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Abstract: Speech perception in an adverse background/noisy environment is a complex and chal-
lenging human process, which is made even more complicated in foreign-accented language for
bilingual and monolingual individuals. Listeners who have difficulties in hearing are affected most
by such a situation. Despite considerable efforts, the increase in speech intelligibility in noise re-
mains elusive. Considering this opportunity, this study investigates Bengali–English bilinguals and
native American English monolinguals’ behavioral patterns on foreign-accented English language
considering bubble noise, gaussian or white noise, and quiet sound level. Twelve regular hearing
participants (Six Bengali–English bilinguals and Six Native American English monolinguals) joined
in this study. Statistical computation shows that speech with different noise has a significant effect
(p = 0.009) on listening for both bilingual and monolingual under different sound levels (e.g., 55 dB,
65 dB, and 75 dB). Here, six different machine learning approaches (Logistic Regression (LR), Linear
Discriminant Analysis (LDA), K-nearest neighbors (KNN), Naïve Bayes (NB), Classification and
regression trees (CART), and Support vector machine (SVM)) are tested and evaluated to differentiate
between bilingual and monolingual individuals from their behavioral patterns in both noisy and
quiet environments. Results show that most optimal performances were observed using LDA by
successfully differentiating between bilingual and monolingual 60% of the time. A deep neural
network-based model is proposed to improve this measure further and achieved an accuracy of
nearly 100% in successfully differentiating between bilingual and monolingual individuals.

Keywords: bilingual; monolingual; artificial intelligence; foreign accent; natural speech; language;
machine learning

1. Introduction

Listeners have demonstrated difficulties in understanding speech when exposed to
various background noise and reverberation degradation conditions [1,2]. Speech per-
ception is a complex process during which the auditory system perceives the sound and
interprets it into linguistic information. A complex interaction between the auditory system
and the cognitive skills of a listener requires alternation between target speech and compet-
ing noise for speech perception in noise [3]. Background noise, the air interface between
speakers, poor room acoustics, foreign accents, and reverberation are common reasons
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for an individual listener’s inability to recognize speech completely [4,5]. Researchers
found that older listeners showed a negative effect by the spoken speech on fast rate time
compression simulation, which happens due to rapid rate of speech. [6,7]. Foreign ac-
cented speech causes temporal characteristics alternation in everyday speech conditions [1].
Changes in the rhythm and tonal patterns, as well as the signal identity of consonants and
vowels, can affect and influence the timing structure of the total utterance of the accented
speech [1,8,9]. In quiet conditions, researchers investigated the performance of the ability
of older listeners to understand accented English [10,11].

Supervised segregation (regulated facilities for different groups’ race, class, or eth-
nicity) has shown significant enhancement of human speech intelligibility in noisy en-
vironments, with clear indication that Deep Neural Network (DNN)-based supervised
speech segregation is a promising approach to new acoustic environments [12]. Healy
et al. [13,14] showed improvement in the intelligibility of noisy speech. The exploration
of DNN-based speech separation in noisy environments has also been presented in the
literature [15–18]. However, behavioral pattern recognition (Chains of behavior indicating
particular groups’ foreground nature in complex segments of behavior which foist the
sameness for input data, e.g., image, speech, speech rating, text refers to behavioral pattern
recognition) for bilingual individual’s speech perception under noisy environments have
not been evaluated and explored yet. Thus, there is a need to investigate both machine
learning and DNN-based behavioral pattern recognition for Bengali–English bilingual
and native English speaker monolingual individuals’ speech in noise (SIN) perception for
foreign-accented English language under quiet and noisy environments.

Approximately 19.7% of the U.S. population speak a language other than English
at home, according to the U.S. Census Bureau [19], which projected that bilingualism
would continue to rise in the United States in the near future. Previous study results
showed that, in 2014, the U.S Hispanic population reached 60 million, and this number is
estimated to reach 106 million by 2050 [20]. This growing population diversity will lead to
language diversity as well. Understanding foreign-accented speech in noise can also be
more challenging for bilingual listeners. Additionally, different racial groups may be more
prone to developing hearing deficiencies. For instance, non-Hispanic white male adults
report more hearing loss than other racial adult groups [21]. The language background
of listeners can play a vital role in speech perception in adverse acoustic conditions [22].
Therefore, studying the mechanism of speech perception by listeners of different language
backgrounds may be of interest to auditory research. Research efforts show that listeners
have the ability to quickly adapt to foreign-accented speech, which also improves over
time [23]. Cristia et al. (2012) [23] compared the neuronal response (in the form of EEG)
of normal-hearing individuals to both foreign-accented and native-accented speech. They
monitored brain activity through the EEG and suggested that the brain may respond
differently to different accents [24]. Tabri et al. conducted an experiment on English speech
perception in quiet and different noise levels (50, 55, 60, 65, and 70 dB) using the speech
perception in noise (SPIN) test [25]. Their results showed that the bilingual and trilingual
listeners performed similarly to monolingual, but the performance declined rapidly at 65-
and 70-dB SPL. Lotfi et al. [26] studied 92 individuals to evaluate the differences between
Kurd–Persian bilingual versus Persian monolingual speech perception in noise. Their
results demonstrated that Kurd–Persian bilinguals had a poor performance in the quick
speech in noise (Q-SIN) test; however, they had a better performance on consonant–vowel
in the noise (CV) test than monolingual Persians. Krizman et al. [27] investigated lin-
guistic processing demands between Spanish–English bilingual and English monolingual
to identify the performance on different task demands. Skoe et al. [28] investigated the
source of difficulties experienced by English proficient bilingual listeners while listening
to English speech in noise and found that the performance declined with the drop of
signal to noise ratio (SNR). Barbosa et al. found that, in the background noise condition,
bilingual individuals make more errors than monolinguals; in addition, they found that
individuals who learn English at an earlier age make fewer errors in a noisy situation [29].
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Bidelman et al. [30] showed in their study that bilinguals require around 10 dB SNR more
to match monolingual listeners in adverse conditions; in addition, they found that Broca’s
area activity does not compensate bilingual but compensate monolingual SIN perception.
Other studies [31–35] investigated monolingual and bilingual listeners’ speech-in-noise
performance in an everyday listening environment.

Human speech intelligibility is a key research topic exploring and analyzing various
subjects, such as acoustics engineering, audiometry, phonetics, and human factors. In the
twenty-first century, with the increase in bilingualism, it is critical to assess the challenges
faced by monolingual and bilingual individuals during communication in noisy acoustic
environments to improve speech intelligibility. The development of fine-tuned automatic
Artificial Intelligence (AI)-based hearing aids for Hearing Impaired (HI) individuals will be
a successful contribution to increase speech intelligibility in adverse acoustics conditions.
Therefore, there is a distinctive variety of elements (e.g., bilingualism, language, foreign
accent, behavioral pattern) that needs to be considered. This study investigates the question
regarding the effects of foreign accent on speech between Bengali–English bilingual and
native American accent English listeners, specifically: (1) Does human behavior show
any significant difference on foreign accent language under quiet or adverse noisy envi-
ronment? and (2) How Bengali–English bilingual and native American English speakers
show significance under quiet and adverse condition? The overall purpose of this study
is to investigate the significant difference between Bengali–English bilingual and native
American English monolinguals effects of a talker’s accent in (quiet and noise) listening
conditions to predict behavioral pattern recognition using Artificial Intelligence (AI).

2. Related Work

Intelligibility is designated by a listener’s experience and accuracy in decoding the
acoustic signal of a speaker. Assessing a listener’s intelligibility has been practiced clini-
cally over the years. To assess the speech intelligibility reception, a handful of detection
applications have been introduced already, such as an automatic intelligibility detection
system. An object is distinguished by a set of features or variables to a class denoted
as a classification task [36]. The applications of the classification task in daily human
activities are wide [37,38]. Classification methods have been used to classify speech intelli-
gibility in the context of recognition or detection. This is a binary classification problem.
Artificial intelligence, fuzzy logic, statistical, and the formal way of classification have
been used in many recognitions or detection problems. The classification methods in
speech recognition or intelligibility applications have been explored by many research
groups. Fook et al. [39] carried out an experiment for the classification prolongations and
repetitions among speakers using the Support Vector Machine (SVM) algorithm. Classi-
fication of speech intelligibility of Parkinsonian speakers using SVM has been explored
by Khan et al. [38]. Using NKI CCRT and the TORGO database with the help of SVM,
LDA, and k-NN classifier, Kim et al. [40] showed the effort in impaired speech to classify
pronunciation and voice quality. Elfahal et al. [41] examined the automatic recognition sys-
tem for mixed Sudanese Arabic–English Languages Speech. For the Ngiemboon language,
Yemmene et al. [42] explored various characteristics of a deep learning-based automatic
speech recognition system. Automatic classification of speech intelligibility for listener’s
using Long Short-Term Memory based system was proposed by Miguel et al. [43]. Listen-
ing effort during sentence processing has been explored by Borghini et al. [44]. In addition,
several research efforts have been published showing the Deep Neural Network (DNN) for
listener’s speech recognition and ineligibility applications [45–48]. Based on the available
literature and author’s best knowledge, binary classification or recognition of bilingual and
monolingual listener’s speech ineligibility reception have not been reported yet.
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3. Data Acquisition and Methods
3.1. Data Acquisition

Data available from the literature [49] were used in this study. Data were collected
at the Applied DSP Research Laboratory of Lamar University, Beaumont, Texas, USA.
Participants included eighteen college student volunteers between the ages of 20 to 27. Six
native English speakers and six Bengali–English bilinguals formed two mutually exclusive
experimental groups. It was verified (confirmed by the LU Speech and Hearing clinic) that
all subjects had normal hearing.

Short duration (10–12 s) audio fragments spoken by adult British English speakers
(male and female) were used as the speech stimuli. The recordings were obtained from the
free online depository http://listentogenius.com/ (accessed on 19 January 2018). Speech
fragments were delivered at three sound levels: 55 dB, 65 dB, and 75 dB. Some fragments
were contaminated by either Gaussian or bubble noise at the same three sound levels
to produce various signal-to-noise ratios of −10 dB, 0 dB, 10 dB, and infinity (no noise).
Stimuli were delivered diotically to participants using Etymotic insert earphones at a
variety of sound levels. One hundred twenty audio stimuli were presented in total in a
randomized order with 2 s of silence between them.

Experimental details consisted of continuous EEG recording and behavioral data.
Additionally, participants were asked to provide their subjective evaluations regarding the
quality of the audio fragments that they listened to. For that purpose, the same randomized
sequence of 120 audio fragments was used. The quality was evaluated on a 1 to 10 scale
where 1 corresponded to “inferior” and 10 represented “excellent” quality.

The primary purpose of the survey was to understand the participant’s experience
on a different kind of speech with different types of frequency considering bubble noise,
white noise, and quiet sound level environment.

3.2. Methodology

The experiment was conducted among 12 participants of native English speaker
monolingual and Bengali–English speaker bilingual individuals. Since the monolingual
individuals represented a higher percentage of the participant population, systematic
sampling techniques were used to choose 6 participants from the total pool of participants
at regular intervals. The audio fragments contain a total of 120 questions against 120 types
of speech with different sound (bubble noise, white noise, and quiet) levels. However,
among 120 samples, 25 speech samples were with a quiet condition, which was the lowest
number of samples compared to bubble and white noise sound speech. Thus, 25 samples
were chosen from each group to conduct further statistical analysis. Table 1 shows the
demographic characteristics of the subject with the mean value from 120 audio fragments.

Table 1. Mean value of 12 subjects on a different sound level (55 dB, 65 dB, and 75 dB).

Participants Bubble Noise White Noise Quiet level

Monolingual 5.4 4.2 9.94

Monolingual 3.875 3.2 6.4

Monolingual 4.67 3.68 9.1

Monolingual 4.45 3.8 9.58

Monolingual 4.25 2.6 6.83

Monolingual 6.17 7.76 6.54

Bilingual 7.79 7.64 7.875

Bilingual 4.29 3.56 3.16

Bilingual 5.25 6.24 5.45

Bilingual 5.41 5 4.16

Bilingual 5.79 6.4 5.5

Bilingual 6.625 6.28 6.04

http://listentogenius.com/
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MANOVA was used to test for group differences/variances on two or more dependent
variables. This experiment considered the following independent and dependent variables
for MANOVA analysis:

• Independent variables: Language (monolingual, bilingual)—2 factors
• Dependent variables: Speech sound (quiet, white noise, bubble noise)—3 factors.

4. Results

There was a significant difference between bilinguals and monolinguals considered
jointly on the variables bubble noise, white noise, and quiet speech, Wilk’s η = 0.256, F (3,8),
P (Significant) = 0.009, partial eta square = 0.744. A distinct ANOVA was conducted for
each dependent variable, with each ANOVA evaluated at an alpha level of 0.016. It did not
show any significant difference separately on monolingual and bilingual individuals for
the Multivariate test, refers to Table 2.

Table 2. Multivariate Test.

Effect Value F Hypothesis df Error df Sig.

Intercept

Pillai’s Trace 0.974 101.331 b 3.000 8.000 0.000

Wilks’ Lambda 0.026 101.331 b 3.000 8.000 0.000

Hotelling’s Trace 37.999 101.331 b 3.000 8.000 0.000

Roy’s Largest Root 37.999 101.331 b 3.000 8.000 0.000

Language

Pillai’s Trace 0.744 7.740 b 3.000 8.000 0.009

Wilks’ Lambda 0.256 7.740 b 3.000 8.000 0.009

Hotelling’s Trace 2.903 7.740 b 3.000 8.000 0.009

Roy’s Largest Root 2.903 7.740 b 3.000 8.000 0.009
b indicates each of the four types of testable hypothesis result is not unique.

4.1. Correlation Analysis

In order to determine whether there is any correlation among all three sound levels
based on the user experience, a co-relation analysis was conducted using “Pearson Cor-
relation”. Table 3 presents the correlation between bubble noise, white noise, and quiet
speech sound. There was a significant negative relationship between bubble and white
noise, r (10) = 0.883, p = 0.000, as shown in Table 3.

Table 3. Correlation between noisy and quiet sound level.

Bubble Noise
Speech

Gaussian or White
Noise Speech Quiet Speech

Bubble Noise
Speech

Pearson Correlation 1 0.883 ** 0.051

Sig. (2-tailed) 0.000 0.876

N 12 12 12

Gaussian or White
noise Speech

Pearson Correlation 0.883 ** 1 −0.130

Sig. (2-tailed) 0.000 0.688

N 12 12 12

Quiet Speech

Pearson Correlation 0.051 −0.130 1

Sig. (2-tailed) 0.876 0.688

N 12 12 12
** Correlation is significant at the 0.01 level (2-tailed).

4.2. Machine Learning Algorithm

Another study was conducted using different machine learning techniques on survey
data of 12 participants. Different machine learning algorithms were selected for the study as
follows: Logistic Regression (LR), Linear Discriminant Analysis (LDA), K Nearest Neighbor
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(KNN), Gaussian Naïve Bayes (NB), Classification and Regression Trees (CART), and
Support Vector Machine (SVM), with default parameters. The whole experiment was carried
out using Scikit learn tools with Python interpreter language. To evaluate the performance,
fivefold cross-validation was utilized, and the results are presented by averaging (avg.)
those five folds.

Table 4 present a summary of the performance of all the algorithms on survey data.

Table 4. Algorithm performance on survey data.

Algorithm Accuracy (Avg) Std

LR 0.30 0.24

LDA 0.50 0.44

KNN 0.50 0.44

NB 0.50 0.316

CART 0.30 0.4

SVM 0.20 0.244

LDA, KNN, and NB showed the best performance by achieving a constant accuracy
of around 50%. Contrarily, SVM showed the worst performance across all measures.

Note that, in this first experiment, the performance of all the machine learning algo-
rithms was significantly low. To improve the existing computational performance, another
experiment was carried out by standardizing the dataset. After standardizing the dataset,
some improvement was observed on the performance of those algorithms.

Table 5 summarizes the overall performance of algorithms after scaling the dataset.
The noticeable changes were observed once the overall accuracy of LR increased from
30% (Table 4) to 60% (Table 5), still which is not up to the mark as a final result of general
data analysis.

Table 5. Algorithm performance after Scaling the dataset.

Algorithm (Scaled) Accuracy (Avg) Std

LR 0.60 0.37

LDA 0.50 0.44

KNN 0.50 0.44

CART 0.20 0.24

NB 0.50 0.32

SVM 0.30 0.244

In Figure 1, a clustered bar chart was used to compare the performance of six machine
learning algorithms in terms of data standardization. The LR method showed the highest
accuracy improvement among all the different algorithms, from 30% to 60%. Additionally,
the CART machine learning algorithm’s performance significantly decreased by up to 66%
(from 30% to 20%).

Since most of the machine learning algorithm’s performance was significantly low on
the dataset, another experiment was conducted using a deep learning approach.

4.3. Behavioral Pattern Recognition Using a Deep Learning Approach

To develop a neural network model, Keras Python library was used. It is a Python
library that can run on top of Theaona or Tensorflow.
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Proposed Model

A sequential model was created, and some additional layers were also added until a
significant amount of improvement was observed during the training phase. One hundred
and twenty input variables were used as the data set contained 120 input parameters. The
most optimal network was chosen after several trials with random input features. Note
that the defined neural network was a fully connected layer using Dense Class. More
details on how a deep learning architecture is developed can be found here [50]. Figure 2
shows the architecture of the network:
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Figure 2 shows that the network was initiated by 120 inputs, and two hidden layers
contained 60 and 30 neurons, respectively. To initialize the network, an activation function
was necessary, and here, the network utilized the rectifier activation function on the first
three layers and the sigmoid activation function as the output layer.

The sigmoid activation function was used to ensure the network output would remain
between 0 and 1 since the network was designed for binary classification. Details regarding
“Relu” and “Sigmoid” can be found at [51]. Note that training a network means finding
the right set of weights to make a better prediction. Thus, it is necessary to specify the loss
function to evaluate a set of weights. In this case, the logarithmic loss was used, which
is defined in Keras as “binary_crossentropy”. An adaptive learning rate optimization
algorithm (Adam) was used as an optimization algorithm due to its robust performance on
binary classification. More details regarding the ‘Adam’ optimizer can be found in [52].

The training process runs for a fixed number of iterations through the dataset called
epochs which need to be specified while fitting the model. Here 150 epochs were used
with a batch size of 10. Note that the batch size and the epochs were chosen experimentally
by trial and error. While training the model, each iteration adjusted the loss to the next
epoch. During this experiment, after 35 epochs, the accuracy reached 100%, while the loss
recorded was only 76%. To understand the network performance, training loss, validation
loss, training accuracy, and validation accuracy were also calculated. Figure 3 shows the
training and validation loss, as well as accuracy.
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During the training phase, both the training and validation loss curve touched at
about 120 epochs, and it was decided that no further training was required after that point
(Figure 3a). On the other hand, both training and validation curves in Figure 3b show some
discrepancies during 35 epochs. Considering both Figure 3a,b, it is possible to assume that
the proposed model performed well on “EEG_data_lamar” with an accuracy of 100%.

5. Discussion

As a means of understanding the effects of foreign accents on speech between Bengali–
English bilingual and native American English listeners, the study observed 12 participant’s
behaviors under bubble noise, white noise, and quiet speech sound level environments.
The results showed a significant difference (p = 0.009) between the two groups’ (bilinguals
and monolinguals) behavior under various noisy conditions. Additionally, the behavioral
performance was analyzed with different machine learning approaches, such as LR, LDA,
KNN, CART, NB, and SVM. The resulting analysis showed it was possible to differenti-
ate between two groups 60% accurately using LR. Hence, a small deep neural network
(DNN) was proposed, which achieved 100% accuracy in differentiating between bilinguals
and monolinguals. It is relevant to emphasize that none of the reference studies consid-
ered the effects of noisy environment between two distinct groups—the bilinguals and
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monolinguals—using machine learning/deep learning-based approach, which hinders
the opportunity of a direct comparison with the existing literature. Therefore, this study
may help researchers and practitioners in the near future to evaluate the effect of noise on
multilingual individuals. Apart from the aforementioned advantages, this study also has
some limitations which shall be addressed in future projects:

• During this study, only a limited number of individuals (12 participants) were considered.
• We did not consider other widely bilingual people who speak English–Arabic, Hindi–

English who need to be taken into account for the proper evaluation of the effect of
noise on bilingual people on a large scale.

• The performance of the proposed deep neural network may fluctuate when applied to
a larger data set.

6. Conclusions

This study evaluated the participant’s experience on a foreign-accented speech with
different types of frequency considering bubble noise, white noise, and quiet speech sound
level (e.g., sound levels: 55 dB, 65 dB, and 75 dB) and with signal-to-noise ratios of −10 dB,
0 dB, 10 dB, and infinity (no noise) environments between bilingual and monolingual
individuals. The study focused on young adults. The findings suggest that foreign-accented
speech with different noise has a significant effect on listening regardless of whether the
person is bilingual or monolingual. A significant difference was also observed between the
two groups in quiet and white noise-contaminated speech; however, no such significant
difference was measured under bubble noise-contaminated speech. This indicates that
the performance of listening will be mostly similar regardless of one’s multi-linguistic
capabilities. It seems that no additional advantages are enjoyed through the comprehension
of multiple languages. Finally, we tested and evaluated six different machine learning
algorithms on the 12 participant’s dataset in terms of speech quality ratings in mild-to-
moderately by listeners, and higher accuracy was achieved using LDA—60%, after data
standardization. Speech quality ratings by monolingual and bilingual listeners observed
were somewhat confounded because of the ineligibility. In addition to this, a deep neural
network was developed that differentiated between bilingual and monolingual participants
by achieving an accuracy of 100%. Some of the limitations associated with this work can be
addressed by conducting experiments with large and imbalance datasets [53,54], comparing
the performance of the proposed methods with other bilingual participants, and explaining
the analytic results using explainable AI [55].
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