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ABSTRACT 
 

The Jeans instability in magnetized quantum plasma is investigated by taking into account the 
thermal conductivity and suspended particles. The general dispersion relation is derived with the 
help of linearized perturbation equation using the normal mode analysis technique, which is 
reduced for both the transverse and the longitudinal mode of propagation. In the case of 
longitudinal propagation, the Jeans criterion of instability is affected by the thermal conductivity and 
quantum effect but the transverse mode of propagation, the Jeans condition is modified by the 
thermal conductivity, magnetic field, and quantum parameter. It is observed from curves that, 
thermal conductivity is destabilizing effect while magnetic field, suspended particles, Stoke drag 
parameter and quantum parameter have stabilized influence on the growth rate of gravitational 
instability.    
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1. INTRODUCTION 
 
The quantum plasma is a more interesting field in 
a recent year, many researchers have analyzed 
its important applications in dense astrophysical 
environments, ultrasmall electronic devices, and 
high-intensity laser systems. The quantum 
plasma has received great attention due to their 
theoretical relevance in many astrophysical 
plasmas. The effect of quantum parameter 
played an important role in plasma when De 
Broglie wavelength associated with the particles 
is comparable to the dimension of the system.  
 
The hydrodynamic instabilities in quantum 
plasma have been an important subject of 
research in the last a few years, the quantum 
effects play an important role in the behavior of 
the ionized plasma particles when the de-Broglie 
wavelength of the ionized carriers becomes 
greater than or equal to the dimension of the 
quantum plasma system. The quantum 
hydrodynamics (QHD) model has been 
introduced by Gardner [1] for semiconductor 
physics to describe the transport of change 
momentum and energy in plasma. The quantum 
magneto-hydrodynamic (QMHD) model was 
described by Hass [2] with the help of QHD 
model with magnetic field based on the Wigner-
Maxwell equations. The influence of quantum 
parameter on the internal waves and Jeans 
instability in plasma by Pines [3,4]. The study of 
gravitational instability of an infinite 
homogeneous medium has been first analyzed 
by Jeans [5]. He obtained that an infinite external 
homogeneous self-gravitating medium is 

unstable when wave number � < �� =  ���	

�� , 

where, �� , �, � ��� ��,  are the Jeans wave 
number, universal gravitational constant, fluid 
density and sound speed. In next step to this, the 
gravitational instability of ideal plasma has been 
defined by Chandrashekhar [6]. He has analyzed 
the hydromagnetic stability of self-gravitating, 
unbounded, homogeneous, rotating plasma of 
infinite conductivity. Recently, many authors [7-
11] have studied the problem of Jeans instability 
in different astrophysical environments. Sharma 
et al. [12] studied the effect of spin induced 
magnetization on Jeans instability of viscous and 
resistive quantum plasma. Ren et al. [13] have 
discussed using the QMHD model considering 
resistive effect. Wu et al. [14] have analyzed the 
effect of hall terms on Jeans instability in 

quantum magnetoplasma with resistive effects. 
Shukla and Stenflo [15] investigated the Jeans 
instability of self-gravitating astrophysical 
quantum dusty plasma. Prajapati et al. [16] have 
discussed the effect of hall current on the Jeans 
instability of magnetized viscous quantum 
plasma. Propagation of TE surface waves on 
semi-Bounded quantum plasma was analyzed by 
Mohamed et al. [17]. Jeans self-gravitational 
instability of strongly coupled quantum plasma 
was discussed by Sharma et al. [18]. Effect of 
thermal conductivity on the gravitational 
instability of quantum plasma having fine dust 
particles have studies by Shrivastava et al. [19]. 
In this direction, Hoshoudy [20] was pointed out 
quantum effect on the Rayleigh-Taylor instability 
of viscoelastic plasma model through a porous 
medium. Effect of quantum correction on Jeans 
instability of magnetized radiative plasma has 
discussed by Patidar et al. [21]. Sharma [22] was 
pointed out the modified Jeans instability of 
magnetized viscous spin ½ quantum plasma with 
resistive effects and Hall current. Recently, Jain 
et al. [23] have studied the Jeans instability of 
magnetized quantum plasma: Effect of viscosity, 
rotation and FLR corrections.   
 
In this paper, we investigate the QMHD model on 
self-gravitating and thermally conducting plasma 
having fine dust particles. The purpose of this 
work is to examine theoretically the effect of the 
fine dust particles on Jeans instability in 
magnetized quantum plasma with thermal 
conductivity. The dispersion properties of this 
work would provide a useful information to 
understand the astrophysical problems for star 
formation and interstellar medium structure.  
 
2. LINEARIZED PERTURBATION 

EQUATIONS  
 
Let us consider an infinitely conducting self 
gravitating homogeneously magnetized quantum 
plasma including thermal conductivity and 
suspended particles. The magnetic field is 
assumed in z-directions (0,0,H). The suspended 
dust particles are assumed to be of uniform size, 
spherical shape and have small relative 
velocities between the two phases, and then the 
extra body force per unit volume ����� − ��  is 
added to the momentum transfer equation for 
gas, where �� the constant given by Stoke’s drag 
formula �� = 6����.  The quantities �, �, � ��� � 
denote the particle radius, kinetic viscosity of the 
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gas, density of gas and the number                   
density of particles, respectively. � �� , �! , �"# ��� � �� , �! , �"# denote the particle 
and gas velocity. Self-gravitational attraction U is 
added along with the kinetic viscosity term in the 
equation of motion for gas. The quantum effects 
are introduced through the Bohm potential term 
in the momentum transfer equation. The QMHD 
model is considered as given by Hass [2]. The 
momentum transfer equation for magnetized 
quantum plasma is given by 
      

� $�$% = −∇'( + �∇'* + ����� − �� + 14π �∇ × ℎ� 

× / + �0�12�� + ℏ4
�5657 ∇�∇2'��                       (1) 

 89 :
:; + 1< � = u                                                 (2) 

 
The equation of continuity is given by 
 :>

:; + �∇. u = 0                                                   (3) 

 
Poisson’s equation for gravitational potential is 
given by  
 ∇2'* + 4��'� = 0                                            (4) 
 
The equation of thermal conductivity is given by  
 �@A :

:B 'C − :
:; '( = D∇2'C                                 (5) 

 
The equation of state is given by   
 >E

E + >


 = >A

A                                                       (6) 

 
The idealized Ohm’s law is given by   
 'ℎ'% =  ∇ × �� × /�                                                      �7� 

 
The Gauss’s law for magnetism is given by 
  ∇. ℎ = 0                                                                           �8� 
 

Where, 9 = H/�� and the parameters G, p, T, @A, D , R, ℏ = ℎ/2� , respectively denotes the 
gravitational constant, pressure, temperature, 
specific heat at constant pressure, the coefficient 
of thermal conductivity, gas constant, and Planck 
constant divided by 2π.  
 
3. DISPERSION RELATION 
 
Let us consider plane waves propagated in the X 
and Z-direction so that all perturbed quantities 
vary as  
 expNO�� P + �"Q + R%�S                                      (9) 
 
Where R  is the frequency of harmonic 
disturbances, �  ��� �"  are wave numbers in X 
and Z direction, respectively, such that � 2 + �"2 =�2. For perturbation of the form (9), using (2) to 
(8) the algebraic amplitude of equations (1) can 
be written as, 
 

8T + 0U + VWX
WXYZ + U4[4

W < � + \U]U4 ^WΩ_4YΩ`Ωa4WYΩ` b c = 0  (10) 

 

8T + 0U + VWX
WXYZ + Ud4[4

W < �! = 0                          (11) 

 

8T + 0U + VWX
WXYZ< �" + \UdU4 ^WΩ_4YΩ`Ωa4WYΩ` b c = 0        (12) 

 
Now taking the divergence of equation (1) using 
(2) to (8) we get as  
 

\U]U4[4
W � −  eT 8T + 0U + VWX

WXYZ< + WΩ_4YΩ`Ωa4WYΩ` f c = 0. 

(13) 
 
Equations (10)-(13) can be written in the matrix 
form as 

                  g\�h� = 0 ���  O, i = 1, 2, 3, 4                                   �14�         
   
Where h� is a single column matrix with elements �� , �! , �" , c#,  and g\�  is fourth ordered square 
matrix whose elements are 

gZZ = ξZ             gZ2 = gZk = 0            gZ� = \U]U4 ΩE2  

g2Z = g2k = g2� = 0,            g22 = ξ2       gkZ = gk2 = 0          gkk = �Z,       gk� = \UdU4 ΩE2     

 g�Z = \U]U4[4
W ,      g�2 = g�k = 0      g�� = lT 8T + 0U + VWX

WXYZ< + ΩE2 m   

Ωn2 = 8�2�′2 − 4��� + ℏ4Uo
�5657<,  ΩE2 = ^WΩ_4YΩ`Ωa4WYΩ` b,  Ωp2 = 8�2�2 − 4��� + ℏ4Uo

�5657<,   ΩU = �Dq�2/��A#, 

�Z = 8T + 0U + VWX
WXYZ<.  ξZ = 8T + 0U + VWX

WXYZ + U4[4
W <   ξ2 = 8T + 0U + VWX

WXYZ + Ud4[4
W < 
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Where, �2 = q� ′2 , is the adiabatic velocity of 
sound, � ′ = �(/� , is the isothermal velocity of 
the sound, �A  is the specific heat at constant 
pressure and c = '�/� is the condensation of the 
medium, r = U�s


  has a dimension of frequency, 

9 = 5
U� is relaxation time, T = OR is the growth rate 

of perturbation. For a nontrivial solution of 
equation (14) the determinant of the square 
matrix on the left-hand side should vanish, 
leading to the dispersion relation. 
 

ξZξ2�Z�−T�Z − ΩE2 #  +  U]4[4
W �Zξ2ΩE2  = 0         (15) 

 
Equation (15) represents the general dispersion 
relation for an infinitely extending, self-gravitating 
magnetized quantum plasma having suspended 
particles under the influence of thermal 
conductivity.  We find that in this dispersion 
relation the term due to the thermal conductivity 
has entered through the factor ΩU and the term 
due to the quantum correction have entered 
through the factor�ℏ2��/4HtH\�. If we ignore the 
effects of magnetic field then (15) reduces to 
Shrivastava [19]. If we ignore the effects of 
quantum correction and thermal conductivity then 
(15) reduces to Sharma [9] and also reduces to 
Chhajlani and Sanghavi [11] obtained for non-
rotating unmagnetized plasma. Again in the 
absence of thermal conductivity, viscosity and 
fine dust particle the preceding dispersion 
relation reduces to Ren et al. [13] on ignoring the 

effects of magnetic field and electrical resistivity 
in their case. 
 
4. ANALYSIS OF THE DISPERSION 

RELATION        
 
Now we shall discuss the dispersion relation 
given by equation (15) for the following modes, 
longitudinal propagation i.e.   � = 0 ,   �" = � and 
transverse propagation i.e.  � = �,    �" = 0. 
 
4.1 Longitudinal Mode of Propagation �u ∥ w� 
 
In this case, we assume that all the perturbation 
are longitudinal to the direction of the magnetic 
field �O. x. , � = 0 ��� �" = �� . The dispersion 
relation (15) reduced to this form. 

        �Z ξZ2 �−T�Z − ΩE2 # = 0                                    �16� 
 
The equation (16) represent the general 
dispersion relation for an infinite homogeneous 
magnetized quantum plasma having suspended 
particle and thermal conductivity. From (16), it is 
shown that there are three factors of the 
dispersion relation of the system, which can 
propagate longitudinally to the direction of the 
magnetic field in the medium. The first factor of 
(16) equated to zero, which represents a natural 
stability of the system. The second factor 
equated to zero we gate, 

 Ty92 + Tz29N1 + 9�r + 0U�S + T�{N1 + 9�r + 0U�S2 + 29�0U + 9�2|2�}+ Tk{2�0U + 9�2|2�N1 + 9�r + 0U�S + 29�2|2}+ T2{�0U + 9�2|2�2 + 2�2|2N1 + 9�r + 0U�S} + T�0U�2|2 + 9��|�� + ��|�
= 0                                                                                                                                                          �17� 

 
The relation (17) represents a gravitating mode due to modified the presence of magnetic field, 
suspended particles and viscosity. Now we can write (17) in non-dimensional form, for showing the 
effects of different parameter on growth rate of instability, as 
 

T∗y9∗2 + 2T∗z9∗ �1 + 9∗ ���∗ + υ∗ ��∗2 − 1�Z∗���
+ T∗� ��1 + 9∗��∗ + 9∗υ∗ ��∗2 − 1�Z∗��2 + 29∗ �υ∗ ��∗2 − 1�Z∗� + 9∗�∗2|∗2��
+ T∗k �2 �υ∗ ��∗2 − 1�Z∗� + 9∗�∗2|∗2� �1 + 9∗��∗ + 9∗υ∗ ��∗2 − 1�Z∗�� + 29∗�∗2|∗2�
+ T∗2 ��υ∗ ��∗2 − 1�Z∗� + 9∗�∗2|∗2�2 + 2�∗2|∗2 �1 + 9∗��∗ + 9∗υ∗ ��∗2 − 1�Z∗���
+ T∗ �υ∗ ��∗2 − 1�Z∗� �∗2|∗2 + 9∗�∗�|∗�� + �∗�|∗� = 0                                                           �18� 
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Where the various nondimensional parameters 
are defined as, 
 

T∗ = W
���	
 ,   ��∗ = U�s


���	
 ,   �∗ = U�
���	
 , υ∗ =

����	

�4 ,  �Z∗ = U����	


�4  ,  9∗ = 9�4��� , |∗ =
[���	


� ,    �19�    
 
The variation of the growth rate T∗  with wave 
number �∗  is shown in Figs. 1- 3. 
 
The Fig. 1 curves indicate that when                       
magnetic field increases, the growth rate of 
instability decreases. Thus we conclude                           
that the magnetic field parameter has a 
stabilizing influence on the growth rate of the 
instability in the longitudinal mode of 
propagation.  
 
The Fig. 2 curves indicate that when the values 
of Stoke drag Parameter increases, the growth 
rate of instability is decreasing. Thus we 
conclude that the Stoke drag Parameter has a 
stabilizing influence on the growth rate of the 
system. 
 
The Fig. 3 curves indicate that when the value of 
suspended particle 9∗ increases, the growth rate 
of instability is decreased. Thus we conclude that 
the suspended particle 9∗  has to stabilize effect 
on the growth rate of the system. 
 

The third factor equated to zero we gate, 
 T�9 + TkN1 + 9�r + 0U + ΩU�S+ T2��0U + ΩU�+ 9�Ωp2 + ΩU�r + 0U���+ T�Ωp2 + 0UΩU + 9ΩUΩn2�+ ΩUΩn2 = 0                                 �20� 
 
Equation (20) shows dispersion relation for an 
infinite homogeneous magnetized quantum 
plasma having a kinematic viscosity, thermal 
conductivity and fine dust particles. The constant 
term is modified by thermal conductivity but not 
affected by viscosity and fine dust particles. 
 

4.2 Transverse Mode of Propagation �u⊥⊥⊥⊥ w�    
 
In this case, we assume all the perturbations are 
transverse to the direction of the magnetic field, �O. x. � = �,    �" = 0� . Thus the dispersion 
relation (eq. 15) reduces to the simple form to 
gives, 
 

�Z2 ���Z + �2|2
T � �T�Z + ΩE2 # − �2|2

T ΩE2 � =  0�21� 

 

It is clear from the above dispersion relation that 
when the propagation is in the transverse 
direction it has two factors in equation (21), the 
first factor of the equation (21) equating to zero 
and it shows the natural stability of the system. 
The second factor of the dispersion relation (21) 
equated to zero gives,  

T�9 + TkN1 + 9�r + ΩU�S + T2�ΩU + 0U + 9�0U + 0UΩU + rΩU + �2|2 + Ω�2#�+ T�0UΩU + �2|2 + Ω�2 + 9ΩU��2|2 + Ωn2#� + ΩU��2|2 + Ωn2#= 0                                                                                                                                                            �22� 

 
 

Fig. 1. The growth rate �∗, in the longitudinal mode, is plotted against wavenumber �∗ with 
variation in the magnetic field �∗= 0, 2, 4, keeping the values of other parameters are unity 
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Fig. 2. The growth rate �∗ in the longitudinal mode is plotted against wavenumber �∗ with 
variation in the Stoke drag ��∗ keeping the values of other parameters are unity 

 

 
 

Fig. 3. The growth rate �∗ in the longitudinal mode is plotted against wavenumber �∗ with 
variation in the suspended particle �∗  keeping the values of other parameters are unity 

 
From equation (22) noted that Jeans                   
condition is modified by thermal conductivity, 
magnetic field and quantum correction,                         
from the constant term of equation (22)                       
the condition of instability can easily be obtained 
as 
 

ΩU ��2|2 + �2� ′2 − 4��� + ℏ2��
4HtH\� < 0         �23� 

 
The modified Jeans wave number is  
 

��� = �� �1 + |2
� ′2 + ℏ2�2

4HtH\� ′2�
�Z2                           �24� 

 

Thus the system will be unstable for all wave 
numbers � < ���  (where ���  is modified Jean’s 
wave number) given by equation (24). 
 
The dispersion relation (22) shows a gravitating 
mode modified due to the presence of 
magnetized quantum plasma having combined 
effect of thermal conductivity, viscosity and 
suspended particles. To discuss the effect of 
each parameter on the growth rate of instability 
we solve (22) numerically by introducing the 
following dimensionless quantities in terms of 
self-gravitation. Now we can write (22) in non-
dimensional form, for showing the effects of 
different parameter on growth rate of instability, 
as 
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T∗�9∗ + T∗kN1 + 9∗���∗ + D∗�S
+ T∗2 �D∗+υ∗ ^�∗2 − 1�Z∗b + 9∗ eυ∗ ^�∗2 − 1�Z∗b + D∗υ∗ ^�∗2 − 1�Z∗b + ��∗D∗ + �∗2|∗2 + �∗2 − 1f�
+ T∗ eD∗υ∗ ^�∗2 − 1�Z∗b + �∗2|∗2 + �∗2 − 1 + 9∗D∗��∗2|∗2 + �∗2 − 1�f + D∗��∗2|∗2 + �∗2 − 1�
= 0                                                                                                                                                                   �25� 

 

Where the various nondimensional parameters are defined as, 
 

T∗ = W
���	
 ,     ��∗ = ��s


���	
 , D∗ = �

�����	
 ,     �∗ = ��

���	
 ,     υ∗ = υ���	

�4 ,    �Z∗ = �����	


�4 ,
                              9∗ = 9�4���,   |∗ = [���	


�                                                                                                               �26�    
 

Numerical calculations were performed to determine the roots of T∗ from dispersion relation (25), as a 
function of wave number �∗for different values of the various parameters.  
 

 
 

Fig. 4. The growth rate in the transverse mode against wave number with variation in magnetic 
field �∗ = �, �, �  the values of the other parameters is taken as unity 

 

 
 

Fig. 5. The growth rate in the transverse mode against wave number with variation in thermal 
conductivity �∗ = �, �, � the values of the other parameters is taken as unity 
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Fig. 6. The growth rate in the transverse mode against wave number with variation in the 
suspended particles �∗ = �, �, �  the values of the other parameters are taken unity 

 
In Figs. 4, 5 and 6, where the growth rate T∗ 
(positive real value of T∗ ) has been plotted 
against the wave number �∗  to show the 
dependence of the growth rate on the different 
physical parameters such magnetic field, thermal 
conductivity and suspended particles. 
 
From Fig. 4 we observed that increasing value of 
magnetic field |∗  then decreases the growth rate 
of instability. Thus we can say that magnetic field |∗ stabilizes the system.  
 
From Fig. 5 we infer that the growth rate 
increases with increasing thermal conductivity. 
Thus the thermal conductivity has a destabilizing 
effect on the growth rate of self-gravitational 
instability. 
 
From Fig. 6 we infer that the growth rate 
decrease with increasing suspended particles 9∗. 
Thus, the suspended particles 9∗  have a 
stabilizing influence on the growth rate of self-
gravitational instability. 
 

5. CONCLUSION  
 
In the present paper, we have analyzed the 
effect of thermal conductivity and suspended 
particles on the uniformly magnetized quantum 
plasma. The linear dispersion relation using 
QMHD equations in quantum plasma including 
Bohm potential, thermal conductivity and fine 
dust particles. The dispersion relation is obtained 
which is modified due to the presence of 
considered physical parameters which is 
discussed for the longitudinal and transverse 

mode of propagation to the direction of magnetic 
field and modified Jeans instability results. In the 
case of the longitudinal mode of propagation 
along the magnetic field, it is found that the 
condition of Jeans instability is modified due to 
thermal conductivity and quantum parameter. 
The effect of suspended particles does not affect 
the Jeans condition of the system but they 
stabilize the system. 
 
In the case of the transverse mode of 
propagation, we found that the condition of Jeans 
instability is modified by the presence of 
magnetic field, thermal conductivity and quantum 
correction. It is apparent from the curves that 
magnetic field and suspended particles have a 
stabilizing influence by decreasing the growth 
rate of unstable mode both longitudinal and 
transverse mode of propagation but thermal 
conductivity is destabilizing the systems in the 
transverse mode of propagation and Stoke drag 
parameter is stabilizing the system in a 
longitudinal mode of propagation. The result of 
the presence analysis may be useful to 
understand the problem of wave propagation and 
Jean’s instability self gravitating magnetized 
quantum plasma. The result of the present work 
is helpful to an understanding of the 
astrophysical (star formation and white dwarf star 
etc.) problems.    
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