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Abstract 
 

This paper is on the numerical study of the effects of some flow parameters like Hall current, rotation, 
thermal diffusion (Soret) and diffusion thermo (Dufour) on unsteady magnetohydrodynamic natural 
convective heat and mass transfer of a viscous, rotating, electrically conducting and incompressible fluid 
flow past an impulsively moving vertical plate embedded in porous medium. The fundamental governing 
dimensionless coupled boundary layer partial differential equations are solved by the method of lines 
(MOL). Computations are then performed to determine the effects of the governing flow parameters. The 
results show that an increase in Soret number, Dufour number and Hall current parameter, causes an 
increase in the primary and secondary velocities of the fluid flow. As rotating parameter increases, the 
primary velocity of the flow decreases. Similarly, as Dufour and Soret numbers increase, the temperature 
and concentration profiles of the fluid flow increase. The effects of the flow parameters on primary and 
secondary velocity, temperature and concentration fields for externally cooling of the plate are shown 
graphically. 
 

 
Keywords: MHD flow; hall current; rotating system; method of lines (MOL). 
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1 Introduction 
 
Heat and mass transfer (double diffusion) finds applications in a variety of engineering processes. Natural 
processes such as reduction of toxic waste in water bodies, vaporization of mist and fog, photosynthesis, 
drying of porous solids, transpiration, sea-wind formation where upward convection is modified by Coriolis 
forces, and formation of ocean currents, occur due to thermal and solutal buoyancy forces developed as a 
result of difference in temperature or concentration or a combination of these two, Bejan [1]. 
 
Considering the importance of fluid flow problems, extensive researches have been carried out by many 
authors Yih [2], Chamkha et al. [3], Ganesan and Palami [4]. Chen [5] analyzed combined heat and mass 
transfer in MHD free convection flow from a vertical surface with Ohmic heating and viscous dissipation. 
Ibhrahim et al. [6] considered unsteady MHD micropolar fluid flow and heat transfer past a vertical porous 
plate through a porous medium in the presence of thermal and mass diffusions with a constant heat source. 
 
In this paper, we study the effects of Hall current and rotation on unsteady hydromagnetic natural convection 
flow with heat and mass transfer of a viscous, incompressible, electrically conducting and optically thick 
radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium 
considering the effects of thermal and mass diffusions when temperature of the plate has a ramped profile. 
Natural convection heat and mass transfer flow resulting from such ramped temperature profile of a plate 
and thermal radiation prevalent, has significant effects in designing of electromagnetic devices, high 
temperature aerodynamics, plasma physics, cosmical flight, nuclear power reactors etc. where initial 
temperature profiles are of much significance and thermal radiation is highly prevalent. 
 

2 Mathematical Model and Analysis 
 

 
 

Fig. 1. The geometry of the problem (Source: Jithender et al. [9]) 
 

We consider an unsteady MHD natural convection flow with heat and mass transfer of an optically thick 
radiating, incompressible and electrically conducting viscous fluid past an infinite vertical plate, embedded 
in a uniform porous medium with a rotating system, taking Hall Current into account. The Hall effect is the 
production of a voltage difference across an electrical conductor, transverse to an electric current in the 
conductor and to an applied magnetic field perpendicular to the current. It was discovered by Edwin Hall in 
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1879 while he was working on his doctoral degree at Johns Hopkins University in Baltimore, Maryland. 
Eighteen years before the electron was discovered, his measurements of the tiny effect produced in the 
apparatus he used were an experimental tour de force, Edwin Hall [7]. 
 
Also, we consider �′-axis along the plate in upward direction and �′-axis normal to plane of the plate in the 
fluid. A uniform transverse magnetic field �� is applied in a direction which is parallel to �′-axis. The fluid 
and the plate rotate with uniform angular velocity Ω′ about the �′-axis. Initially i.e. at time t′ ≤ 0, both the 
fluid and plate are in rest and these are maintained at a uniform temperature �′� . Also, species concentration 
is at the surface of the plate as well as at every point within the fluid and it is maintained at uniform 
concentration �� ′. At time �� > 0, plate starts moving in �′-direction with uniform velocity �� in its own 

plane. The temperature of the plate is raised or lowered to �′� +
������

�
���

�	

��
  when 0 < �� ≤  ��	and it is 

maintained at uniform temperature ��� when �� > ��. Also, at time t′ > 0, species concentration is at the 
surface of the plate, and it is raised to uniform species concentration ��� and it is maintained thereafter. 
Since the plate is an infinite extent in �′ and �′ directions and it is electrically non-conducting, all physical 
quantities except pressure depends on �′ and �′ only. Also, no applied or polarized voltages are assumed to 
exist, so that the effect of polarization of fluid is negligible. The induced magnetic field generated by fluid 
motion is negligible in comparison to the applied one. This assumption is justified because magnetic 
Reynolds number is very small for liquid metals and partially ionized fluids which are commonly used in 
industrial applications. Cramer and Pai [8]. Fig. 1 shows the geometry of the problem. 
 
Keeping in view of these assumptions and under the Boussinesq’s approximation, the governing equations 
are given by Jithender et al. [9]: 
 
Momentum equation along ��-axis 
 

���

���
+ 2���� = �

����

����
−

���
�

�(1 + ��)
(�� + ���) 

−
���

��
+ ���(�� − ��� )+ ��

∗(�� − ��� )                                                                                        (1) 

 
Momentum equation along ��-axis 
 

���

���
− 2���� = �

����

����
−

���
�

�(����)
(��� − ��)−

���

��
                                                                         (2) 

 
Energy equation 
 

���

���
=

�

���

����

����
−

�

���

���

���
+

�� ���
���

������
��                                                (3) 

 
Concentration equation 
 

���

���
= ��

����

����
+ 	

�� ���
���

�� ��
��                            (4) 

 
Subject to the boundary conditions: 
 

For �� ≤ 0:	�� = �� = 0,�� = ��� ,�
� = ���  for �� ≥ 0                        (5) 

 
For  �� > 0:	�� = ��,�

� = 0	,�� = ��� at �� = 0                                    (6) 
 

 �� = �′� +
������

�
���

�	

��
 at �� = 0 for 0 < �� ≤  ��                        (7) 
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For �� > ��: �� = ���, at �� = 0                                      (8) 
 

For �� > 0, �� = �� = 0, �� → ��� ,�
� → ���  at �� → ∞                    (9) 

 
where ��-uniform applied magnetic field (T), ��(����)-fluid velocity along the ��-axis, ��(����)-fluid 
velocity along the z′-axis, ��- characteristic time (s), �� - specific heat at constant pressure (������), g-

acceleration due to gravity (����), ��-permeability parameter, ��- thermal diffusion ratio, ��-mean fluid 
temperature (K), ��-Concentration susceptibility (�	�����), p-fluid pressure (����), ��-radiative flux, �	- 
hall current parameter, � - radiation parameter, C′-species concentration ( �����) , ��� -species 
concentration of the fluid far away from the plate (�����), ���-species concentration at the plate (�����), 
��- molecular mass diffusivity (�����), ��-molecular diffusivity (�����),	���-temperature at the plate 
(K),	���-temperature of the fluid far away from the plate (K), t′-time (s), T′-Fluid temperature (K), ��-plate 
velocity (����), T- non-dimensional temperature (K), C-non-dimensional species concentration (�����), 
ρ-fluid density ( �����), κ-thermal conductivity ( �� �����), σ-electrical conductivity ( ����), ν-
kinematic viscosity (�����)		, β′- coefficient of volume expansion for heat transfer ((���), Ω-rotation 
parameter (degrees), Ω′-uniform angular, velocity (degrees), �∗-coefficient of volume expansion for mass 
transfer (������)	. 
 

In momentum equation (1), the terms  
���

�

�(����)
(�� + ���), ���(�� − ��� ), ��

∗(�� − ��� ) represents the 

magnetohydrodynamic effect due to Lorentz force, thermal buoyancy effects and concentration buoyancy 

effects respectively. In momentum equation (2), the term  
���

�

�(����)
(��� − ��)  represents the 

magnetohydrodynamic effect due to Lorentz force. In energy equation (3), the terms 
�

���

���

���
	,
�� ���

���

������
��   

represent the radiation and diffusion thermal (Dufour) effect. In concentration equation (4), the terms 

��
����

����
,
�� ���

���

�� ��
��  represent the molecular diffusivity and thermal diffusion effect (Soret). The radiative 

heat flux term �� in energy equation (3), by using Rosseland approximation, Sparrow and Cess [10] is given 
by: 
 

 �� = −
��∗

��∗

���
�

���
                                                          (10) 

 
where k∗- mean absorption coefficient (���),	σ∗- Stefan-Boltzmann constant (W������). Here, by using 
the Rosseland approximation, the analysis is limited to optically thick fluid. If the temperature differences 
within the flow are sufficiently very small, equation (10) can be linearized by expanding �� into the Taylor 
series about ���  ,which after neglecting higher order terms take the form: 
 

��
�
≈ 4��

�
� − 3�

��
�                              (11) 

 
Substituting equations (10) and (11) into equation (3) gives: 
 

���

���
=

�

���

����

����
−

�

���

���∗��
�
�

��∗
����

����
+

�� ���
���

������
��                                             (12) 

 
To transform the governing equations and boundary conditions into dimensionless form, the following non-
dimensional quantities are introduced, Jithender et al. [9]: 
 

 � =
��

��
,				� =

��

��
				� =

����

�
,			� =

��	
� ��

�
,		 

		� =
������

�����
�
�
		,			� =

������

�����
�
�

                          (13) 
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�� = 	
���

��

����
��
	,� =

�	��

��
� ,			�� =

	��
���	

�

��
,			 

	�� =
���������

�
��

��
� ,�� =

����

�
=

�

�
	,                            (14) 

 

 �� =
�

�
,				�� =

��∗�	������
�
��

��
� 	,				� =

���∗

��∗

����
�

�
                  (15) 

 

�� = 	
�� ��(�

�
���

�
�)

��� (�
�
���

�
�)
	,		�� = 	

�� ��(�
�
���

�
�)

��� (�
�
���

�
�)

                               (16) 

 

 ��
� = 	

��
���

��
� ,										� =

������
�

����
,								� = 	

���
��

���
� 			               (17) 

 
In view of equations (13) – (17), the equations (1), (2), (4) and (12) reduce to dimensionless forms: 
 

��

��
+ 2�� =

���

���
−

��

(����)
(� + ��)−

�

��
+ ��� + ���               (18) 

 
��

��
− 2�� =

���

���
−

��

(����)
(�� − �)−

�

��
                                  (19) 

 
��

��
=

���

��

���

���
+ ��

���

���
                                                          (20) 

 
��

��
=

�

��

���

���
+ ��

���

���
                        (21) 

 
where �	���	�  are the non-dimensional fluid velocities along the ��	���	��  axes respectively, � -non-
dimensional temperature, �- non-dimensional specie concentration, �–rotating parameter, �� −	magnetic 
parameter, �-hall current parameter, ��- Permeability parameter, ��-grashof number for heat transfer, ��- 
grashof number for mass transfer, �  – radiation parameter, �� - Prandtl number, �� -dufour number, ��  – 
Schmidt number, ��  – Soret number. 
 
Similarly, the boundary conditions in equations (5) – (9) reduce to the dimensionless forms: 
 

For t	≤ 0:	� = � = 0,� = 0,� = 0 for � ≥ 0                 (22) 
 

For t > 0:	� = 1,� = 0	,� = 1 at y= 0                                (23) 
 

For 0 < �� ≤  1: 	� = �	 at   � = 0	                   (24) 
 

For � > 1:	� = 1	, at � = 0                          (25) 
 

For t > 0, � → 0,� → 0, T→ 0,� → 0 at � → ∞                  (26) 
 

3 Method of Lines (MOL) 
 
The basic idea of the MOL is to replace the spatial (boundary value) derivatives in the PDE with algebraic 
approximations, Biazar and Nomidi [11], Shiesser [12], Knapp [13]. Once this is done, only the initial value 
variable, typically time in a physical problem, remains. Then, with only one remaining independent variable, 
we have a system of ODEs that approximates the original PDE. Any suitable integration algorithm for initial 
value ODEs can now be used to compute an approximate numerical solution to the PDE. 
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For computation and linearization purpose, and to explicitly decouple equations (18) – (21), we adopt the 

following approximations: �,�,� in equation (18), �  in equation (19), 
���

���
,	 in equation. (20), and 

���

���
 in 

equation (21) to be unity (constant) i.e. � = 1,� = 1,� = 1 in equation (18), � = 1 in eq. (19), 
���

���
= 1 in 

equation (20), and 
���

���
= 1 in equation (21). Chung [14]. 

 
Rewriting equations (18) – (21), with approximation adopted above, we have: 
 

��

��
=

���

���
−

��

����
(� + �)−

�

��
+ 	�� + �� − 2Ω                  (27) 

 
��

��
=

���

���
−

��

����
(� − �)−

�

��
+ 2Ω                       (28) 

 
��

��
=

���

��

���

���
+ ��                          (29) 

 
��

��
=

�

��

���

���
+ ��                                                                                                                                (30) 

 
Then, we solve equations (27) – (30) subject to the transformed boundary conditions (22) – (26) by method 
of lines (MOL). 
 
Discretizing equation (17) in space variable � while leaving time variable � continuous, we have the system 
of ODEs: 
 

�
��

��
�
�
=

�������������

��
−

��

����
(�� + �)−

��

��
+ �� + �� − 2Ω                                                      (31) 

 											=
����

��
−

���

��
+

����

��
−

��

���� �� −
���

���� −
��

��
+ �� + �� − 2Ω 

 											=
�

��
���� − �

�

��
+

��

���� +
�

��
� �� +

�

��
���� − (

���

���� −�� − �� + 2Ω) 

           = ������ − ���� + ������ − ��                                                                                         (32) 
 

where �� =
�

��
,			�� =

�

��
+

��

���� +
�

��
,				�� =

�

��
,  �� =

���

���� − �� − �� + 2Ω                          (33) 

 
Now, equations (32) – (33) with conditions �(0,�)= ��(�,�)= 1	���	�(∞ ,�)≈ �(� + 1,�)= 0 can be 
solved iteratively. For � = 1,2,…�,�(0,�)= 	��(�,�)= 1 and �(∞ ,�)≈ �(� + 1,�)= 0,  equation (32) 
can be written in matrix form: 
 

 

⎣
⎢
⎢
⎢
⎡
�̇�
�̇�
⋮

�̇���
�̇� ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
��
0
0
⋮
0

			

��
��
0
⋮
0

			

��
��
��
⋮
0

		

0
��
��
⋮
0

			

0
0
��
⋮
0

				

⋯
⋯
⋯
⋯
⋯

	

0
0

0
0

0
⋮

0
⋮

�� ��⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
1
��
��
⋮

����
�� ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
��
��
��
��
⋮
��⎦
⎥
⎥
⎥
⎥
⎤

                               (34) 

 
where the coefficients ��	, ��,�� and ��  
 

are given by eq. (33) and �̇� = �
��

��
�
�
 

 
In a similar way, equation (28) becomes: 
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�
��

��
�
�
=

�������������

��
+

��

����
(� − ��)−

��

��
+ 2Ω                                                                      (35) 

     						=
�

��
���� − �

�

��
+

��

���� +
�

��
��� +

�

��
���� +

���

���� +2Ω 

 											= ������ − ���� + ������ + ��                                                                                         (36) 
 

Where  �� = �� =
�

��
,			�� =

�

��
+

��

���� +
�

��
, �� =

���

���� + 2Ω                                                     (37) 

 

Now, equations (36) – (37) with conditions �(0,�)= ��(�,�)= 1	���	�(∞ ,�)≈ �(� + 1,�)= 0 can be 
solved iteratively. For � = 1,2,…�,�(0,�)= 	��(�,�)= 0 and �(∞ ,�)≈ �(� + 1,�)= 0,  eq. (35) can 
be written in matrix form: 
 

⎣
⎢
⎢
⎢
⎡
�̇�
�̇�
⋮

�̇���
�̇� ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
��
0
0
⋮
0

			

��
��
0
⋮
0

			

��
��
��
⋮
0

		

0
��
��
⋮
0

			

0
0
��
⋮
0

				

⋯
⋯
⋯
⋯
⋯

	

0
0

0
0

0
⋮

0
⋮

�� ��⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
0
��
��
⋮

����
�� ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
��
��
��
��
⋮
��⎦
⎥
⎥
⎥
⎥
⎤

                  (38) 

 

 where the coefficients ��,��,�� and �� are given by equation (37) and  �̇� = 	�
��

��
�
�
 

 

Also, equation (29) becomes: 
 

�
��

��
�
�
=

���

��
�
�������������

��
� + ��                                                                 (39) 

     						=
���

����
���� − 2�

���

����
� �� +

���

����
���� + ��  

 										= ������ − ���� + ������ + ��                    (40) 
 

 where �� = �� =
���

��
,�� = 2�

���

����
�,			�� = ��                  (41) 

 

Now, equation (40) – (41) with conditions �(0,�)= ��(�,�)= 1	���	�(∞ ,�)≈ �(� + 1,�)= 0 can be 
solved iteratively. 
 

For � = 1,2,…�,�(0,�)= 	��(�,�)= 1 and �(∞ ,�)≈ �(� + 1,�)= 0,  equation (40) can be written in 
matrix form: 
 

⎣
⎢
⎢
⎢
⎢
⎡
�̇�
�̇�
⋮

�̇���
̇

�̇� ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
��
0
0
⋮
0

			

��
��
0
⋮
0

			

��
��
��
⋮
0

		

0
��
��
⋮
0

			

0
0
��
⋮
0

				

⋯
⋯
⋯
⋯
⋯

	

0
0

0
0

0
⋮

0
⋮

�� ��⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
1
��
��
⋮

����
�� ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
��
��
��
��
⋮
��⎦
⎥
⎥
⎥
⎥
⎤

                       (42) 

 

where the coefficients ��,��,�� and ��	are given by equation (41) and �̇� = �
��

��
�
�
 

 
In the same way, equation (30) becomes: 
 

�
��

��
�
�
=

�

��
�
�������������

��
� + ��                                    (43) 

          =
�

����
���� −

�

����
�� +

�

���
� ���� + ��  

          = ������ − ���� + ������ + ��                        (44) 
 

where �� = �� =
�

����
,�� =

�

����
,			�� = ��                    (45) 
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Now, equation (44) – (45) with conditions �(0,�)= ��(�,�)= 1	���	�(∞ ,�)≈ �(� + 1,�)= 0 can be 
solved iteratively. For � = 1,2,…�,�(0,�)= 	��(�,�)= 1 and �(∞ ,�)≈ �(� + 1,�)= 0,  eq. (43) can 
be written in matrix form: 
 

⎣
⎢
⎢
⎢
⎢
⎡
�̇�
�̇�
⋮

�̇���
̇

�̇� ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
��
0
0
⋮
0

			

��
��
0
⋮
0

			

��
��
��
⋮
0

		

0
��
��
⋮
0

			

0
0
��
⋮
0

				

⋯
⋯
⋯
⋯
⋯

	

0
0

0
0

0
⋮

0
⋮

�� ��⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
1
��
��
⋮

����
�� ⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
��
��
��
��
⋮
��⎦
⎥
⎥
⎥
⎥
⎤

                       (46) 

 

where the coefficients ��,��,�� and ��	are given by eq (45) and �̇� = �
��

��
�
�
 

 

The skin friction due to primary velocity at the wall along ��-axis in dimensionless form is given by 
 

�� = �
��

��
�
���

                             (47) 

 

The skin friction due to secondary velocity at the wall along ��-axis in dimensionless form is given by 
 

�� = �
��

��
�
���

                         (48) 

 

The rate of heat transfer (Nusselt number) due to temperature profiles in dimensionless form is given by 
 

�� = − �
��

��
�
���

                          (49) 

 

The rate of mass transfer (Sherwood number) due to temperature profiles in dimensionless form is given by: 
 

 �ℎ = − �
��

��
�
���

                                                 (50) 

 
Jithender et al. [9]. 
 

4 Results and Discussion 
 
In this paper, the effects of hall current and rotation on an unsteady radiative MHD free convective heat and 
mass transfer of an optically thick radiating, incompressible, electrically conducting and viscous fluid past 
an impulsively moving vertical porous plate with ramped temperature were considered taking into account 
the thermal diffusion and diffusion thermo. Method of lines (MOL) is used to solve the governing equations 
of the flow model. Effectcs of governing flow physical parameters: Hall current, Rotation, Soret and Dufour 
on the primary and secondary velocity, temperature and concentration fields for ramped temperature of the 
plate for externally cooling (Gr > 0) case are illustrated graphically. For the analysis of the result, the values 
of the flow parameters  G� = 6,G� = 5,m = 0.5,�� = 0.5,h = 0.1,P� = 0.71,D� = 1,S� = 0.6,S� =
1,k� = 0.5,Ω = N = 5 had been used. Also the MATLAB code is used in obtaining solutions of systems of 
ODEs in equations (34), (38), (42) and (46) for � = 1,2,3. and to simulate the graphs. 
 

Figs. 2 – 4, show the effects of Soret number,(��), Dufour number (��), Hall current parameter (m) on 
primary velocity profile and it can be seen that as parameters  increase, the primary velocity of the flow 
increases. Fig. 5 shows the effect of Rotating parameter (Ω) on primary velocity profile and as it increases, 
the velocity of the flow decreases. Figs. 6 – 8 show the effect of Soret number (��), Dufour number (��), 
Hall current parameter (m) on secondary velocity profile and as they increase, the secondary velocity of the 
flow increases. Fig. 9 shows the effect of Rotating parameter (Ω) on secondary velocity profile and as it 
increases, the secondary velocity of the flow increases. 

 



 
 
 

Durojaye et al.; ARJOM, 16(6): 15-29, 2020; Article no.ARJOM.55543 
 
 
 

23 
 
 

Fig. 10 shows the influence of Dufour number, ��  on the temperature profile and as the Dufour number 
increases, the temperature profile also increases. Figure 11 shows the influence of Soret number, ��  on the 
concentration profile and as the Soret number increases, the concentration profile also increases. 
 

 
 

Fig. 2. Primary velocity profile with variations in Soret Number (��) 
 

 
 

Fig. 3. Primary velocity profile with variations in Dufour Number (��) 
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Fig. 4. Primary velocity profile with variations in Hall current parameter (m) 
 

 
 

Fig. 5. Primary velocity profile with variations in Rotating Parameter (�) 
 



 
 
 

Durojaye et al.; ARJOM, 16(6): 15-29, 2020; Article no.ARJOM.55543 
 
 
 

25 
 
 

 
 

Fig. 6. Secondary velocity profile with variations in Soret Number (��) 
 

 
 

Fig. 7. Secondary velocity profile with variations in Dufour Number (��) 
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Fig. 8. Secondary velocity profile with variations in Hall Current Parameter (�) 
 

 
 

Fig. 9. Secondary velocity profile with variations in Rotation Parameter (�) 
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Fig. 10. Temperature profile with variations in Dufour Number (��) 
 

 
 

Fig. 11. Concentration profile with variations in Soret Number (��) 
 

5 Conclusions 
 
In this paper, we have used method of lines (MOL) in solving coupled differential equations of the flow 
model. The effects of hall current, rotation, Soret, Dufour on flow variables primary and secondary 
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velocities, temperature and concentrations are discussed. Then, the following conclusions are drawn from 
the study: 
 

1.  The primary velocity increases with increase in Soret S� and Dufour D�, hall current (m) while it 
decreases with increase in rotation parameter, Ω. 

2.  The secondary velocity increases with increase in Soret S�  and Dufour D�, hall current (m) and 
rotation parameter, Ω. 

3.  The temperature increases with increase in Dufour D� 
4.  The concentration increases with increase in Soret S� 
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