quantum field approach can be fruitfully carried out.  
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