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Abstract 
 

A modified approximate analytic solution of the cubic nonlinear oscillator “ 3 0x x  ” has been 
obtained based on an iteration procedure. Here we have used the truncated Fourier series in each iterative 
step. The approximate frequencies obtained by this technique show a good agreement with the exact 
frequency. The percentage of error between exact frequency and our fifth approximate frequency is as 
low as 0.009%. The calculation with this technique is very easy. This easily-calculated modified 
technique accelerates the rapid convergence, reduces the error and increases the validity range of the 
solution. 
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1 Introduction  
 
Most nonlinear phenomena are models of our real-life problems. Nonlinear evolution of equations is widely 
used as models to describe complex physical phenomena in various fields of science, especially in fluid 
dynamics, solid state physics, plasma physics, mathematical biology and chemical kinetics, vibrations, heat 
transfer and so on. Nonlinear systems are classified differently and ‘nonlinear cubic oscillator’ is one of 
them and has its own merit. In this situation Perturbation method, Homotopy method, Homotopy 
Perturbation method, Harmonic Balance method, Rational Harmonic Balance method, Parameter Expansion 
method, Iteration method, etc are used to find approximate solutions to nonlinear problems.  
 
The perturbation method is the most widely used method in which the nonlinear term is small. The method 
of Lindstedt-Poincare (LP) [1-3], Homotopy method [4-7], Homotopy perturbation method [8] and 
Differential Transform method [9-11] are the most important among all perturbation methods. An important 
aspect of various perturbation methods is their relationship with each other. Among them, those by Krylov 
and Bogoliubov [2] are certainly to be found most active. In most treatments of nonlinear oscillations by 
perturbation methods only periodic oscillations are treated, transients are not considered. They have 
introduced a new perturbation method to discuss transients. 
 
Harmonic balance (HB) method is another technique for finding the periodic solutions of a nonlinear system. 
If a periodic solution does not exist of an oscillator, it may be sought in the form of Fourier series and its 
coefficients are determined by requiring the series to satisfy the equation of motion. HB method which is 
originated by Mickens [12] and farther work has been done by Mickens [13-15], Lim & Wu [16], Hu [17], 
Hu & Tang [18], Wu et al. [4], Gottlieb [8], Alam et al. [19], Haque et al. [20], Hosen [21] and so on for 
solving the strong nonlinear problems. However, in order to avoid solving an infinite system of algebraic 
equations, it is better to approximate the solution by a suitable finite sum of the trigonometric function. This 
is the main task of the harmonic balance method. Thus approximate solutions of an oscillator are obtained by 
harmonic balance method using a suitable truncation Fourier series. The method is capable of determining 
an analytic approximate solution to the nonlinear oscillator valid even for the case where the nonlinear terms 
are not small i.e., no particular parameter needs to exist. 
 
The parameter expansion methodology was introduced in a paper by Senator & Bapat [22]. Subsequently, it 
was extended in a publication of Mickens [23]. However, the full generalization of this concept was done by 
He [24]. Recently this method was used by Xu [25], Zengin et al. [26] etc. 
 
Rational harmonic balance approximation technique [27-29] is a useful alternative procedure for calculating 
a second-order nonlinear dynamical systems. This technique was introduced by Mickens [27] and has been 
extended in its applications by Beléndez et al. [29].  A major advantage of rational approximation is that it 
gives an implicit inclusion of all the harmonics contributing to the periodic solutions.  
 
Recently, some authors use an iteration procedure [30-35] which is valid for both small and large amplitude 
of oscillation, to attain the approximate frequency and the harmonious periodic solution of such nonlinear 
problems. Besides this, the method of Matko & Šafarič [36], Matko [37], Matko & Milanović [38] are used 
to find an approximate solution in the case of large amplitude of oscillations. 
 
The iterative technique is also used as a technique for calculating approximate periodic solutions and 
corresponding frequencies of truly nonlinear oscillators for both small and large amplitude of oscillations. 
The method was originated by R.E. Mickens [30]. Latter, Xu & Cang [39] provided a general basis for 
iteration method to calculate the approximate periodic solutions of various nonlinear oscillatory successfully. 
Further, Mickens used the iterative technique to calculate a higher-order approximation to the periodic 
solutions of a conservative oscillator. Here, the iteration technique for determining the approximate solution 
of a cubic nonlinear oscillator is presented. In this method only linear inhomogeneous differential equations 
are required to be solved at each stage of the calculation. It is an important matter for higher order iteration 
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of the solution. The obtained results are compared with those by Mickens Parameter Expansion method [31], 
Mickens HB method [31] and Mickens Iteration method [31].  
 

2 Methodology 
 
Let us suppose that the nonlinear oscillator 

 

( , ) 0x f x x   , (0) , (0) 0,x A x 
                                                                                                 

(1) 

 

Where over dots denote differentiation with respect to time, t. 

 

We choose the natural frequency   of this system. Then adding x2  to both sides of Eq. (1), we obtain 

 

),(),( -xx 22 xxGxxfx   . (2) 

 

Now, we formulate the iteration scheme as 

 

);,(1
2

1 kkkkk xxGxx     0,1,2,3,.............k   (3) 

 

Together with initial condition 

 

)cos()( 00 tAtx   (4) 

 

Hence 1kx  satisfies the initial conditions 

 

1 1(0) , (0) 0.k kx A x    (5) 

 

At each stage of the iteration, k  is determined by the requirement that secular terms should not occur in 

the full solution of   )(1 txk . 

 

The above procedure gives the sequence of solutions: ),(),(),( 210 txtxtx . 

 

The method can proceed to any order of approximation; but due to growing algebraic complexity the 
solution is confined to a lower order, usually the second. 

 

At this point, the following observations should be noted: 

 

(a)  The solution for )(1 txk  depends on having the solutions for k less than ( 1)k   
 

(b)  The linear differential equation for )(1 txk allows the determination of k  by the requirement 

that secular terms be absent. Therefore, the angular frequency, “ ” appearing on the right-hand 

side of Eq. (5) in the function ( )kx t , is   k . 
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3 Solution Procedure 
 
Let us consider the cubic nonlinear oscillator  

 
3 0x x     (6)       

                                                                                                                                   

Now adding x2 to both sides of Equation (6), we obtain 

 
2 2 3x x x x    (7) 

 

Now the iteration scheme is according to Eq. (3) 

 
2 2 3

1 1k k k k k kx x x x   
 (8) 

 

The initial condition is rewritten as 

 

0 ( ) cosx t A   (9) 

 

where 
0 .t    For 0.k  the Eq. (8) becomes 

 
2 2 3 3

1 0 1 0x x Acos A cos   
 (10) 

 

Now expanding 3cos   in a Fourier Cosine series, the Eq. (10) reduces to
  

                                                                                      
2 2 2 3

1 0 1 0( 0.75 ) cos 0.25 cos3x x A A A     
 

(11) 

 

To check secular terms in the solution, we have to remove Cos  from the right-hand side of Eq. (11). 

 

Thus we have 
 

0 0.8660254037844386A   
 (12) 

 

Then solving Eq. (11) and satisfying the initial condition 1(0)x A , we obtain 

 

1( ) 0.958333295 cos 0.041666705 cos3x t A A    (13) 

 

This is the first approximate solution of Eq. (6) and the related 1  is to be determined. 

 

The value of 1  will be obtained from the solution of 

 
2 2 3

2 1 2 1 1 1x x x x  
 (14) 

 

Substituting 1( )x t  from Eq. (13) into the right hand side of Eq. (14), we obtain 
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2 2
2 1 2 1

3 3

3

(0.95833295 cos 0.041666705 cos3 )

(0.6912976924435 cos 0.2774884478877286 cos3

0.029947943020832226 cos5 )

x x A A

A A

A

 

 



  

 





  (15) 

 
Again avoiding secular terms in the solution of Eq. (15), now we obtain 
 

1 0.8493257129433129A    (16) 

 
Then solving Eq. (15) and satisfying initial condition, we obtain the second approximate solution,

  
 

2 ( ) 0.955393886 cos 0.04287627 cos3 0.0017298439 cos5x t A A A      (17)  

 
This is the second approximate solution of Eq. (6)  
 
In similar way, the third and fourth approximate solutions are 
 

3 ( ) 0.955116283 cos 0.043038747 cos3 0.00184497 cos5x t A A A      (18) 

 

4 ( ) 0.9550932806 cos 0.043050742 cos3 0.001855971403 cos5x t A A A      (19) 

 

Whereas the frequencies 2 , 3  and 4  are 

 

2 0.8474560185405289A    (20) 

 

3 0.8473021830725166A    (21) 

 

4 0.8472887677067594A    (22) 

 

Thus 0 1 2 3 4, , , ,      respectively obtained by Eqs. (12), (16), (20), (21), (22) represent the 

approximation of frequencies of oscillator (6). 
 

4 Results and Discussion 
 
An Iteration method is developed based on that by Mickens [30] to solve ‘cubic nonlinear oscillator’. In this 
section, we express the accuracy of the modified technique of iteration method by comparing with the 
existing results from different methods and with the exact frequency of the oscillator. To show the accuracy, 
we have calculated the percentage errors (denoted by Er (%)) by the definitions. 
 

100{ ( ) ( )}/ ( ) ; 0, 1, 2, 3, .....e i eEr A A A i     , (23) 

 

where i
 represents the approximate frequencies obtained by the adopted method and e  represents the 

corresponding exact frequency of the oscillator. 
 
Herein we have calculated the first, second, third, fourth and fifth approximate frequencies which are 

denoted by 0 1 2 3, , ,     and 4  respectively. A comparison among the existing results showed by 

Mickens [31] with the obtained results is given in Table 1. 
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It is noted that Mickens [31] found only first approximate frequency by Parameter Expansion, and the 
second approximate frequencies by harmonic balance method. Mickens [31] also presented only the second 
approximate frequencies by iteration method.  
 

Table 1. Comparison of the approximate frequencies obtained by the presented technique and other 

existing results with exact frequency e [31] of cubic nonlinear oscillator 

 
Exact 

Frequency e  

0.847213 A  

Amplitude 

A  
First 
Approximate 
Frequency 

0  

Er(%) 

Second 
Approximate 
Frequency 

1  

Er(%) 

Third 
Approximate 
Frequency 

2  

Er(%) 

Fourth 
Approximate 
Frequency 

3  

Er(%) 

Fifth 
Approximate 
Frequency 

4  

Er(%) 
Mickens 
Parameter 
Expansion 
Method [31] 

0.866025

2.2

A
 

 
_ 

 
_ 

 
_ 

 
_ 

Mickens 
HB Method [31] 

0.866025

2.2

A
 

0.848875

0.2

A
 

 
_ 

 
_ 

 
_ 

Mickens 
Iteration Method 
[31] 

0.866025

2.2

A
 

0.849326

0.2

A
 

 
_ 

 
_ 

 
_ 

Adopted 
Method 

0.866025

2.2

A
 

0.849326

0.25

A
 

0.847456

0.03

A
 

0.847302

0.01

A
 

0.847289

0.009

A
 

 

5 Convergence and Consistency Analysis 
 
The basic idea of iteration methods is to construct a sequence of solutions kx  (as well as frequencies k ) 

that has a convergence property 
 

lim
e kx x

k


 
   Or,  

lim
e k

k
  

   

(24) 

 

Here ex  is the exact solution of the given nonlinear oscillator. 

 
In the present method, it has been shown that the solution yield the less error in each iterative step compared 

to the previous iterative step and finally 4 0.847289 0.847213e      , where  is a small 

positive number and A  is chosen to be unity. From this, it is clear that the adopted method is convergent. 
 
An iterative method of the form represented by Eq. (3) with initial guesses given in Eq. (4) and Eq. (5) is 
said to be consistent if   
 

lim
0k ex x

k
 

 
   Or, 

lim
0k e

k
  


. (25) 
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In the present analysis we see that  
 

lim
0k e

k
  


, as 

4 0e   . (26) 

 
Thus the consistency of the method is achieved. 
 

6 Conclusion 
 
An iteration method has been used to solve nonlinear oscillations of conservative single-degree of freedom 
systems with odd nonlinearity. The method is a powerful and effective mathematical tool in solving 
nonlinear differential equations of mathematical physics, applied mathematics, and engineering. The 
iteration procedure can be carried on if solutions of a higher degree of accuracy are required. In this paper, 
the method has been employed for analytic treatment of the cubic nonlinear differential equation. The 
adopted method is convergent and obtained solutions are consistent. Already it has been shown in the Table 
1 that, Mickens Parameter Expansion method [31], Mickens HB method [31] and Mickens Iteration method 
[31] are not suitable for higher order approximation because of complexity of calculations and 
simplifications.  But in our method it is very easy to calculate higher order approximations and for these 
reason the obtained result is closure to exact result with minimum error. Therefore we conclude that the 
performance of this method is reliable, simple and gives many new solutions. 
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