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Abstract: Space modular self-reconfigurable satellites (SMSRSs) are a new type of satellite with
reconfigurable structures and adjustable functions. The inverse kinematics of the hyper-redundant
structure of SMSRSs are difficult to solve by traditional methods. In this paper, the inverse kinematics
of SMSRS is transformed into an optimization problem and solved using the optimization method.
Moreover, the avoidance of self-collision is implemented in the optimization process. Firstly, the
kinematic model of SMSRS is established. Then, to find the more accurate inverse kinematics solutions,
a novel Segmented Hybrid CMA-ES and PSO (SHCP) algorithm is proposed. The algorithm is used
for three cases of inverse kinematic problems, and the optimization results prove the optimization
method is effective to solve the inverse kinematic problem with self-collision avoidance. Compared
to the results of PSO variants, meta-heuristic algorithms, and hybrid algorithms, the novel algorithm
has higher accuracy, proving its better performance on the inverse kinematics problem of SMSRS.

Keywords: inverse kinematics; hybrid algorithm; self-reconfigurable satellite; self-collision avoidance;
meta-heuristic algorithm

1. Introduction

The structure of conventional spacecraft is usually permanently fixed to perform a
single task and cannot be reconfigured for other tasks. At the same time, current spacecraft
have difficulty responding quickly to unexpected events in space due to the limitations
of long development cycles and launch windows [1]. To address this limitation, future
spacecraft are expected to be multipurpose and be able to respond to unforeseen events.
The research object of this paper, space modular self-reconfigurable satellites (SMSRSs),
is proposed to meet this expectation. An SMSRS is a space system with morphological
adaptability and functional reconfigurability. It carries multiple types of task subsystems,
and these subsystems are arranged and reorganized at different space orientations to
complete multiple types of space tasks. For example, when an SMSRS carries multiple
space cameras, it could change the space orientations of these cameras through joint
motions, achieve an expanded imaging area by stitching together the field of view of these
cameras or achieve the reconnaissance of multiple targets.

An SMSRS is a chain structure composed of different functional modules and joints. In
Figure 1, an SMSRS with five modules is shown. Each module has a standard interface and
regular shape, and it is the integration of payloads or satellite subsystems. Modules of the
SMSRS are scalable, and they are functionally independent and physically separated from
each other. The standard interfaces are used to connect with modular joint modules for
ground or in-orbit extension according to the type of space mission. The type and number of
modules carried by the SMSRS are configured to mission requirements. The modular design
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of the SMSRS facilitates the reconfiguration in space and the folding and packaging before
launch [2]. The modules of the SMSRS are connected by three rotating joints whose axes
are orthogonal to each other to form degrees of freedom (DOFs) relative to rotation, rolling,
and yaw directions so that the SMSRS can adaptively adjust its configuration. Unlike
other types of reconfigurable satellites that adjust their configuration through robotic arms,
external service robots, or autonomous flight, the SMSRS adjusts its configuration through
joint motion.

Figure 1. Model of SMSRS with five modules.

The SMSRS switches the task capability by structural reconfiguration. During task
switching, the SMSRS should be converted from the current configuration to target configu-
ration by joint rotations, where a key aspect is to calculate the angle of rotation required of
each joint. Mathematically, it involves converting the desired module poses of the SMSRS
in Cartesian space to the joint angles in joint space, also known as the inverse kinematics
problem. The solution of inverse kinematics is indispensable for the motion analysis and
control of the SMSRS [3].

There are various methods to solve inverse kinematics of SMSRSs, such as the geo-
metric method [4], algebraic method, iterative method [3], and optimization method [5].
Among them, the geometric and algebraic methods are collectively called analytical meth-
ods. The geometric method is to obtain the geometric relationship between the poses of the
links and the joint angles by solving the trigonometric functions. However, the geometric
method is only suitable for systems with few DOFs, so it is not generalized. The idea of
the algebraic method is to convert the kinematic equations into high-order polynomials,
and then solve for all the roots of these polynomials. However, the algebraic method
usually does not yield a clear indication of the validity of these solutions. Users usually
have to rely on intuition to select the correct solutions [4]. Despite its fast solving speed
and high accuracy, the analytical method is only applicable to manipulators with simple
structures. For complex, geometrically structured systems, the solution of their nonlinear
trigonometric equations is too complex and does not always have analytical expressions,
so the analytical solution cannot be guaranteed [6]. In this case, it is necessary to use the
iterative method and optimization method.

The iterative method is mainly based on the Jacobian matrix [7] and is regardless of the
number of DOFs. However, as the number of DOFs increases, iterative methods become
increasingly expensive to compute [8] and also suffer from singularity problems [9].

For the inverse kinematic problems that are not suitable for the above-mentioned
traditional methods, they can be solved by the optimization method, where the optimal
joint of inverse kinematic problems is found by optimization algorithms. The optimization
method is particularly suitable for the complex inverse kinematic problems because its
calculation cost and time is not significantly increased due to the increase in DOFs, and it is
based on the forward kinematics equation, so joint singularities can be avoided [7]. When
adding additional constraints to the multi-solution inverse kinematics, the corresponding
optimal solutions for different objectives can be obtained. Many researchers have attempted
to solve inverse kinematics with a variety of meta-heuristic algorithms, including the Genetic
algorithm (GA) [10,11], the Artificial Bee Colony algorithm (ABC) [12,13], the Particle Swarm
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Optimization algorithm (PSO) [14,15], the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [16] and the Differential Evolution algorithm (DE) [17,18], et al.

In inverse kinematics of SMSRS, different from other self-reconfiguration systems
(e.g., space manipulators), the SMSRS is concerned with the pose of multiple modules and
not only the pose of the end-effector. In addition, due to the large size of the modules,
it is necessary to consider the avoidance of self-collision of the SMSRS. Along with the
redundant DOFs, the inverse kinematics of SMSRS is too difficult to be solved by traditional
methods, so we used the optimization method to solve it. In addition, due to the specificity
of the space task, the accuracy of the SMSRS solution is required to be higher. To solve the
inverse kinematics of SMSRS with higher accuracy, we propose a new segmented hybrid
CMA-ES and PSO (SHCP) algorithm in this paper and consider the self-collision avoidance
of the SMSRS in the inverse kinematics problem.

The rest of the paper is organized as follows. In Section 2, the kinematic model of
SMSRS is established. In Section 3, the objective function of inverse kinematics with self-
collision avoidance of SMSRS is established, and detailed optimization steps are proposed.
The SHCP algorithm is proposed in Section 4. In Section 5, the SHCP algorithm is used to
optimize the inverse kinematic problem of SMSRS with different requirements on module
poses, and the optimization results are compared with other PSO variants, meta-heuristic
and hybrid algorithms. Section 6 discusses and summarizes the work.

2. Kinematics Modeling of SMSRS

Kinematics describes the relationship between the coordinates of the joint space and
the task space. The forward kinematics map the joint space to the task space, while the
inverse kinematics is the opposite mapping [12]. For an SMSRS, once a task is started, the
task planning system determines its task configuration and communicates the reconfigu-
ration requirements to the control system of the SMSRS. These requirements are usually
given in the form of the absolute or relative pose of task modules. This process depends on
the establishment of forward kinematics and the solution of inverse kinematics.

Forward Kinematiccs of SMSRS

An SMSRS consists of a series of rigid bodies and its modules and inter-module
connection structures can be regarded as links, so it is a typical multi-link system. In
forward kinematics, these links are connected by joints to form a motion chain. The pose
of each link can be presented directly in the homogeneous transformation matrix by link
parameters and joint variables. The number of joints Nj defines the DOFs of the SMSRS.
The homogeneous transformation matrix of the ith link relative to the base coordinate
system Σb is:

0
i T =


nxi oxi axi pxi
nyi oyi ayi pyi
nzi ozi azi pzi
0 0 0 1

 =

[ [
ni oi ai

]
pi

0 1

]
=

[
Ri pi
0 1

]
(1)

where, Ri represents the desired attitude matrix and pi presents the desired position vector
of the ith link. The relative poses of non-adjacent links can be obtained by the successive
multiplications of adjacent link homogeneous transformation matrices [7]. Equation (2)
shows the pose of the ith link relative to Σb.

0
i T = 0

1T(θ1)
1
2T(θ2)

2
3T(θ3) · · · i−1

i T(θi) =
i

∏
k=1

k−1
k T(θk) (2)

where, θi ∈ 1, 2, 3, . . . , Nj represents the ith joint angle. The first step to obtaining the
homogeneous transformation matrix is to establish the multi-link coordinate system ac-
cording to certain rules, then select the parameters to represent coordinate system rela-
tionships. Among various methods for establishing multi-link coordinate systems, the
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Denavit-Hartenberg (D-H) [19] method has clear principles and can obtain the homoge-
neous transformation matrix by simple and fast iteration, which is used in this paper.
According to its principles, each link needs to fix a coordinate system, and four parameters
are selected between adjacent coordinate systems to indicate their relative relationship,
which are linked length A, link twist α, link offset d, and joint angle θ. The four parameters
present four-step motions from the (i − 1)th coordinate system to the ith coordinate system.
In the forward kinematics of SMSRSs, any simple joint motion can be expressed by a homo-
geneous transformation matrix, and the complex motions can be expressed by multiplying
these homogeneous transformation matrices, so the homogeneous transformation matrix
of the four-step motions can be expressed in Equation (3).

i−1
i T = Rot(x, αi−1)·Tran(Ai−1, 0, 0)·Rot(z, θi)·Tran(0, 0, di)

=


1 0 0 0
0 cαi−1 −sαi−1 0
0 sαi−1 cαi−1 0
0 0 0 1

·


1 0 0 Ai−1
0 1 0 0
0 0 1 0
0 0 0 1

·


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1

·


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1


=


cθi −sθi 0 Ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1


(3)

On the contrary, given 0
Nj

T by Equations (2) and (3), the joint variables

q =
[

θ1 θ2 θ3 · · · θNj

]T
cannot be calculated directly forward; thus they are called

inverse kinematics.

3. The Objective Function for Solving Inverse Kinematics of SMSRS
3.1. Pose Error of Single Module

We use the optimization method to solve optimal q =
[

θ1 θ2 θ3 . . . θNj

]T
for

the given module pose (the inverse kinematics of SMSRS). The optimization goal is to
minimize the error between the desired poses and the estimated poses of modules, which
is usually expressed mathematically by searching for the minimum value of the Euclidean
distance between the desired poses and the estimated poses of modules [7]. For the ith
module, we define its estimated homogeneous transformation matrix:

0̂
i T =


n̂xi ôxi âxi p̂xi
n̂yi ôyi âyi p̂yi
n̂zi ôzi âzi p̂zi
0 0 0 1

 =

[ [
n̂i ôi âi

]
p̂i

0 1

]
=

[
R̂i p̂i
0 1

]
(4)

where, R̂i represents the estimated attitude matrix and p̂i presents the estimated posi-
tion vector of the ith link. And 0

i T in Equation (1) presents the desired homogeneous
transformation matrix.

Position error: The objective function to minimize the error between p̂i and pi can be
defined as:

i f p =
‖pi − p̂i‖
‖p̂i‖

(5)

Attitude error: The objective function to minimize the error between R̂i and Ri can be
defined as:

i f R =
‖Ri − R̂i‖
‖R̂i‖

(6)

Objective function: Defining the objective function of minimum pose error of ith module:
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fpR

(
0
i T , 0

i T̂
)

= ε·i f p + (1− ε) · i f R (7)

The first term on the right side of Equation (7) represents the requirements for mini-
mum position error and the second term represents the requirements for minimum attitude
error. ε is the weight factor to measure their contribution and is defined as:

ε = αe−δ + β (8)

where, δ = i f R and α = 0.7, β = 0.3 were selected experimentally. If the value of i f R is
large (ε ≈ 0.3), the weight factor gives priority to i f R. On the other hand, if the value of i f R
is small (ε ≈ 1), the weight factor gives priority to i f p. When only the minimum position or
attitude error in different tasks is required, the objective function may be only one term of
Equation (7), that is:

fpR

(
0
i T , 0

i T̂
)

= i f p or i f R (9)

3.2. Pose Error of Multi-Modules

When establishing the multi-link coordinate system of the SMSRS, the Σb is usually
established at the center of mass of the attitude control module to facilitate the attitude
control, and then the multi-link coordinate systems of the SMSRS is divided into a and b
sides by Σb. When there is a requirement for the minimum pose error of multiple SMSRS
modules, we define them as task modules. Consider a space task that has m task modules, n
modules on the a side of Σb (the module where Σb is located is grouped into the a side) and
m-n modules on the b side of Σb. Taking Σb as the counting starting point, the ajth module
is located at the 3

(
aj − 1

)
th link coordinate system on the a side. The bjth module is located

in the 3
(
bj − 1

)
th link coordinate system on the b side. As shown in Figure 2, the n task

modules on a side are numbered ηa
1 , · · · , ηa

n link, which are displayed in dark blue. The
m−n task modules on the b side are numbered ηb

1 , · · · , ηb
m−n, and they are shown in light

blue. The task modules are not necessarily adjacent to each other. After the task planning,
since SMSRSs are free-floating and have no fixed base, the desired pose of each module is
given relative to the inertial system ΣI , which are I

gT , g = ηa
1 , · · · , ηa

n, ηb
1 , · · · , ηb

m−n.

Figure 2. Schematic diagram of task module on both sides of the base coordinate system.

To establish the objective function of minimum pose error of the m task modules, the
relative homogeneous transformation matrices of every two adjacent task modules should
be calculated in a certain order. There are two possible relationships between the two
adjacent modules: on the same side and or both sides of Σb.

(1) When two adjacent modules are on the same side of Σb: taking the ηa
g−1, ηa

g link on a
side as an example, their homogeneous transformation matrices relative to ΣI are:

I
ηa

g−1
T = I

0T
(

0
1T
)

a

(
1
2T
)

a
· · ·
(

ηa
g−1−1

ηa
g−1

T
)

a
(10)

I
ηa

g
T = I

0T
(

0
1T
)

a

(
1
2T
)

a
· · ·
(

ηa
g−1

ηa
g

T
)

a
(11)
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Then, the relative homogeneous transformation matrix between them can be calculated:

ηa
g−1

ηa
g

T =

(
I
ηa

g−1
T
)−1

I
ηa

g
T =

(
ηa

g−1
ηa

g−1+1T
)(

ηa
g−1+1

ηa
g−1+2T

)
· · ·
(

ηa
g−1

ηa
g

T
)

(12)

(2) When the two adjacent links are located on different sides of Σb, they are ηa
1 , ηb

1 link
of SMSRS, and their homogeneous transformation matrices relative to ΣI are:

I
ηa

1
T = I

0T
(

1
0T
)

a

(
1
2T
)

a
· · ·
(

ηa
1−1

ηa
1

T
)

a
(13)

I
ηb

1
T = I

0T
(

1
0T
)

b

(
1
2T
)

b
· · ·
(

ηb
1−1

ηb
1

T
)

b
(14)

The relative homogeneous transformation matrix between them is:

ηa
1

ηb
1
T =

(
I
ηa

1
T
)−1 I

ηb
1
T =

(
ηa

1
ηa

1−1T
)

a
· · ·
(

1
0T
)

a

(
0
1T
)

b
· · ·
(

ηb
1−1

ηb
1

T
)

b
(15)

Accumulating the objective function of minimum pose error between each two adja-
cent task modules, the objective function of the m task modules are:

fpose =
n−1

∑
i=1

fpR

(
ηa

i+1
ηa

i
T ,

ηa
i+1

ηa
i

T̂
)

+
m−n−1

∑
j=1

fpR

(
ηb

j

ηb
j+1

T ,
ηb

j

ηb
j+1

T̂
)

+ fcR

(
ηa

1
ηb

1
T ,

ηa
1

ηb
1
T̂
)

(16)

3.3. Self-Collision Avoidance

In an SMSRS, the modules have large volumes but are small in spacing, and their
relative positions can also change in a wide range by joint motions, so they can easily
collide with other modules. Therefore, it is necessary to avoid self-collision when solving
the inverse kinematics of an SMSRS. In the optimization method, if there exists interference
between any two modules under one solution, this solution needs to be excluded.

For an SMSRS, Ψ is defined as the set of all modules. We select two different modules
y, r ∈ Ψ (y 6= r) and calculate the 2-norm of the difference between their position vectors
dyr. When the two modules have not collided, dyr needs to satisfy:

dyr = ‖py − pr‖ > 2RC (17)

where RC is the body diagonal of the module. As shown in Figure 3, an SMSRS with three
modules is taken as an example. Draw three spheres with the centers of the modules as
the origins and the body diagonal lengths as the radii. According to the judgment criteria
in Equation (17), it is obvious that module 2 collided with 3, and module 1 has no contact
with modules 2 and 3. From Equation (1), we find that the position vectors of the ith link

related to Σb can be obtained by 0
i T , and the 0

i T takes the q =
[

θ1 θ2 θ3 · · · θNj

]T

as the variable.

Figure 3. Schematic diagram of module collision and non-collision.



Aerospace 2022, 9, 123 7 of 24

When using the optimization method to achieve self-collision avoidance, we define
the objective function for self-collision avoidance of SMSRS:

fca(q) =

{
0, ∀y, r ∈ Ψ, dyr > 2RC
∆, else

(18)

where ∆ is a large value. When the module collides, the value of fca(q) is large, forcing the
optimization algorithm to constantly find the solution which satisfies fca(q) = 0.

3.4. Objective Function

The objective function of the inverse kinematic of SMSRS can be defined as:

f (q) = fpose(q) + fca(q) (19)

It is the combination of the objective function for minimum pose error and self-collision
avoidance. In Equation (19), fpose(q) shown in Equation (16) represents the difference
between the desired pose and the actual pose, and fpose(q) shown in Equation (18) is
used to determine if there are collisions between modules in the SMSRS with joint angle
as q. The essence of the inverse kinematic issue is to find the optimal joint angles q =[

θ1 θ2 θ3 · · · θNj

]T
by optimization algorithms to achieve the minimum difference

between the desired and actual pose of modules and guarantee that no collisions occur.
When the optimization algorithm uses f (q) as the fitness function, it will continuously find
a more suitable q to make f (q) smaller and smaller, thus achieving minimum pose error
and self-collision avoidance.

3.5. How to Solve the Inverse Kinematic Problem

While using intelligent algorithms to solve inverse kinematics problems of SMSRSs,

every individual contains a set of estimated joint variables q̂i =
[

θ̂1 θ̂2 θ̂3 · · · θ̂Nj

]T

with i ∈ 1, 2, 3, . . . ., N, and N is the total number of individuals, Nj is the DOFs of the
SMSRS. Each set of joint variables can be brought into Equation (19) to obtain a fitness
value of f (q). The best solution q̂best is obtained by minimizing the fitness value of f (q) in
each iteration, until it meets the stop criteria. We proceed to solve the inverse kinematic of
the SMSRS as follows:

(1) Initialization. Every individual q̂i is initialized randomly according to:

q̂i = Ib + (ub − Ib)r (20)

r =
[
rand1, rand1, · · · randNj

]
is a random vector with r ∈ [0, 1], and Ib, ub are lower

and upper bound of q̂i, which are defined as:

Ib =
[

θ1min θ2min θ3min · · · θNjmin

]T

ub =
[

θ1max θ2max θ3max · · · θNjmax

]T (21)

where θimin , θimax i ∈ 1, 2, 3, . . . , Nj are the minimum and maximum angle of ith joint.

(2) Fitness calculation. For every q̂j, we compute its forward kinematics using Equations

(1)–(3) to obtain I
gT̂ , g = ηa

1 , · · · , ηa
n, ηb

1 , · · · , ηb
m−n, and then calculate the estimated

relative homogeneous transformation matrices between two adjacent modules of m
task modules by Equations (12) and (15). We use these estimated relative homoge-
neous matrices that contain estimated relative position and attitude to compute the
fitness value in Equation (19).

The best solution q̂best is found by solving an optimization problem:
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minimize : f (q̂)
subject to : lb ≤ q̂i ≤ ub

(22)

(3) Stop criteria. The optimization algorithm stops when it achieves the maximum itera-
tions, or the fitness value reaches a value of tolerance.

4. Segmented Hybrid PSO and CMA-ES Algorithm

According to the No Free Lunch (NFL) theorem [20], no optimizer is perfect and can
always be the best optimizer to solve any problem [21]. Usually, an optimizer can obtain
the exact optimal result of a certain kind of problem, but it may also converge to the local
optimal solution or wrong solution when dealing with another kind of problem. This
means that the structure and operation of the optimizer need to be adapted according
to the specific problem. However, this does not mean that we always need to develop
new methods to obtain higher-quality solutions for a new problem. The NFL theorem
encourages us to further modify the existing optimizers to solve specific problems. In the
inverse kinematic problems of SMSRSs, we envisaged to hybridize PSO with CMA-ES
algorithms to obtain more accurate solutions.

The PSO algorithm has been broadly used to solve engineering optimization problems
due to its simplicity, few parameters, and fast convergence speed, so we select it as one of
the hybridized algorithms [22]. The concept of the PSO is based on the assumption that a
particle is a potential solution to the optimization problem. The particle flies through the
search space and adjusts its velocity and position following the experience of individual
and surrounding particles until it finds the optimal position [23]. However, traditional PSO
algorithms cannot focus on convergence speed, exploitation, and exploration performance
simultaneously. Typically, the PSO algorithm has good global search performance and can
quickly reduce the fitness value in the initial stage. However, it may be limited in local
exploration performance and is prone to be premature. When the PSO algorithm falls into
local optima, more iterations cannot reach a better solution.

Unlike PSO, the CMA-ES has good local exploration performance but poor global
exploitation performance. CMA-ES is an outstanding representative of various variants of
ES. CMA-ES handles the pairwise dependencies between sample points by the covariance
matrix and generates new samples with a multivariate normal distribution [24]. Therefore,
the CMA-ES algorithm is often used to improve the global search performance of other
algorithms [21,25]. Selecting it as the other algorithm for hybridization, we propose a new
Segmented Hybrid PSO and CMA-ES (SHPC) algorithm.

4.1. PSO Framework

In PSO, every potential solution of a D-dimensional problem is regarded as a particle.
Each particle has several important parameters, which are current velocity, current position,
and the current optimal position of particle swarm, and they are both D-dimensional
vectors [26]. The position and velocity of the ith particle can be expressed as:

xi = (xi1, xi2, . . . , xiD) (23)

vi = (vi1, vi2, . . . , viD) (24)

The PSO uses the velocity updating formula and the position updating formula to
guide the kth update of each particle:

vi(k + 1) = wvi(k) + c1r1(Pbest(k) − xi(k)) + c2r2(Gbest(k) − xi(k)) (25)

xi(k + 1) = xi(k) + vi(k + 1) (26)

where w is inertia weight, Pbest is the optimal position of the ith particle, Gbest is the global
optimal position of the population. c1, c2 are learning factors in [0.5, 2]; r1 and r2 are random
values in (0, 1). ω is an important parameter for tuning the performance of PSO, and its
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widely used forms include constant value, linear and nonlinear, etc. In this paper, the PSO
with linear inertia weight (LIW-PSO) is chosen as the hybridized algorithm. In LIW-PSO,
the linear inertia weight can balance global exploration and local exploitation better, a
larger ω is used to achieve a good global exploration in the early stage, and at the end of
the algorithm, a smaller ω is used to achieve good local exploitation [27].

The right side of Equation (25) has three parts. The first part is the inertia part, which
shows the influence of the velocity of the last movement of the particle. The second is the
individual cognition part, which determines the particle velocity towards the individual
optimal position. The third is the social recognition part, which determines the particle
velocity towards the global optimal position. These three parts guide the motion of particles
together. In PSO, the updates of Pbest and Gbest are evaluated by the fitness function and
performed once in each iteration.

4.2. CMA-ES Framework

The CMA-ES is usually used to solve complex nonlinear, discontinuous convex opti-
mization problems [21]. The three essential operations of the CMAES algorithm are:

(1) Sampling operation: firstly, the CMAES algorithm selects a solution in the solution
space at random, which is used as a centroid to generate the population using a
normal distribution. As shown in:

Xi(k + 1) ∼ m(k) + σ(k)N(0, C(k)), i = 1, 2, . . . , popsize (27)

where Xi is the ith individual in the population. popsize is the population size. m is the
centroid of the population. σ is the step length. N is the multinomial normal distribution,
and C is the covariance matrix of the population, which is the vital element of the CMA-ES
algorithm. According to the above multivariate normal distribution, the population gener-
ated has an isodense surface that is a hyperellipsoid, and the eigenvector of C corresponds
to the population distribution of the long axis of an ellipsoid. The initial C can be set to a
D × D unit matrix.

(2) Selection and reorganization operation: this operation selects a part of the optimal
solution as a subpopulation in the generated population. The new m is as follows:

m(k + 1) = ∑µ

i=1 ρi ∗ Xi(k + 1), (28)

where µ is the subpopulation size. Xi is the ith individual selected among the popsize
individuals in the population. ρ is the weight, and the sum of ρ is 1. This rule
indicates that the distribution center of the next-generation population will shift to
the subpopulation.

(3) Update operation: in this operation, C is updated to guide the population to search
for global optimal solutions, including two operation modes: Rank−µ−update and
Rank−1−update. The Rank−µ−update uses the deviation between the relative ex-
pectations of µ individuals, and the latter uses the deviation between the expectations
of two adjacent generations [21].

C(k + 1) =
(
1− cr1 − crµ

)
· C(k) + cr1·Pc(t + 1) · (Pc(k + 1))T

+crµ·∑µ
i ωi·Yi(k + 1) · (Yi(k + 1))T , (29)

The second part of the summation on the right side of Equation (29) is the Rank−1−update,
the third part is the Rank−µ−update, and cr1 and crµ are the learning rates of two update

modes, cr1 = 2/D2, crµ = min
(

µe f f /D2, 1− cr1

)
, µe f f is the variance-influencing choice set:

µe f f =
(
∑µ

i=1 ρ2
i

)−1
, (30)

And, Yi(k + 1) = (Xi(k + 1) − m(k))/σ(k), cc is the learning rate of the evolutionary
path Pc. The step length σ is updated as follows:



Aerospace 2022, 9, 123 10 of 24

σ(k + 1) = σ(k)exp
(

cσ

dσ

(
Pσ(k + 1)

E‖N(0, I)‖ − 1
))

, (31)

where E(·) is the expectation function. I is the unit matrix. cσ is the learning rate of the step,
dσ is the step update of the damping coefficient. Pσ is the evolutionary path of the step size,
and its initial value is zero. After the update, it is:

Pσ(k + 1) = (1− cc) · Pσ(k) +
√

cc· (2− cc) · µe f f C(k)−
1
2 ×

[
m(k + 1)−m(k)

σ(k)

]
, (32)

Most of the parameters in the CMA-ES are independent. When the initial parameters
are set, similar to PSO, the CMA-ES iterates through the above operations and gradually
searches for the global optimal solution.

4.3. SHPC Algorithm

To address the need for the high-precision inverse kinematic solution of SMSRS, the
SHPC algorithm hybridizes the global exploitation performance of the PSO algorithm with
the local exploration performance of CMA-ES, which can give full play to their superiorities
to obtain more accurate solutions. The novelty is that the hybrid approach of CMA-ES and
PSO is segmented rather than structured. Structural hybrids will increase the complexity
and computing time of the algorithm. The basic idea of the segmented hybrid is to divide
the whole optimization process into global and local search stages. On the global stage, the
PSO algorithm is used for a fast approach to the optimal solution. In the local search stage,
CMA-ES and PSO algorithms are alternately used to achieve better local exploitation. To
define the boundary of the two stages, we propose a fitness gradient function:

fh(k) = |( fbest(k) − fbest(k− h))/ fbest(k− h)|, (33)

where fbest(k) is the best fitness value obtained in the kth iteration, and h is the step width,
which is a constant value set as 30 in the global search stage, fh(k) represents the relative
change of the fitness value after the h iterations. In each iteration, we compare the value of
fh(k) with the expected fitness gradient ξ, which is set as:

ξ = 0.2/log10(k) (34)

In the beginning, to give the PSO algorithm an adaptation period to fully utilize its
global search capability, the SHCP algorithm runs the operation of the PSO algorithm in
the first 50 iterations. After 50 iterations, we compare the values of fh(k) with ξ in each
iteration; when fh(k) ≥ ξ, the PSO algorithm is considered to be still in the global search
stage. Once fh(k) < ξ, we judge that the PSO algorithm has changed from the global
exploitation stage to the local exploration stage, where the CMA-ES and PSO algorithm is
used to find optimal solutions one after another, the so-called segmented hybrid.

The first step in the local exploration stage is to use the best position Ĝbest(k) obtained
by the PSO algorithm as the m(k + 1) at the start of the CMA-ES algorithm. During the
runtime of the CMA-ES algorithm, the fitness gradient function fh(k) is used again to judge
whether the CMA-ES searches for the optimal solution effectively. The difference is the
expected fitness gradient value ξ is set as 0.01, and the step width h is set as 10 at the local
search stage. When fh(k) ≥ ξ, the current algorithm will still be used for optimization;
when fh(k) < ξ, instead of rejecting it to give the current algorithm more opportunities to
show its talent, we propose a counter H with an initial value of 0. In each iteration with
fh(k) < ξ, H = H + 1; otherwise, H = 0. When the value of H exceeds 100, it indicates
that after a period of iterations, the CMA-ES algorithm cannot find a better solution, so the
algorithm switches to the PSO algorithm and takes the latest m obtained by the CMA-ES
algorithm as the initial particles’ positions. There is also a counter K in the PSO algorithm,
and its initial value is 0. In each iteration with fh(k) < ξ, K = K + 1; otherwise, K = 0. When
the value of H exceeds 100, it indicates the PSO algorithm loses its effectiveness; then, the
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SHCP algorithm switches to the CMA-ES algorithm again. The two counters control the
segmented operation of the PSO and CMA-ES algorithms according to the changes of the
fh(k). The pseudo-code of SHPC is as follows (Algorithm 1):

Algorithm 1. SHCP algorithm

Set k:= 0, H = 0, K = 101
Randomly initialize positions and velocities of all particles of PSO
WHILE (the termination conditions are not met)

WHILE (k < 50 or fh(k) ≥ ξ)

Step1: Exploitation stage (Execute PSO algorithm)

FOR (each particle i in the swarm)
Calculate fitness: Calculate the fitness value of the current particle: f (xi).
Update Pbest: Compare the fitness value of Pbest with f (xi).
If f (xi) is better than the fitness value of Pbest, then set Pbest to the current position xi;
Update Gbest: If f (xi) is better than the fitness value of Gbest, then Gbest is set to the position of the current particle xi;
Update velocities: Calculate velocities vi using Equation (25). If vi > vmax then vi = vmax.If vi < vmin then vi = vmin;
Update positions: Calculate positions xi using Equation (26);

END FOR
ELSE

Step 2: Exploitation stage (Execute CMA-ES and PSO algorithm)

WHILE (H < 100 & K > 100) (Execute CMA-ES algorithm)
Initialize population of CMA-ES (set Gbest as the m at CMA-ES)

FOR (each individual i)
Update xi: Generating new individuals using the Gaussian distribution by Equation (27).
Calculate fitness: Calculate the fitness value of the current individuals: f (xi).
If f (xi) is better than the best fitness value, then set best fitness value as f (xi);
Update m: Updating m by the best µ individual in Equation (28)
Update C and σ: Covariance matrix C and Step σ are updated by Equations (29) and (31).

END FOR
If fh(k) ≥ ξ

H = 0.
ELSE

H = H + 1.
END IF

ELSE (Execute PSO algorithm)
Initialize positions of all particles as best position obtained by CMA-ES and set K = 0, H = 0 in the first iteration. Execute PSO
algorithm same as Step 1

If fh(k) ≥ ξ

K = 0.
ELSE

K = K + 1.
END IF

END WHILE

Set k:= k + 1;
END WHILE
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5. Experimental Settings
5.1. Settings of SMSRS

In this paper, we choose an SMSRS with nine modules as the study object. The middle
module is selected to establish the Σb, so there are 4 modules on both the a and b side of Σb.
For some space systems, such as space dual-arm robots, the joint axis on both sides of Σb
are always designed to be symmetrical in direction, so the D-H parameters on both sides
are equal. However, the three joints between the modules are orthogonal, which causes
the asymmetrical D-H parameters on both sides of Σb. To solve the violation, we proposed
the virtual joint coordinate system Jv. Jv is a coordinate system established between the
Σb and the first joint coordinate system on the b side. Its insertion could successfully solve
the problem of asymmetrical D-H parameters on both sides. Jv increases the DOF of the
SMSRS by 1, but does not affect the mass and size of the SMSRS when its mass and size
are set to 0. Then, the calculation of the pose matrix of the link on the b side only needs to
multiply the homogeneous transformation matrix from the Jv to Σb between the first joint
coordinate system and Σb. More details can be seen in reference [2]. Then, the DOF of the a
side is 12, and, the DOF of the b side is 13 due to the existence of virtual joints. The D-H
parameters of SMSRS are shown in Table 1.

Table 1. D-H parameters of SMSRS.

D-H Parameters of a Side D-H Parameters of b Side

Link θa
i (deg) da

i (m) αa
i−1(deg) Aa

i−1(m) Link θb
i (deg) db

i (m) αb
i−1(deg) Ab

i−1(m)

1 0 0 0 0 v-0 90 0 90 0
2 90 0 90 0.198 1-v 0 −0.243 90 0
3 −90 0.243 −90 0 2 −90 0 90 0
4 −90 0 −90 0 3 90 0 −90 0.198
5 90 0 90 0.198 4 −90 −0.243 −90 0
6 −90 0.243 90 0 5 −90 0 90 0
7 −90 0 −90 0 6 90 0 −90 0.198
8 90 0 90 0.198 7 −90 −0.243 −90 0
9 −90 0.243 90 0 8 −90 0 90 0

10 −90 0 −90 0 9 90 0 −90 0.198
11 90 0 90 0.198 10 −90 −0.243 −90 0
12 −90 0.243 90 0 11 −90 0 90 0
- - - - - 12 90 0 −90 0.198

The lower and upper limits of the joint angle are set as:

Ib =
[
−90 −90 −90 · · · −90

]T

ub =
[

90 90 90 · · · 90]T
(35)

5.2. Cases of Inverse Kinematic Problems

In this paper, we will use the SHPC algorithm to solve three cases of inverse kinematics
problems of SMSRS, in which the minimum position and attitude error of two modules, the
minimum position and attitude error of three modules, the minimum attitude error of four
modules are searched respectively. Self-collision avoidance between modules is considered
in all three cases; the nine module SMSRSs with task modules marked in red are shown in
Figure 4.
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Figure 4. Nine module SMSRS and the task modules of three cases: (a) case 1, (b) case 2, and (c) case 3.

5.2.1. Case 1: Minimum Position and Attitude Error of Two Modules

As shown in Figure 4a, we select the end modules of a side and b side as the task
modules, that is m = 1, n = 1, ηa

1= 12, ηb
1= 13 in Section 3.2. The pose matrix of ηa

2 , ηb
1

relative to ΣI is:
I
ηa

1
T = I

0T
(

0
1T
)

a

(
1
2T
)

a
· · ·
(

11
12T
)

a
(36)

I
ηb

1
T = I

0T
(

0
1T
)

b

(
1
2T
)

b
· · ·
(

12
13T
)

b
(37)

Calculating their relative pose matrix:

ηa
1

ηb
1
T =

(
I
ηa

1
T
)−1 I

ηb
1
T =

(
12
11T
)

a

(
11
10T
)

a
· · ·
(

1
0T
)

a

(
0
1T
)

b

(
1
2T
)

b
· · ·
(

12
13T
)

b
(38)

At this time, the objective function is:

f1(q) = fpR

(
ηa

1
ηb

1
T ,

ηa
1

ηb
1
T̂
)

+ fca(q
)

(39)

The desired homogeneous transformation matrices of the two modules are set as:

I
ηa

1
T̂ =


−0.791 −0.320 −0.522 0.447
−0.314 0.519 0.794 1.150
−0.52 0.792 0.310 0.644
0.000 0.000 0.000 1.000

 (40)
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I
ηb

1
T̂ =


0.754 −0.133 0.642 −1.060
0.173 0.984 0.000 −0.828
−0.633 0.112 0.766 0.685
0.000 0.000 0.000 1.000

 (41)

5.2.2. Case 2: Minimum Position and Attitude Error of Three Modules

As shown in Figure 4b, we select the end module of a side, base module, and end
module of b side as the task modules, that is m = 2, n = 1, ηa

1= 0, ηa
2= 12, ηb

1= 13 in
Section 3.2. The pose matrix of ηa

2 , ηb
1 in ΣI is the same as Equations (36) and (37). The pose

matrix of the base module in ΣI is I
0T , which is given by sensors. The relative homogeneous

transformation matrix ηa
2

ηa
1
T ,

ηa
1

ηb
1
T are calculated, respectively, as:

ηa
2

ηa
1
T =

(
12
11T
)

a

(
11
10T
)

a
· · ·
(

1
0T
)

a
(42)

ηa
1

ηb
1
T =

(
0
1T
)

b

(
1
2T
)

b
· · ·
(

12
13T
)

b
(43)

At this time, the objective function is:

f2(q) = fpR

(
ηa

1
ηb

1
T ,

ηa
1

ηb
1
T̂
)

+ fpR

(
ηa

2
ηa

1
T , ηa

2
ηa

1
T̂
)

+ fca(q) (44)

The desired homogeneous transformation matrices of the three modules are set as:

I
ηa

1
T̂ =


1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

 (45)

I
ηa

2
T̂ =


−0.242 −0.775 0.583 1.667
0.198 −0.627 −0.752 0.116
0.949 −0.066 0.306 0.270
0.000 0.000 0.000 1.000

 (46)

I
ηb

1
T̂ =


0.052 0.366 0.928 −1.153
−0.745 0.628 −0.206 −0.099
−0.659 −0.685 0.307 1.293
0.000 0.000 0.000 1.000

 (47)

5.2.3. Case 3: Minimum Attitude Error of Four Modules

As shown in Figure 4c, we select the third and fifth modules of a side, second and
fourth modules of b side as the task modules, that is m = 2, n = 2, ηa

1 = 6, ηa
2 = 12, ηb

1 = 7,
ηb

2 = 13 in Section 3.2. The pose matrix of ηa
2 , ηb

2 in ΣI is the same as case 1. The pose matrix
of ηa

1 and ηb
1 in ΣI is:

I
ηa

1
T = I

0T
(

0
1T
)

a

(
1
2T
)

a
· · ·
(

5
6T
)

a
(48)

I
ηb

1
T = I

0T
(

0
1T
)

b

(
1
2T
)

b
· · ·
(

6
7T
)

b
(49)

Calculating the relative matrix between them in turn:
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ηa
2

ηa
1
T =

(
12
11T
)

a

(
11
10T
)

a
· · ·
(

7
6T
)

a
(50)

ηa
1

ηb
1
T =

(
6
5T
)

a

(
5
4T
)

a
· · ·
(

1
0T
)

a

(
0
1T
)

b

(
1
2T
)

b
· · ·
(

6
7T
)

b
(51)

ηb
1

ηb
2
T =

(
7
8T
)

b

(
8
9T
)

b
· · ·
(

12
13T
)

b
(52)

In case 3, the objective function is:

f3(q) = fpR

(
ηa

1
ηb

1
T ,

ηa
1

ηb
1
T̂
)

+ fpR

(
ηa

2
ηa

1
T , ηa

2
ηa

1
T̂
)

+ fpR

(
ηb

1
ηb

2
T , ηa

2
ηa

1
T̂
)

+ fca(q) (53)

The desired homogeneous transformation matrices of the four modules are set as:

I
ηa

1
T̂ =


−0.139 −0.587 0.796 0.895
0.981 −0.190 0.031 0.058
0.133 0.786 0.603 0.269
0.000 0.000 0.000 1.000

 (54)

I
ηa

2
T̂ =


−0.289 −0.719 0.630 1.447
0.420 −0.687 −0.591 0.474
0.859 0.093 0.501 0.815
0.000 0.000 0.000 1.000

 (55)

I
ηb

1
T̂ =


−0.151 0.699 0.698 −0.887
−0.962 −0.266 0.058 −0.026
0.227 −0.662 0.713 0.278
0.000 0.000 0.000 1.000

 (56)

I
ηb

2
T̂ =


0.191 0.767 0.612 −1.638
−0.959 0.015 0.280 0.220
0.205 −0.641 0.739 0.839
0.000 0.000 0.000 1.000

 (57)

5.3. Settings of Compared Algorithms

To test the performance of the SHPC algorithm in solving inverse kinematic problems
of SMSRSs, we selected several famous algorithms to compare it with. These algorithms
include several PSO variants, several meta-heuristic algorithms, and several hybrid PSO
algorithms. The PSO variants are standard PSO with constant inertia weight (SPSO), the
standard PSO with linear inertia weight (LIW-PSO) [28], the standard PSO with nonlinear
inertia weight (NLIW-PSO) [29], the PSO with constriction factor (CPSO) [30], the iterative
PSO (IPSO) [31], and the PSO with the passive congregation (PSOPC) [32]. The selected
meta-heuristic algorithms are DE [33], GWO [34], BA [35], BOA [36], and ABC [37] algo-
rithms. The hybrid algorithms are HPSOBOA [36], PSOBOA [36], and PSOGWO [22]. The
parameter settings of all selected algorithms are shown in Table 2, which are referenced in
original literature or selected after extensive calculations.
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Table 2. Parameter settings of compared algorithms.

Algorithm Parameter Setting

SPSO c1 = c2 = 2, w = 0.5
LIW-PSO [28] c1 = c2 = 2, ωmax = 0.9, ωmin = 0.4

NLIW-PSO [29] c1 = c2 = 2, w = 0.3, µ = 1.00002
CPSO [30] c1 = c2 = 2.05, χ = 0.73
IPSO [31] c1 = c2 = 0.01, λ = c1

(
1− e−c1k)

PSOPC [32] c1 = c2 = 0.5, c3 = [0.4, 0.6]
SHCP c1 = c2 = 2, ωmax = 0.9, ωmin = 0.4

DE [33] CR = 0.9
GWO [34] a decreased linearly from 2 to 0

BA [35] fmax = 2, fmin = 0, A0 ∈ [1, 2], r0 ∈ [0, 0.2], α = 0.9, γ = 0.9
ABC [37] limit = 100
BOA [36] a = 0.1, c(0) = 0.01, p = 0.6

PSOBOA [36] a = 0.1, c(0) = 0.01, p = 0.6, c1 = c2 = 0.5
HPSOBOA [36] a f irst = 0.1, a f inal = 0.3, c(0) = 0.01, p = 0.6, x(0) = 0.315, ρ = 0.295, c1 = c2 = 0.5
PSOGWO [22] ω= 0.7298, c1 = c2= 1.49445, a decreased linearly from 2 to 0

The terminal condition is the maximum iteration and is set to 1000. All algorithms were
implemented in MATLAB 2012a and run on the same machine with an Intel(R) Core(TM)
i5-8300H CPU @ 2.30 GHz (Intel, Santa Clara, CA, USA) and 8 G memory.

6. Experiments and Comparison Results
6.1. Comparison Results in Solution Accuracy

The algorithms in Table 2 iteratively search for the minimum values of objective
functions for the three cases. To perform a fair comparison of these algorithms, each
algorithm runs 10 times in each case, and five statistical indicators: the average value, the
best value, the worst value, median, and standard deviation are recorded for the 10 times
optimizations. The results between SHPC and PSO variants, meta-heuristic algorithms,
and hybrid algorithms are recorded in Tables 3–5.

Table 3. Comparisons of experimental results between SHPC and PSO variants.

FUN SHPC SPSO LIW-PSO NLIW-PSO CPSO IPSO PSOPC

f1

Mean 8.29 10−3 5.00 × 103 3.00 × 103 1.74 × 10−1 6.00 × 104 7.16 × 10−1 1.31
Best 7.21 × 10−12 6.52 × 10−12 9.40 × 10−7 6.25 × 10−3 4.00 × 104 5.06 × 10−1 1.31

Worst 4.12 × 10−2 3.00 × 104 3.00 × 104 5.77 × 10−1 9.00 × 104 1.15 1.31
Std 1.66 × 10−2 1.08 × 104 9.49 × 103 1.82 × 10−1 1.41 × 104 2.10 × 10−1 2.34 × 10−16

median 5.20 × 10−6 1.88 × 10−3 3.24 × 10−4 9.11 × 10−2 6.00 × 104 7.06 × 10−1 1.31

f2

Mean 3.92 × 10−2 8.00 × 103 3.45 × 10−1 4.57 × 10−1 6.70 × 104 2.00 × 103 1.62
Best 1.48 × 10−2 8.39 × 10−2 8.13 × 10−2 2.41 × 10−1 5.00 × 104 6.40 × 10−1 1.62

Worst 8.47 × 10−2 3.00 × 104 9.02 × 10−1 6.69 × 10−1 9.00 × 104 2.00 × 104 1.62
Std 1.90 × 10−2 1.32 × 104 2.75 × 10−1 1.55 × 10−1 1.57 × 104 6.32× 103 0.00

median 3.97 × 10−2 2.36 × 10−1 2.62 × 10−1 4.13 × 10−1 6.50 × 104 1.42 1.62

f3

Mean 1.21 × 10−2 1.26 × 10−2 1.76 × 10−1 1.70 × 10−2 4.80 × 104 1.45 2.22
Best 9.97 × 10−16 9.35 × 10−16 1.10 × 10−15 1.02 × 10−8 2.00 × 104 6.09 × 10−1 2.22

Worst 6.99 × 10−2 1.25 × 10−1 1.08 6.24 × 10−2 7.00 × 104 2.61 2.22
Std 2.58 × 10−2 3.96 × 10−2 3.58 × 10−1 2.18 × 10−2 1.69 × 104 5.73 × 10−1 0.00
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Table 4. Comparisons of experimental results between SHPC and meta-heuristic algorithms.

FUN MY-PSO DE GWO BA ABC CMA-ES BOA

f1

Mean 8.29 × 10−3 4.38 × 10−2 1.31 9.50 × 104 3.90 × 10−1 5.63 × 10−2 1.32 × 10−1

Best 7.21 × 10−12 7.53 × 10−3 1.31 5.00 × 104 2.30 × 10−1 1.62 × 10−2 4.37 × 10−2

Worst 4.12 × 10−2 8.67 × 10−2 1.31 1.40 × 10+05 5.09 × 10−1 1.63 2.33 × 10−1

Std 1.66 × 10−2 2.57 × 10−2 2.34 × 10−16 3.81 × 104 8.44 × 10−2 4.60 × 10−2 6.20 × 10−2

median 5.20 × 10−6 4.85 × 10−2 1.31 9.00 × 104 4.00 × 10−1 3.89 × 10−2 1.32 × 10−1

f2

Mean 3.92 × 10−2 3.23 × 10−2 1.62 9.20 × 104 9.93 × 10−1 5.82 × 10−2 6.16 × 10−1

Best 1.48 × 10−2 1.45 × 10−2 1.62 9.00 × 104 7.96 × 10−1 3.06 × 10−2 3.68 × 10−1

Worst 8.47 × 10−2 7.69 × 10−2 1.62 1.10 × 105 1.15 1.06 8.09 × 10−1

Std 1.90 × 10−2 1.78 × 10−2 0.00 6.32× 103 1.25 × 10−1 2.06 × 10−2 1.40 × 10−1

median 3.97 × 10−2 2.88 × 10−2 1.62 9.00 × 104 1.03 5.63 × 10−2 6.26 × 10−1

f3

Mean 1.21 × 10−2 3.00 × 10−2 2.22 9.50 × 104 1.79 7.02 × 10−2 9.99 × 10−1

Best 9.97 × 10−16 1.21 × 10−2 2.22 5.00 × 104 1.57 4.27 × 10−2 3.56 × 10−1

Worst 6.99 × 10−2 4.51 × 10−2 2.22 1.40 × 10+05 2.03 1.04 × 10−1 1.58
Std 2.58 × 10−2 1.08 × 10−2 0.00 2.92 × 104 1.75 × 10−1 2.06 × 10−2 4.05 × 10−1

median 1.21 × 10−15 3.05 × 10−2 2.22 9.00 × 104 1.78 6.63 × 10−2 9.50 × 10−1

Table 5. Comparisons of experimental results between SHPC and hybrid algorithms.

FUN MY-PSO PSOBOA HPSOBOA PSOGWO

f1

Mean 8.29 × 10−3 7.49 × 10−1 4.88 × 10−1 2.00 × 103

Best 7.21 × 10−12 5.17 × 10−1 4.64 × 10−1 1.19 × 10−4

Worst 4.12 × 10−2 8.84 × 10−1 5.48 × 10−1 2.00 × 104

Std 1.66 × 10−2 1.23 × 10−1 2.70 × 10−2 6.32 × 103

median 5.20 × 10−6 7.91 × 10−1 4.74 × 10−1 5.11 × 10−3

f2

Mean 3.92 × 10−2 1.08 9.70 × 10−1 2.37 × 10−1

Best 1.48 × 10−2 9.81 × 10−1 9.46 × 10−1 2.12 × 10−2

Worst 8.47 × 10−2 1.34 9.93 × 10−1 1.39
Std 1.90 × 10−2 1.03 × 10−1 1.26 × 10−2 4.23 × 10−1

median 3.97 × 10−2 1.07 9.71 × 10−1 6.54 × 10−2

f3

Mean 1.21 × 10−2 1.55 1.85 1.74 × 10−1

Best 9.97 × 10−16 1.12 1.72 3.05 × 10−4

Worst 6.99 × 10−2 1.89 1.91 8.86 × 10−1

Std 2.58 × 10−2 2.54 × 10−1 6.48 × 10−2 3.51 × 10−1

median 1.21 × 10−15 1.59 1.87 6.73 × 10−3

From the comparison results between SHCP and other PSO variants in Table 3, it
can be seen that the SHPC algorithm has outstanding performance in solving the inverse
kinematics problems of all three cases. Although some statistical indicators of SHCP are
not optimal, such as the best value in case 1 is not as good as that of SPSO, the difference
between them is small, while all other statistical indicators of SPSO are worse than the
SHCP algorithm. In general, all statistical indicators of SHCP algorithms exceed any PSO
variant. In particular, the result of SHCP outperforms the LIW-PSO algorithm, which proves
the introduction of CMA-ES into LIW-PSO can greatly improve the algorithm performance.
It is worth noting that some statistical indicators in Table 3 exceed 10,000, such as the mean
values of SPSO, NLIW-PSO, and CPSO in case 1, the mean values of CPSO and SPSO in case
2, which reflect that these algorithms cannot find suitable solutions to avoid self-collision.
Fortunately, the SHPC algorithm can find solutions to avoid self-collision perfectly in every
solution and achieves high solution accuracy in all three cases, which fully satisfies the
requirements of space tasks. It can be concluded that the SHCP algorithm is a powerful and
effective method for finding the high-precision solutions to the inverse kinematics problem
of SMSRS.
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From the comparison results between SHCP and other meta-heuristic algorithms in
Table 4, we find that the SHCP algorithm shows great advantages in general. In case 1,
all the statistical indicators outperform other meta-heuristic algorithms. In case 2, all the
statistical indicators of SHCP algorithms outperform all meta-heuristic algorithms except
the DE algorithm. Although the results are not better than the DE algorithm, they are very
close. In case 3, all the statistical indicators of SHCP algorithms outperform all algorithms
except for the worst value and standard deviation which are worse than the DE algorithm,
but the results of the SHCP algorithm are still better than the result of the DE algorithm in
general. There is no doubt that the DE algorithm is excellent. In particular, the result of the
SHCP algorithm is better than that of the CMA-ES algorithm, which proves the hybrid with
LIW-PSO can greatly improve the performance of the CMA-ES algorithm. All statistical
indicators of BA algorithms exceed 10,000, which proves that it cannot find a solution to
avoid self-collision.

From the results in Table 5, it can be seen that the SHPC algorithm has comprehen-
sive advantages over other hybrid algorithms. All the statistical indicators of the SHCP
algorithm exceed other hybrid algorithms, indicating the segmented hybrid mechanism of
SHPC is an effective operation. In addition, the performance of the hybrid BOA algorithm
is inferior to the non-hybrid algorithm in some cases, but the performance of the PSOGWO
algorithm outperforms the GWO algorithm, indicating that the hybrid algorithm may or
may not achieve better solution results, and needs to be adjusted to local conditions.

6.2. Result Comparisons on Convergence Curves

To analyze the algorithm performance from the convergence process, for each algo-
rithm, the optimal convergence curves among 10 runs in the three cases are drawn in
Figure 5. The fitness value is calculated logarithmically based on ten. We can find the curve
of the SHCP in each case is basically near the bottom of the figure, which indicates the SHCP
algorithm can always maintain its advantages throughout the iterations. The algorithms
with almost horizontal fitness curves, such as the CPSO, PSOPC, IPSO, BOA, BA, and
PSOBOA, show signs of prematureness. The curve of the SHCP algorithm maintains a
downward trend overall throughout the iteration, which indicates that it can effectively
avoid prematureness.

Figure 5. Cont.
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Figure 5. Convergence curves of algorithms. (a) Convergence curves of SHCP and PSO variants for
Case 1; (b) Convergence curves of SHCP and meta-heuristic algorithms for Case 1; (c) Convergence
curves of SHCP and PSO variants for Case 2; (d) Convergence curves of SHCP and meta-heuristic
algorithms for Case 2; (e) Convergence curves of SHCP and PSO variants for Case 3; (f) Convergence
curves of SHCP and meta-heuristic algorithms for Case 3.

6.3. Self-Collision Avoidance

As shown in Figure 6a–c, the configurations of the SMSRS of case 1-3 respectively
under the final solutions obtained by the SHCP algorithm are drawn and used to judge
whether there are collisions between the modules. It can be seen that there is no contact
between all modules, which meets the requirements for no self-collision in all three cases.
It demonstrates the correctness of the proposed self-collision avoidance strategy and the
effectiveness of the optimization method in achieving self-collision avoidance of the SMSRS.
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Figure 6. Configurations of the SMSRS under the solutions of the SHCP algorithm. (a) Case 1; (b) Case 2;
(c) Case 3.

6.4. Feasibility Analysis of the Optimization Method

To analyze the feasibility of the optimization method to solve the inverse kinematics,
configurations of SMSRS obtained by different algorithms for one case are drawn in one
figure; these algorithms are selected due to they have higher accuracy solutions among all
compared algorithms. The results can be seen in Figure 7a–c.

In Figure 7a, the solution results of CMA-ES, SHCP, GWOPSO, and LIW-PSO algo-
rithms are drawn in case 1. Although the entire configurations of SMSRS obtained by these
algorithms are different, the relative position and attitude of their two task modules are
basically the same, which proves that they are all trying to find the pose of the task modules
to meet the requirements for case 1. The difference in solution accuracy causes the two end
modules to not completely overlap, but the basic principle is that the higher the accuracy
of the algorithm, the more it can meet the mission requirements.

Case 2 has a request for the relative pose of the three task modules. From the config-
urations obtained by the CMA-ES, SHCP, LIW-PSO, and DE algorithms in Figure 7b, we
find the poses of the three task modules are basically the same, and the difference in the
solution accuracy cause their slight pose differences.

In Figure 7c, the solution results of the SHCP, CMA-ES, GWOPSO, and LIW-PSO
algorithms are selected in case 3 for drawing. Case 3 requires solutions to meet the relative
attitude requirements of the four task modules, although the positions of the four task
modules are different, their relative attitudes are basically the same. All the optimization
algorithms are trying to find the solutions to meet the set attitude requirements.
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The analysis result in this section proves the correctness of the kinematics model
established in this paper and the feasibility of using the optimization algorithm to solve the
inverse kinematics problem of SMSRSs.

6.5. Effect Analysis of Segmented Hybrid

To analyze the mechanism of the segmented hybrid, we draw the fitness curves of the
SHCP algorithm and the segments where they are located. We then compare the fitness
curves of the SHCP algorithm with those of the CMA-ES and LIW-PSO algorithm, which
are the original algorithms of the SHCP algorithm. As shown in Figure 8, the segments of
the fitness curve of the SHCP algorithm marked by the arrow run the CMA-ES algorithm,
and the other segments run the PSO algorithm.

(1) Case 1: the first segment in Figure 8a is the global search stage of the SHCP algorithm.
At this stage, the curves of SHCP and LIW-PSO algorithms keep decreasing, but CMA-
ES has stagnated, verifying that the LIW-PSO algorithm does have advantages in
global search. After the continuous decline, the curve of the LIW-PSO algorithm in the
fourth segment has gradually stabilized. At this segment, the SHCP algorithm runs
the CMA-ES algorithm and its fitness value still fluctuates and decreases, breaking
the stagnant trend of the original algorithm.

(2) Case 2: in the first segment, the three curves decrease rapidly. After the SHCP
algorithm enters the CMA-ES segment, the fitness value decreases rapidly after a
period of the adaptation period, then trends to stagnation like the CMA-ES algorithm,
while the curve of the LIW-PSO algorithm continues to decline. Whereas the LIW-PSO
algorithm also tends to converge, the SHCP algorithm breaks through the bottleneck in
the fifth segment and decreases rapidly until it exceeds the LIW-PSO algorithm. Case 2
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indicates that when the convergence speed in the global search stage is unsatisfactory,
the SHCP algorithm switches to the CMA-ES algorithm immediately to accelerate
the fitness curve decline. It also demonstrates that the SHCP algorithm is constantly
activated in the switching between LIW-PSO and CMA-ES algorithms, thus increasing
the vitality of the algorithm.

(3) Case 3: in this case, the LIW-PSO algorithm has shown excellent performance from the
beginning. Therefore, the SHCP algorithm is always in the LIW-PSO segment until
it obtains high-precision solutions, rendering CMA-ES useless. This phenomenon
reflects that the SHCP algorithm could make full use of the excellent performance
of the LIW-PSO algorithm, where LIW-PSO is applicable. It is also proven that the
segmentation strategy can adaptively adjust the boundary of the global exploration
stage and local exploitation stage.
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Figure 8. Segments and fitness curves of SHCP algorithm compared with original algorithms. (a) Case 1;
(b) Case 2; (c) Case 3.

By analyzing three cases, it is found that the SHCP algorithm can automatically adjust
its operation according to the characteristics of the problem, realizing the adaptability to
different task requirements and achieving solutions with higher accuracy. Therefore, the
SHCP algorithm is proven to be an effective algorithm to solve the inverse kinematics
problem of SMSRSs.
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7. Conclusions

In this paper, we investigate how to use the optimization method to solve the inverse
kinematics of hyper-redundant SMSRSs and propose the SHCP algorithm, which makes
use of the global search advantages of PSO optimization and the local search advantages of
CMA-ES algorithms by adopting the segmented hybrid concept to improve the algorithm
performance. The SHCP algorithm is applied to solve inverse kinematics problems of
SMSRSs. Compared with some PSO variants, hybrid algorithms, and meta-heuristic
algorithms, SHCP has great advantages in general and can find higher quality solutions
for desired poses of task modules, which proves the SHCP algorithm is adaptable for the
inverse kinematics of SMSRSs. By analyzing the trends of fitness curves, it is found that
the segmented hybrid mechanism of the SHCP can adaptively adjust the operation of the
algorithm according to changes in the fitness value to obtain high accuracy solutions for
completely different cases, which proves it to be a successful mechanism.

In addition, the self-collision avoidance considered in the inverse kinematics problem
can be achieved by the optimization method. The SHCP algorithm is also an effective
algorithm for finding solutions to avoid self-collision.

In this paper, the inverse kinematics of SMSRSs are studied for the first time; the study
results prove that the SHCP algorithm is a recommended algorithm for solving the inverse
kinematics of SMSRSs. The research methods and innovative algorithms have significance
for future research. Improving the running speed of the SHCP algorithm will promote its
onboard real-time operation, and future work will focus on optimizing the structure and
improving the speed of the SHCP algorithm.
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