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ABSTRACT 
 

Biochar is a solid material obtained from the carbonization of any biomass including weeds, crop 
residues and other wastes of plant origin. Biochar plays an important role in climate change 
mitigation by sequestering carbon in the soil and reducing nitrous oxide (N2O) and methane (CH4) 
gas emissions to the environment through enhancing soil absorption. Here we review the potential 
of biochar to reduce N2O and CH4 emissions from agricultural practices and sequester atmospheric 
CO2 in the soil including potential mechanism behind observed effects. However, some fundamental 
mechanism and manipulation of biochar remain understandable and need further investigation. 
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1. INTRODUCTION 
 
“Global warming (GW) is the rise in the average 
earth surface temperature as a result of increase 
in the concentration of greenhouse gases 
(GHGs) including methane (CH4), nitrous oxide 
(N2O), water vapor, ozone (O3), 
chlorofuorocarbons (CFCs) and carbon dioxide 
(CO2)” [1]. “One of the most pervasive GHGs is 
CH4, which is released from wetlands, paddy 
fields, coal mines, ruminants, and human 
activities including rearing livestock and natural 
gas leakage” [2]. “Continuous anthropogenic 
greenhouse gas (GHG) emissions, such as CO2, 
CH4, and N2O have been identified as the 
primary cause of today's climate change” [3]. 
According to data estimated by the United States 
Environmental Protection Agency (USEPA) in 
2020, agricultural operations accounted for a 
considerable share of overall GHG emissions 
(about 11%), owing primarily to inadequate soil 
management techniques [4]. “Biochar has been 
widely reported as a promising substance for 
reducing GHG emissions, particularly CH4 
emissions from paddy land” [5,6]; (Wu et al. 
2019a). Furthermore, a meta-analysis on biochar 
found that applying various forms of biochar to 
soil significantly reduces CH4 emissions [5]. 
These findings imply that the environmental 
benefit of biochar application on CH4 emissions 
has been widely shown. Biochar is a fine-
grained, carbon-rich, porous substance that 
remains after plant biomass has been 
thermochemically converted (pyrolyzed) at low 
temperatures (350-600°C) in an oxygen-depleted 
environment [7]. “Biochar increases soil’s 
physical (e.g., water holding capacity, O2 
content, and moisture level), chemical (e.g., 
pollutant immobilisation and carbon 
sequestration), and biological (e.g., microbial 
abundance, variety, and activity)” [8]. These 
biochar properties eventually contribute to soil 
carbon sequestration [9], as well as reduced 
greenhouse gas (GHG) emissions [10]. 
“Furthermore, it has been suggested that using 
biochar as a soil amendment could help slow 
down climate change by long-term carbon 
sequestration while also enhancing the 
characteristics and capabilities of soil” [11-13]. 
Zhang et al. [14] also revealed that “biochar 
amendment results in lower methane and nitrous 
oxide emissions from agricultural soils, which 
helps to mitigate the consequences of climate 
change”. 
 
“Moreever, biochar characteristics and soil 
management practises have the potential to 

lower N2O emissions by up to 80%” [15] “The 
postulated mechanisms include N2O trapping in 
watersaturated soil pores and microbial activity 
associated with biological denitrification, both of 
which would reduce the N2O/(N2O + N2) ratio” 
[16]. “It is believed that the intensive use of 
nitrogen fertilisers in agriculture was responsible 
for two-thirds of the N2O emissions” [17,18] and 
“for mitigating those emissions, the application of 
biochar may limit N availability to crops, reducing 
N losses through direct and indirect N2O 
emissions while enhancing crop output” [19]. 
“The use of chemical fertiliser in conjunction with 
biochar is an innovative method that contributes 
to climate change mitigation, lowers chemical 
fertiliser application rates, increases crop 
production, and improves water retention, all of 
which contribute to more sustainable agriculture” 
[20]. 
 

2. BIOCHAR C SEQUESTRATION AND 
GREENHOUSE GAS EMISSION 
REDUCTION 

 
Carbon dioxide (CO2) emissions from the usage 
of fossil fuels are widely recognized as the 
primary cause of climate change [21]. Capturing 
this atmospheric carbon can help to reduce rising 
greenhouse gas emissions. Large amounts of 
biochar can be utilized to store carbon in the 
agriculture sector [21]. This makes biochar 
appealing as a carbon sequestration option, in 
addition to its potential for improving soil quality 
and reducing pollution emission [22]. “Climate 
change mitigation through carbon sequestration 
is significant biochar application apart from 
improved crop yield” [23]; (Majumder et al., 
2019). The application of biochar has the 
potential to sequester carbon due to the high 
stability of C compounds created during biomass 
pyrolysis [24] and their consequent slow 
decomposition in soil [25]. “Soil carbon (C) 
sequestration through biochar amendment has 
been proposed as an effective countermeasure 
for the rising concentration of atmospheric 
GHGs” [26,27]. The recalcitrant nature of biochar 
draws carbon from the atmosphere, providing a 
carbon sink to terrestrial ecosystems whilst 
improving water and soil quality [28]. Reducing 
N2O and CH4 emissions as a result of biochar 
application is gaining a lot of interest because 
these gases have far higher global warming 
potentials than CO2 [29,30]. “Biochar can play a 
larger role in short-term CH4 emission reduction 
to assist meet the 2050 GHG targets because 
methane's GWP20 (for a 20-year time horizon) 
value of 84 is substantially higher than its 
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GWP100 due to its short residence duration in 
the atmosphere” [31]. Soils are responsible for 
over 62% of the atmospheric N2O emissions [32]. 
“The application of nitrogen-based fertiliser to 
fields at high rates emits N2O into the 
environment. Biochar addition to soil effectively 
reduces soil N2O emissions, and the reduction 
can be attributable to the suppression of either 
the nitrification or denitrification stages, as 
observed in both field and laboratory 
investigations” [33,17,34]. “The use of biochar 
can also reduce direct and indirect greenhouse 
gas emissions by retaining nitrogen in soils and 
reducing the need for synthetic fertilizer inputs to 
produce crop yields, increasing crop productivity 
per unit land area, and possibly requiring less 
energy to irrigate due to improved soil water 
retention capacities” [35]. These biochar 
characteristics eventually contribute to soil 
carbon sequestration [9], greenhouse gases 
(GHGs) emission reduction [10], and therefore 
contribute to an overall improvement in soil 
health [36]. 
 

3. BIOCHAR MITIGATES N2O EMISSION 
 
“Nitrous oxide (N2O) is one of the most potent 
greenhouse gases put into the atmosphere, with 
298 times the global warming potential of carbon 
dioxide (CO2)” [37,38]. “Agriculture soils are 
responsible for 60% of anthropogenic N2O 
emissions due to the widespread use of synthetic 
nitrogen fertilisers and inadequate management 
of livestock excreta” [39,40]. In soil, N2O is 
created and consumed through a variety of 
separate but interconnected processes, including 
specialised abiotic redox reactions and three 
major biotic processes (nitrification, 
denitrification, and nitrifier denitrification) [41-43]. 
Despite the fact that these processes may co-
occur and exhibit considerable geographical and 
temporal variability, inadequate denitrification is 
widely regarded as the major cause of N2O 
emissions in agricultural soils [44,45]. “Biochar 
has been widely reported to impact N2O 
emissions from the denitrification pathway as a 
promising soil amendment” [17]. “The majority of 
recent research has been on the impacts of 
biochar on soil denitrification kinetics and 
functional potentials at the community level” 
[46,47]. “Biochar addition may have an indirect 
effect on denitrifying kinetics and abundance by 
modifying moisture content, pH, air permeability, 
nutrient bioavailability, and even nitrification. 
Furthermore, the effect of biochar amendment on 
soil physicochemical properties varied depending 
on soil primary conditions and the nature of 

biochars, as well as the structures, compositions, 
dosages, and surface properties of biochars 
made with different precursors at different 
pyrolysis temperatures” [48,49,46]. Biochar has 
the potential to reduce N2O emissions by 
blocking the conversion of nitrate or nitrite to N2O 
[50], and it has the potential to directly drive the 
microbial conversion of N2O to nitrogen gas 
[51,52]. 
 

4. BIOCHAR MITIGATES CO2 EMISSION 
 
“Carbon dioxide (CO2), a powerful greenhouse 
gas (GHG), is to blame for global climate change 
as its concentration in the atmosphere rises. 
Intensive agriculture is one source of GHG 
emissions” [53]. “The addition of biochar has 
been shown to change soil porosity, moisture 
content, pH, labile C and N pool sizes, all of 
which have a significant impact on soil CO2 
emissions” [25,54]. Previous research, however, 
has shown that biochar addition with different 
source materials and soil textures can have 
varying impacts (an increase, a decrease, or no 
effect) on CO2 flow in laboratory or field trials [55-
57]. Furthermore, when biochar addition 
increased, CO2 emissions decreased [58], which 
may be attributed to the sorption of labile C onto 
the surface or into the pores of biochar [59]. 
Several studies have found a reduction in CO2 
emissions from biochar-amended soil with N 
addition [60,61]. “It was also discovered that 
when N fertiliser was given to the soil in the 
presence of biochar, total CO2 emissions 
reduced” [36]. “The reduction in soil respiration 
might have partly contributed to the decrease in 
phenol oxidization activity induced by N 
suppression of white-rot fungi” [62].  “The 
addition of biochar has the ability to offset total 
CO2 emissions caused by N fertiliser suggesting 
that the positive priming effect of biochar and N 
input on C mineralization was a transient accent 
and gradually vanished in the long term” [62]. 
Thus, although the addition of biochar tended to 
increase the total amount of CO2 over time in the 
short term [14], it would be an effective strategy 
to reduce GHG emissions caused by the use of 
N fertiliser and could prevent long-term C 
sequestration as a relatively resistant C source in 
soil [28]. 
 

5. BIOCHAR MITIGATES CH4 EMISSION 
 
Atmospheric methane (CH4) is recognized as a 
key greenhouse gas contributing to global 
climate change, with a global warming potential 
34 times that of carbon dioxide over a 100-year 
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time frame, and its worldwide mean 
concentration has increased by 2.5 times since 
the pre-industrial era [63]. Paddy soils are the 
most significant human source of CH4 emissions 
[64]. Rice cultivation generated roughly 500 Mt 
CO2 eq to world CH4 emissions in 2011, and it is 
anticipated to increase by 7% by 2030 and 
another 6% by 2050 [65]. Biochar treatment in 
rice agriculture has previously been shown to 
reduce CH4 emissions by 33.8-91% [66-68]. Its 
distinct characteristics can also improve soil 
parameters, particularly those relating to soil 
fertility [69]. In terms of reducing CH4 emissions, 
biochar encouraged more CH4 oxidation than 
CH4 generation in rice fields [59;70;57]. Previous 
research has revealed that these phases of rice 
growth coincide with active CH4 oxidation activity 
by aerobic CH4-oxidizing bacteria 
(methanotrophs) [71,72]. Han et al. [6] also 
demonstrated that biochar could increase 
methanotroph activity, resulting in increased CH4 
oxidation. Biochar, with its porous structure that 
provides a habitat and oxygen availability, can 
promote bacterial growth, particularly aerobes 
[69,73]. Because methane oxidation occurs in 
the rhizosphere, where oxygen is abundant, 
enhanced rice growth under biochar conditions 
may also offer additional oxygen for this process 
[74]. According to Feng et al. [75] and Wang et 
al. [15] reduced CH4 emissions can be explained 
by a decrease in the ratio of methanogens to 
methanotrophs, showing that biochar application 
inhibits methanogen growth while promoting 
methanotrophic growth. Hence, the participation 
of biochar in lowering CH4 generation and 
increasing its oxidation are the two main 
explanations for the lower emissions attained by 
employing biochar. Feng et al. [75] and Chen et 
al. [76] also found a decrease in CH4 fux after 
applying biochar to paddy soils, implying that the 
effects of biochar on CH4 emission were long-
lasting. Huang et al. [77] discovered that biochar 
addition reduced CH4 emissions, which might be 
attributed to lower methanogenic archaea 
abundance; thus, CH4 could be consumed by 
methanotrophs [78]. 

 
6. CONCLUSION 
 
This review collects available data on 
sequestration of Carbon and mitigating climate 
change by reducing the emissions of greenhouse 
gases (CH4, N2O, CO2) in agricultural fields 
through use of biochar in soil, insight of the key 
processes involved, offers mechanisms of some 
of the key processes. We suggest that further 
studies are needed to assess the complete effect 

of different biochar application on mitigation of 
climate change. 
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