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Abstract 

 
The purpose of this paper to propose a finite variable generalized quadratic functional equation with solution. 

Also investigate Hyers Ulam stability in Random normed space by direct method. 
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1 Introduction 

 
Functional equations play an important part in the study of stability. In 1940 , the stability problems of functional 

equations about group homomorphisms was introduced by Ulam [1]. In1941, Hyers [2] gave a affirmative 

answer to Ulam’s quaestion for additive groups (under the assumption that groups are Banach spaces). Hyers 
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theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by 

considering an unbounded Cauchy difference                                 for all     and 

       . Also Rassias [5] generalization theorem was delivered by Gavruta [6] who replaced        
     by a control function       .The paper of Rassias has significantly influenced the development of what 

we now call the Hyers-Ulam-Rassias stability of functional equations. In1982, J.M. Rassias [4] followed the 

modern approach of the Th.M.Rassias theorem in which he replaced the factor product of norms instead of sum 

of norms.  

 

Recently the stability of many functional equations in various spaces like Banach spaces, modular spaces, fuzzy 

normed spaces and Random normed spaces etc.  have been established by researchers [7-13]. Now we introduce 

new quadratic functional equation and obtain the Hyers- Ulam stability of quadratic function equation  

 

           
 
                                              

 
   

 
      (1.1) 

 

in Random normed spaces. 

 

We adopt the usual terminology, notions and conventions of the theory of random normed spaces as in [14]. 

 

Throughout,    denotes the distribution functions spaces , i.e., the space of all mapping  :R        [0,1] 

such that   is left continuous and increasing on R,   (0)=0 and   (+∞)=1. D
+
 subset of    consisting of all 

functions V of   for which   V(+∞)=1 where    (s) denotes    (s)=           . The space    is partially 

order by usual wise ordering of functions, i.e., 

 

                    The maximal element for    in this order is the distribution function       

 
             
             

  

 

Definition 1.1: A Random Normed space (RN-space) is a triple (V,   ), where V is a vector space, T is a 

continuous t-norm and   :V→ D
+ 

satisfying the following conditions: 

 

(R1).       =       for all t>0 if and only if v=0, 

 

(R2).        =    
 

   
   for all v ϵV, t ≥ 0 and a ϵ R with a ≠ 0, 

 

(R3).                   ,        for all v, u ϵ V and  t, u ≥0. 
 

Definition 1.2. Let (V,   ) be a RN- space. 

 

(i) A sequence {vn} in V is said to be convergent to v ϵV if                 , t > 0. 

(ii) A sequence {vn} in V is said to be Cauchy sequence if                  , t > 0. 

(iii) A RN-space (V,   ) is complete if every Cauchy sequence is convergent in V. 

 

2 General Solution 
 

Theorem 2.1. If any even function  : V→W  satisfies the functional equation (1.1) for all v1, v2,………,vn ϵ V, 

then the function   is quadratic. 

 

Proof. Let function  : V→W  satisfies (1.1). Taking v1= v2=………=vn=0 in (1.1), we have       . Replacing 

(v1, v2,………,vn) by (v,0,……..,0) in (1.1), we get 

 

 (-2v)+ (n – 1)  (v)  =(n – 6)(n-1)  (v) –           (v)                  (2.1) 

 

 (-2v)=(n
2
 – 7n+6 – n

2
 +8n – 3 – n +1)  (v)       (2.2) 

 

 (-2v)=4 (v)          (2.3) 
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Now taking v1=v2=v and v3=……=vn=0 in (1.1), we have 

 

2 (-v)+ (n – 2)  (2v)  =(n – 6)  (2v) +  2 (n – 6 )(n-2)  (v) –2           (v) 

 

2 (-v)+4 (2v)  =18  (v)         (2.4) 

 

Since   is an even mapping, hence by (2.4) we have 

 

  (2v)=2
2 (v) , for all vϵV.  

 

Now, replace v by 2v, we have 

 

 (2
2
 v)= 2

4 (v) 

 

Continue like this, we generalize 

 

 (2
n
 v)= 2

2n (v)          (2.5) 

 

For all vϵV and for any n≥0. 

 

Similarly, we have  

 

 (2
-n

 v)= 2
-2n (v)          (2.6)  

 

Remark 2.2: Let V be a linear space and a mapping       satisfies the functional equation (1.1), then  

 

(i)               for a   vϵV rϵQ  nϵZ  
(ii)     =v     for all vϵV if   is continuous. 

 

3 Hyers-Ulam Stability : Direct Method 
 

For notational handiness, we denote (V,   ), and (W,   ) are Complete RN spaces and define a mapping 

      by 

 

                               
 
                                

   

 2−8 +3 =1  (  )                     (3.1) 

 

for all v1, v2,………,vnϵV.       

 

Theorem 3.1. If  an even mapping  : V→W  with        for which there exists a mapping  :V
n
→D

+
  for 

some 0<α<4,  

 

                 
                  

 
 

 
        (3.2) 

 

And               
          

   
      =1       (3.3) 

 

for all v1, v2,………,vn ϵ V and all     such that  

 

                                  
   .       (3.4) 

 

Then there exists a unique quadratic mapping Q2: V→W satisfying the functional equation (1.1) with 

 

                               
                            (3.5) 

 

for all v ϵ V and all ԑ > 0. The mapping Q2: V→W is defined by 
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           (3.6) 

 

for all v ϵ V and all ԑ > 0. 

 

Proof: Replace (            ) by (v,0,………,0) in (3.4), we have 

 

                              . 

 

      
  

     
                

   .        (3.7) 

 

Replace v by 2
t
v  in (3.7) we have 

 

         
  

       
                  

    

 

         
       

 
      

   

                  
         

 

              
        

  
 . (3.8) 

 

for all v ϵ V and all ԑ > 0. Since  

 
      

   
       

        

       
 

      

   
   
                       (3.9) 

 

From (3.8) and (3.9), we have 

 

       

   
     

  
  

       
   
   

 

 
               . 

 

       

   
     

               
  

 
  

       
   
   

        (3.9) 

 

Replace v by 2
2
v , we got 

 

         
       

 
      

   

               
  

 
  

       
     
   

   

 

For all vϵV and all ԑ > 0. As            
  

 
  

       
     
   

    a    n    then  
     

   
  is a Cauchy sequence in 

(W,   ), Since (W,   ) is complete RN- space, thus sequence  
     

   
  converges to some Q2(v) ϵW. fix v ϵV 

and put n=0 , we obtain 

 

       

   
     

               
  

 
  

       
   
   

                                 (3.10) 

 

And so , for every  >0, we get 
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For all vϵV and all ԑ,   >0.Taking the limit m→∞,  

 

                                 
                         (3.11) 

 

For all vϵV and all ԑ,   >0. Since   was arbitrary, taking  →0, 

 

                               
                        (3.12) 

 

For all vϵV and all ԑ >0. Replacing (            ) by (      
         

   ) in (3.4),  

 

                                   
         

   
      .                 (3.13) 

 

Since              
          

   
      =1, so Q2 satisfies the functional equation (1.1). To prove the uniqueness 

of  Quadratic mapping Q2. Assume that there exists another Quadratic mapping Q
’
2, which satisfies inequality 

(3.11). Fix v ϵV. Clearly, Q2(2
t
v)=2

2t
Q2(v) and Q

’
2(2

t
v)=2

2t
Q

’
 2(v) for all vϵV. from (3.10), we have 

 

             
            

   
 
     

   

   

    

 

           
   

 
      

   
 
 
 

 
           

   
 
      

   
 
 
 

 
   

 

               
  

 
 
 

    α                       (3.14) 

 

         
     

 

 
 
 

   , we have                  for all    .Thus,             , for all    . 

Hence, the proof is complete.  

 

Theorem 3.2. If an even mapping  : V→W  with        for which there exists a mapping  :V
n
→D

+
  for 

some 0<α<4,  

 

   
 
 
  
 
      

  
 
                  

                      (3.15) 

 

And           
  
 
  
  
      

  
  
 
 

   
 =1                   (3.16) 

 

for all v1, v2,………,vnϵV and all     such that  

 

                                     .                  (3.17) 

 

Then there exists a unique quartic mapping Q2: V→W satisfying the functional equation (1.1) with  

 

                            
 

       
                    (3.18) 

 

for all vϵV and all ԑ>0. The mapping Q2: V→W is defined by 

 

                         
  
 
                      (3.19) 
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for all vϵV and all ԑ>0. 

 

Corolarry 3.3. If  an even mapping  : V→W  with        for which there exists a mapping  :V→D
+
  

satisfying 

 

                             
  

   
   .                 (3.20) 

 

Then there exists a unique quadratic mapping Q2: V→W satisfying the functional equation (1.1) with  

 

                          
                           (3.21) 

 

for all vϵV, where θ<2 and all ԑ>0  

 

We take α=2
θ-2 

and             =       
  

    in the theorem 3.1. 

 

4 Conclusion 

 
In this paper a new type quadratic functional equation is introduced and proved its stability in Random Normed 

space. The stability of the equation can be proved in other spaces like Fuzzy normed space, modular space, non- 

Archimedean normed space etc. 
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