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ABSTRACT

In this paper, we considered the nonlinear Schrödinger equation and applied the moment method
in order to investigate the evolution of pulse parameters in nonlinear medium. This mathematical
model described the effects of cubic nonlinear and the nonlinear dispersion terms on the soliton.
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The application of the moment method leads to variational equations that is integrated numerically
by the fourth order Runge-Kutta method. The results obtained shows the variations of some
important parameters of the pulse namely the energy, the pulse position, the frequency shift, the
chirp and the width. It reveals the effects of the nonlinear dispersion and nonlinear cubic terms
on each parameter on the pulse. The moment method is appropriate to study the dynamics of the
optical pulse in a nonlinear medium modelled by the nonlinear Schrödinger equation.

Keywords: Moment method; nonlinear Schrödinger equation.

1 INTRODUCTION

The generalized nonlinear Schrödinger equation
(GNLSE) as a nonlinear model has been
studied due to its importance in many fields of
physics such a nonlinear optics, plasma physics,
superconductivity, quantum mechanics [1]-[12].
It’s the fundamental model that governs the
transmission of information through optical fibers.
This equation plays the role of Newton’s laws and
conservation of energy in classic mechanics. In
order to better understand nonlinear phenomena,
it’s important to solve this equation. In the
general case, it is very difficult to find the analytic
solution [13]. With development of soliton theory
and computer algebraic system like mathematics,
much research papers has been devoted to
exact solution of nonlinear evolution equations,
especially travelling wave soliton [1]. Various
effective method of searching for exact solution
to GNLSE have been presented in the literature:
the inverse scattering method, the Blacklund
transformation, the Adomian method, homothopy
perturbation method, the Hirota bilinear method,
the Lie group method, the variable separation
method, the variational iteration, the Jacobi
elliptic function, the expansion method, the
auxiliary equation method, the trial function
method, the moment method [14]-[26].

The strength of these methods depends on the
system that had been studied. For physical
systems well defined, the choice of the method
could not be uncertain. In this paper, our aim is to
study the evolution of the different parameters of
the pulse through optical fiber with an appropriate
method. We chose the moment method because
of the double possibilities it offers: one is the
choice of the trial function (anstaz) according
to the approximative shape of the solution and
the fundamental parameters of the system, then
the second is to show the influence of each
nonlinearity of the system on the fundamental
parameters of the soliton. In addition, since this
method does not require a Lagrangian, it can
be used for both dissipative and non dissipative
systems.

The outline of the present paper is as follows.
In section 1, we gave the mathematical model.
In section 2 we solved the equation by the
moment method. In section 3, we used a
Gaussian function as ansatz and we obtained
the variational equations of the pulse parameters
which are solved by the fourth order of Runge
Kutta numerical method. The results and
discussions are presented in section 4. Finally,
we pointed out the concluding remarks.

2 MATHEMATICAL MODEL

The generalized nonlinear Schrödinger equation in the dimensionless form reads [27]:

i∂ψ

∂z
+ a

∂2ψ

∂t2
+ ib

∂3ψ

∂t3
+ c|ψ|2ψ − i

c

ω0

∂

∂t
(|ψ|2ψ) = 0 (1)

where ψ = ψ(z, t) is the envelop of the pulse, z ∈ [0, L], L > 0 is the length of the fiber and t ∈ R
is the time, a the second order of dispersion, b the third order of dispersion, c the coefficient of self-
modulation;

c

ω0
represents the self-steepening term. This equation holds for pulses that contain just

a few optical cycles where higher nonlinear terms are included, with initial conditions ψ(z = 0, t).
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The parameters a, b, c are related to β2, β3 as:

a = −β2
2

, b = −β3
6

, c = γ̄

3 SOLVING THE PROBLEM BY VARIATIONAL MOMENT METHOD

The basic idea of moment method is to treat the optical pulse like a particle whose energy E, position
T , the frequency Ω, the root mean square (RMS) σ and the moment related to the chirp of the pulse
are defined as [2, 28, 29]:

E =

∫ +∞

−∞
|ψ|2dt ; (2)

T =
1

E

∫ +∞

−∞
t|ψ|2dt ; (3)

Ω =
i

2E

∫ +∞

−∞
(ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t
)dt ; (4)

σ2 =
1

E

∫ +∞

−∞
(t− T )2|ψ|2dt ; (5)

C̃ =
i

2E

∫ +∞

−∞
(t− T )(ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t
)dt. (6)

Obviously, the evolution of these pulse parameters depend on the evolution on the pulse itself in the
fiber which is governed by the GNLSE equation (1).To find the evolution of these pulse parameters,
we use the equations (2) to (6) along with equation (1)

3.1 Energy Evolution
Differentiating (2) with respect to z, we have:

dE

dz
=

∫ +∞

−∞
(ψ∗ ∂ψ

∂z
+ ψ

∂ψ∗

∂z
)dt. (7)

Using (1) we find that:

∂ψ

∂z
= −iβ2

2

∂2ψ

∂t2
+
β3
6

∂3ψ

∂t3
− γ̄

ω0

∂

∂t
(|ψ|2ψ) + iγ|ψ|2ψ (8)

After performing calculations, we have:

dE

dz
=

∫ +∞

−∞
i
β2
2

(
ψ
∂2ψ∗

∂z2
− ψ∗ ∂

2ψ

∂z2

)
dt+∫ +∞

−∞

β3
6

(
ψ
∂3ψ∗

∂z3
− ψ∗ ∂

3ψ

∂z3

)
dt−

γ̄

ω0

∫ +∞

−∞

[
ψ∗ ∂

∂t

(
|ψ|2ψ

)
+ ψ

∂

∂t

(
|ψ|2ψ∗

)]
dt

= 0 (9)

3.2 Evolution of Pulse Position
Differentiating (3) with respect to z we get:

dT

dz
=

1

E

∫ +∞

−∞
t
(
ψ∗ ∂ψ

∂z
+ ψ

∂ψ∗

∂z

)
dt (10)
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we get:

dT

dz
= i

β2
2E

∫ +∞

−∞
t
(
ψ
∂2ψ∗

∂z2
− ψ∗ ∂

2ψ

∂z2

)
dt+

β3
6

∫ +∞

−∞
t
(
ψ
∂3ψ∗

∂z3
− ψ∗ ∂

3ψ

∂z3

)
dt−

γ̄

ω0E

∫ +∞

−∞
t
[
ψ∗ ∂

∂t

(
|ψ|2ψ

)
+ ψ

∂

∂t

(
|ψ|2ψ∗

)]
dt (11)

After integrating by parts and the definition of frequency in (4), we obtain:

dT

dz
= β2Ω+

β3
2E

∫ +∞

−∞
t
∣∣∣∂ψ
∂t

∣∣∣2dt− 3γ̄

2ω0E

∫ +∞

−∞
|ψ|4dt (12)

3.3 Evolution of Frequency Schift

Differentiating (4) with respect to z, we have:

dΩ

dz
=

i

2E

∫ +∞

−∞

[ ∂
∂z

(
ψ∗ ∂ψ

∂z

)
− ∂

∂z

(
ψ
∂ψ∗

∂z

)]
dt (13)

∂

∂z

(
ψ∗ ∂ψ

∂z

)
= ψ∗ ∂

2ψ

∂z∂t
+
∂ψ∗

∂z

∂ψ

∂t
(14)

From (8), we can write:

ψ∗ ∂
2ψ

∂z∂t
=
i

2
ψ∗ ∂

2ψ

∂t2
− aψ∗ ∂

4ψ

∂t4
+ ib|ψ|2 ∂

∂t
(|ψ|2) +

ibψ∗|ψ|2 ∂ψ
∂t

− c|ψ|2 ∂
2

∂t2
(|ψ|2)− cψ∗|ψ|2 ∂

2ψ

∂t2
(15)

and

∂ψ∗

∂z

∂ψ

∂t
= − i

2

∂2ψ∗

∂t2
∂ψ

∂t
− a

∂3ψ∗

∂t3
∂ψ

∂t
− ib|ψ|2ψ∗ ∂ψ

∂t

−c ∂
∂t

(
|ψ|2ψ∗

)∂ψ
∂t

(16)

Adding (15) and (16) and substituting into (14), we find:

∂

∂z

(
ψ∗ ∂ψ

∂z

)
=
i

2

[
ψ∗ ∂

2ψ

∂t2
− ∂2ψ∗

∂t2
∂ψ

∂t

]
− a

[
ψ∗ ∂

4ψ

∂t4
+

∂3ψ∗

∂t3
∂ψ

∂t

]
+ ib|ψ|2

[
∂

∂t
(|ψ|2) + ψ∗ ∂ψ

∂t
− ψ∗ ∂ψ

∂t

]
−

c|ψ|2
[
∂2

∂t2
(|ψ|2) + ψ∗ ∂

2ψ

∂t2
+

∣∣∣∂ψ
∂t

∣∣∣2]−

cψ∗ ∂

∂t
(|ψ|2)∂ψ

∂t
(17)
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Also, we can write

∂

∂z

(
ψ
∂ψ∗

∂z

)
= − i

2

[
ψ
∂2ψ∗

∂t2
− ∂2ψ

∂t2
∂ψ∗

∂t

]
− a

[
ψ
∂4ψ∗

∂t4
+

∂3ψ

∂t3
∂ψ∗

∂t

]
+ ib|ψ|2

[
∂

∂t
(|ψ|2) + ψ

∂ψ∗

∂t
− ψ

∂ψ∗

∂t

]
−

c|ψ|2
[
∂2

∂t2
(|ψ|2) + ψ

∂2ψ∗

∂t2
+

∣∣∣∂ψ
∂t

∣∣∣2]

−cψ ∂

∂t
(|ψ|2)∂ψ

∗

∂t
(18)

Using (17) and (18) into (13), we can find the evolution of frequency along the fiber to be

dΩ

dt
=

i

2E

∫ +∞

−∞

iβ2
2

[(∂2ψ∗

∂t2
∂ψ

∂t
+
∂ψ2

∂t2
∂ψ∗

∂t

)
−

(
ψ
∂3ψ∗

∂t3

+ψ∗ ∂
3ψ

∂t3

)]
dt+

i

2E

∫ +∞

−∞

β3
6

[(
ψ∗ ∂

4ψ

∂t4
− ψ

∂4ψ∗

∂t4

)
+

(∂3ψ∗

∂t3
∂ψ

∂t
− ∂ψ3

∂t3
∂ψ∗

∂t

)]
dt−

iγ̄

2Eω0

∫ +∞

−∞
|ψ|2

(
ψ∗ ∂

2ψ

∂t2
− ψ

∂2ψ

∂t2

)
dt+

− 3iγ̄

2Eω0

∫ +∞

−∞

∂

∂t
|ψ|2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ

∂t

)
dt−

γ̄

E

∫ +∞

−∞
|ψ|2 ∂

∂t
|ψ|2dt (19)

In order to calculate dΩ
dz

, we evaluate one by one the integrals on right hand side of the (19). After
computation, we get:

dΩ

dt
= − iγ̄

2Eω0

∫ +∞

−∞
|ψ|2

(
ψ∗ ∂

2ψ

∂t2
− ψ

∂2ψ

∂t2

)
dt−

3iγ̄

2Eω0

∫ +∞

−∞

∂

∂t
|ψ|2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ

∂t

)
dt−

γ̄

E

∫ +∞

−∞
|ψ|2 ∂

∂t
|ψ|2dt (20)

Rearanging (20) and after computation, we obtain

dΩ

dt
= − iγ̄

Eω0

∫ +∞

−∞

∂

∂t
|ψ|2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ

∂t

)
dt (21)

3.4 Evolution of Chirp Parameter
Let’s differentiate (6) with respect to z, we have:

dC̃

dz
=

i

2E

∫ +∞

−∞
(t− T )

[ ∂
∂z

(
ψ∗ ∂ψ

∂z

)
− ∂

∂z

(
ψ
∂ψ∗

∂z

)]
dt (22)

12
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From (17) and (18), we have:

dC̃

dz
=

β2
4E

∫ +∞

−∞
(t− T )

[(∂2ψ∗

∂t2
∂ψ

∂t
+
∂ψ2

∂t2
∂ψ∗

∂t

)
−

(
ψ
∂3ψ∗

∂t3
+ ψ∗ ∂

3ψ

∂t3
+

)]
dt

i

2E

∫ +∞

−∞
(t− T )

β3
6

[(
ψ∗ ∂

4ψ

∂t4
− ψ

∂4ψ∗

∂t4

)
+

(∂3ψ∗

∂t3
∂ψ

∂t
− ∂ψ3

∂t3
∂ψ∗

∂t

)]
dt−

iγ̄

2Eω0

∫ +∞

−∞
(t− T )|ψ|2

(
ψ∗ ∂

2ψ

∂t2
− ψ

∂2ψ

∂t2

)
dt−

3iγ̄

2Eω0

∫ +∞

−∞
(t− T )

∂

∂t
|ψ|2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ

∂t

)
dt−

γ̄

E

∫ +∞

−∞
(t− T )|ψ|2 ∂

∂t
|ψ|2dt (23)

After many integrations by parts, we get:

dC̃

dz
=
β2
E

∫ +∞

−∞

∣∣∣∂ψ
∂t

∣∣∣2dt+ iβ3
4E

∫ +∞

−∞

[(∂2ψ∗

∂t2
∂ψ

∂t
−

∂ψ2

∂t2
∂ψ∗

∂t

)
dt− iγ̄

2Eω0

∫ +∞

−∞
|ψ|2

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t
−

)
dt

3iγ̄

2Eω0

∫ +∞

−∞
(t− T )

∂

∂t
|ψ|2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ

∂t

)
dt+

γ̄

2E

∫ +∞

−∞

∣∣∣ψ∣∣∣4dt (24)

3.5 Evolution of the RMS Width

We differentiate (5) with respect to z to obtain

2σE
dσ

dz
=

∫ +∞

−∞
(t− T )2(ψ∗ ∂ψ

∂z
+ ψ

∂ψ∗

∂z
)dt (25)

2σE
dσ

dz
= i

β2
2

∫ +∞

−∞
(t− T )2

(
ψ
∂2ψ∗

∂t2
− ψ∗ ∂

2ψ

∂t2

)
dt−

γ̄

ω0

∫ +∞

−∞
(t− T )2

[
ψ∗ ∂

∂t

(
|ψ|2ψ

)
+ ψ

∂

∂t

(
|ψ|2ψ∗

)]
dt+

β3
6

∫ +∞

−∞
(t− T )2

(
ψ∗ ∂

3ψ

∂t3
+ ψ∗ ∂

3ψ∗

∂t3

)
dt (26)

dσ

dz
=
β2c

σ
+

β3
2ΓE

∫ +∞

−∞
(t− T )

∣∣∣∂ψ
∂t

∣∣∣2dt (27)

13
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4 NUMERICAL SIMULATION WITH RUNGE-KUTTA 4

Let’s choose the pulse shape on the Gaussian form [2] and [30]:

ψ(z, t) = A exp

[
iφ− iΩ(t− T )− (1 + iC)

(t− T )2

2τ2

]
(28)

with τ2 = Kσ2, C = 2C̃, K = cte, A = cte.

We obtain a variational equations for each parameter as follows:

dE

dz
= 0 ;

dT

dz
= β2Ω+ β3/2

(
Ω2 +

1 + C2

2τ2

)
+

3γ̄E√
8πω0τ

;

dΩ

dz
=

γ̄EC√
2πω0τ3

;

dC

dz
= 2β2Ω

2 + β2
1 + C2

τ2
+ β3

1 + C2

2τ2
+

4γ̄EΩ√
2πω0τ

+
γ̄E√
2πτ

;

dτ

dz
=

β2C

τ
+
β3ΩC

τ
.

We solved numerically the variational equations
using the fourth order of Runge Kutta algorithm
in Matlab [31]. The results are depicted in Fig.
1. for the following values: β2 = 0.5, β3 = 0.6,
γ̄ = 2, ω0 = 0.1. The initial conditions are given
by E(0) = 1, T (0) = 50, ω(0) = 2, C(0) = 0,
τ(0) = 1.

5 DISCUSSION
dE

dz
= 0, therefore the pulse energy remains

constant when the pulse propagates along the
fiber. Since the width increases Fig. 1(e). then
the pulse flattens and according to equation (27),
this is due to dispersion effects. The increasing
of the chirp and the period, respectively Fig.
1(c). and Fig. 1(a). confirm the flattening of
the pulse during his propagation. The equation
(12) shows that the pulse position is affected
by any frequency shift due to the group velocity
dispersion β2 and the third order dispersion β3.
As the pulse propagates, the frequency increases
quickly at the beginning then reach a limit value
after a given distance Fig. 1(b).

The equation (22) shows that the chirp is not
affected by the group velocity dispersion β2
nor the self-steepening γ̄. The equation (27)
shows that the evolution of the width depends
on the group velocity dispersion β2 and the third

order dispersion β3; it’s not affected by the self-
steepening parameter.

The above equations for the evolution of the pulse
parameter reduce the complexity of the problem
but they are still not a useful form because they
depend on the shape ψ(z, t), which is not known
until 1 is solved. If one has some knowledge
of the pulse shape and its dependence on
the five moments, the problem can be solved
approximately. The zoom of parts of the chirp
and width curves (respectively Fig. 1(d). and Fig.
1(f).) shows that these fundamental parameters
can be modelled by an approximative linear
function of z starting from a given distance. The
analytic solving would be less difficult.

Let us notice that similar works was carried out by
using other variational methods in particular the
Lagrangian Variational and Collective Variable
methods [32]-[34]. These methods use different
formalisms but lead to a set of variational
equations. The integration of these differential
equations finally make it possible to appreciate
the evolution of the parameters defined in
the trial function. The major complexity of
these methods lies in the choice of the initial
conditions as well as the values of coefficients
of the nonlinearities in the nonlinear Schrödinger
equation in order to obtain physically solutions.
They strongly vary from a method to another.

14
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They have nevertheless the common advantage
to determine from the variational equations the
nonlinear effects which affect each parameter
in the anstaz; the appreciation of the intensity

of these influences depending on the values
coefficients of the nonlinear terms and thus of the
intrinsic characteristics of the medium.

(a) Variations of the
period T with respect to
the distance z

(b) Variation of the
frequency Ω with respect
to the distance z

(c) Variation of the chirp
C with respect to the
distance z

(d) Zoom of the framed
part of the chirp C

(e) Variation of the width
τ with respect to the
distance z

(f) Zoom of the framed
part of the width τ

Fig. 1. Variation of some Gaussian pulse parameters: (a) The period; (b) The frequency; (c)
The chirp; (d) Zoom of the chirp; (e) The width; (f) zoom of the width

15
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6 CONCLUSION

In this paper, we used the moment method to
describe the dynamics of the pulse in nonlinear
medium such as optical fiber. Considering
the generalized nonlinear equation, we used
the moment method formalism to derive a
set of ordinary differential equations which we
solved with the fourth order of Runge-Kutta
algorithm. Indeed, the moment method allowed
us to choose the ansatz in accordance with
the fundamental parameters of optical. The
results obtained reveal the variations of each
parameter of systems and show that the pulse
flattens. The further work will be interested to the
comparison of the variational methods namely
the moment method, the collective method and
the Langrangian variational approach using the
high order nonlinear Schrödinger equation.
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