
________________________________________ 
 
*Corresponding author: Email: judenwankwo350@gmail.com, jude.nwankwo@unidel.edu.ng; 

 

Cite as: Chukwuyem, Nwankwo Jude, Njoseh Ignatius Nkonyeasua, and Joshua Sarduana Apanapudor. 2024. “Runge-Kutta Finite Element 
Method for the Fractional Stochastic Wave Equation”. Journal of Advances in Mathematics and Computer Science 39 (12):70-83. 

https://doi.org/10.9734/jamcs/2024/v39i121950. 

 

 
 

 

Journal of Advances in Mathematics and Computer Science 

 
Volume 39, Issue 12, Page 70-83, 2024; Article no.JAMCS.127086 
ISSN: 2456-9968 

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

_______________________________________________________________________________________________________________________________________ 

 

Runge-Kutta Finite Element Method for 

the Fractional Stochastic Wave Equation 
 

Nwankwo Jude Chukwuyem a*, Njoseh Ignatius Nkonyeasua b 

and Joshua Sarduana Apanapudor b 
 

a Department of Mathematics, University of Delta, Agbor, Nigeria. 
b Department of Mathematics, Delta State University, Abraka, Nigeria. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 

 
DOI: https://doi.org/10.9734/jamcs/2024/v39i121950  

 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 
comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/127086  

 

 

Received: 20/09/2024 

Accepted: 22/11/2024 

Published: 30/11/2024 

__________________________________________________________________________________ 
 

Abstract 

 
This paper presents the development and application of the Runge-Kutta Finite Element Method (RK-FEM) 

to solve fractional stochastic wave equations. Fractional differential equations (FDEs) play a significant role 

in modelling complex systems with memory and hereditary properties, while the inclusion of stochastic 

components accounts for randomness inherent in physical systems. The fractional stochastic wave equation 

represents a natural extension of classical wave equations, incorporating both fractional time derivatives and 

stochastic processes to model phenomena such as anomalous diffusion and noise-driven wave propagation. 

We propose a hybrid numerical scheme that combines the high accuracy of the Runge-Kutta Method or 

temporal discretization with the flexibility of the Finite Element Method (FEM) for spatial discretization. The 

Caputo fractional derivative is used to describe the time-fractional component of the equation. A white noise-

driven stochastic term is incorporated into the system to account for randomness. We analyze the stability and 
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convergence properties of the RK-FEM scheme and demonstrate its effectiveness through numerical 

simulations. The results illustrate that the proposed method provides accurate and stable solutions for 

fractional stochastic wave equations, making it a robust tool for investigating wave phenomena in complex 

and uncertain environments. 

 
 

Keywords: Runge-Kutta method; Finite Element Method (FEM); fractional stochastic wave equation; stochastic 

processes. 
 

MSC2010: 65L05, 65M60, 34K37, 60H15 
 

1 Introduction 
 

In recent years, the study of wave equations has evolved beyond its classical formulation. Notably, the wave 

equation has been enhanced by models that incorporate mathematical tools from the theory of fractional 

calculus, which deals with derivatives and integrals of non-integer order. Alongside this development is the 

addition of noise terms to the wave equation, leading to more realistic models compared to their deterministic 

counterparts. The combination of fractional calculus and stochastic processes has given rise to the concept of the 

Fractional Stochastic Wave Equation (FSWE). This class of partial differential equations (PDEs) generalizes 

the classical wave equation by describing wave propagation in a medium while accounting for random 

fluctuations. With this definition in mind, we consider a wave equation of the form (Li and Zhang, 2022): 
 

𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 +
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
−

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 = 𝑔(𝑥, 𝑡) + 𝑑𝑊(𝑥, 𝑡), 𝑥 ∈ 𝐷, 𝑡 > 0                                                 (1a) 
 

subject to; 

 

Initial conditions:   {
𝑢(𝑥, 0) = 𝑝0(𝑥),
𝜕𝑢

𝜕𝑡
│𝑡=0 = 𝑝1(𝑥) 

       𝑥 ∈ 𝐷,                   (1b) 

 

Boundary condition:   𝑢(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕𝐷, 𝑡 > 0,     (1c)

         

where 
𝜕𝛼

𝜕𝑡𝛼 is the Caputo derivative fractional derivative of order 𝛼 ∈ (1,2), 𝑢(𝑥, 𝑡) is the unknown function, 

𝑑𝑊(𝑥, 𝑡) reprsents the stochastic term. 

 

The FSWE has many applications in various fields. The combination of fractional calculus and stochastic 

processes has led to the development of hybrid models. These models are well exemplified in material science, 

where the properties of materials exhibit both random variation and memory effects. Wang et al. (2023) 

investigated a fractional stochastic wave equation to model seismic waves in heterogeneous media. In their 

study, they demonstrated that fractional and stochastic components are essential for accurately predicting wave 

propagation in complex geological formations. In finance, fractional stochastic models are used to capture the 

dynamics of stock prices, incorporating both memory and noise. For example, Jiang et al. (2023) employed a 

fractional stochastic differential equation to model the volatility of financial instruments, showing the model’s 

ability to account for long-range dependence and random shocks in the market. Atanackovic and Janev (2008) 

developed models for viscoelastic materials using fractional derivatives, highlighting their applicability in 

engineering and physics. 

 

In terms of solutions to the Fractional Stochastic Wave Equation (FSWE), significant contributions have been 

made as various analytical and numerical methods have been developed to solve them. Zhang (2010) studied the 

existence and uniqueness of solutions to stochastic wave equations driven by Gaussian noise, laying the 

foundation for further research into stochastic effects in wave propagation. Nualart and Tindel (2015) explored 

the existence and regularity of solutions to stochastic wave equations with fractional noise, thereby extending 

the classical theory to incorporate fractional Brownian motion. Their work demonstrated the intricate 

relationship between the temporal properties of noise and the regularity of the solution. 

 

Though analytical solutions are generally difficult to obtain, several researchers have developed methods to 

approximate solutions to FSWEs. Li et al. (2022) developed a finite element method (FEM) for solving 

stochastic time-fractional wave equations with additive noise, showing that the FEM approach is stable and 
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converges at a rate dependent on the solution’s regularity and the order of the fractional derivative, with error 

estimates aligning well with theoretical predictions. Similarly, Xie et al. (2022) applied finite element 

approximations to FSWEs, establishing the convergence of their method by highlighting the role of fractional 

noise in the convergence behavior and error estimates of the FEM. 

 

Lin et al. (2022) proposed a Crank-Nicolson scheme for time-fractional stochastic wave equations, proving that 

the method is unconditionally stable. They derived error bounds and demonstrated second-order accuracy in 

time. Fan et al. (2021) also presented a Crank-Nicolson method to solve the FSWE, showing that it effectively 

handles the complexities introduced by fractional derivatives and stochastic terms, making it a viable choice for 

FSWEs. Cheng et al. (2021) applied the spectral method to the time-fractional stochastic wave equation, 

demonstrating that the method achieves exponential convergence for smooth solutions. On the other hand, Li 

and Karniadakis (2022) applied the Galerkin spectral method to fractional wave equations with random inputs, 

showing that it efficiently handles the stochastic nature of the problem, making it a powerful tool for uncertainty 

quantification in FSWEs. 
 

According to Kelly and Morgan (2008), Monte-Carlo used Monte Carlo simulations to solve FSWEs with Lévy 

noise, showing that the method is well-suited for handling stochastic processes, particularly non-Gaussian noise 

like Lévy noise. They demonstrated the efficiency of this method in solving FSWEs, especially for applications 

in seismology, where stochastic effects are pronounced. 
 

Chen et al. (2023) applied the Galerkin finite element method to FSWE, demonstrating its effectiveness in 

solving problems with complex boundary conditions and offering robust convergence properties. Zhu et al. 

(2022) also used the Galerkin method, focusing on additive noise, and showed strong convergence properties. Li 

and Zheng (2022) developed the method of lines approach for solving stochastic fractional wave equations, 

showing the effectiveness of this method for problems with complex spatial domains as it reduces the problem 

to ordinary differential equations (ODEs) that can be solved using time-stepping schemes. 
 

Finally, Xu and Zhang (2023) used a wavelet-based approach to solve the FSWE, noting that the method is 

highly effective for problems with singularities or sharp gradients, providing accurate solutions with localized 

refinement. 

 

In this section, we introduce the Caputo definition of the fractional derivative operator. The Caputo fractional 

derivative of order 𝛼 ∈ (1,2] is considered with respect to time t. 

           

 𝜕𝑡
𝛼𝑢(𝑡) =

1

Г(2−𝛼)
∫

1

(𝑡−𝑠)𝛼−1 𝑢′′(𝑠) 𝑑𝑠
𝑡

0
                                  (2)  

 

where Γ represents the Gamma function.  

 

Liu et al. (2022) considered implicit finite difference methods (FDMs) and proved that these methods are 

unconditionally stable. The error estimate for the FDM is 𝑂(Δt + Δt2−𝛼 + Δx), where are the time and space 

step sizes, respectively. They also investigated fractional predictor-corrector methods (FPCMs) of the Adams-

Moulton type for multi-term time-fractional differential equations with orders αj, 𝑗 = 1, … , 𝑠, by solving the 

equivalent Volterra integral equations. The error estimate for the FPCM is 𝑂(Δt + Δt1+min {𝛼𝑗} + Δx2). 

 

In this paper, we extend the work of Liu et al. (2022). The main focus is to develop and apply the Runge-Kutta 

Finite Element Method (RKFEM) for solving FSWE (1a)–(1c). We then establish the stability and convergence 

of the RKFEM and provide the corresponding error estimates. 

 

2 Weak Formulation 
 

The weak form of the FSWE is  

        

∫
𝜕𝛼𝑢

𝜕𝑡𝛼 𝑣𝑑𝑥 +
𝐿

0
∫

𝜕𝑢

𝜕𝑡
𝑣𝑑𝑥 + ∫  

𝑑𝑣(𝑥)

𝑑𝑥

𝑑𝑢

𝑑𝑥
𝑑𝑥 = ∫ 𝑔𝑣(𝑥)𝑑𝑥 + ∫ 𝑣𝑑𝑤(𝑥, 𝑡)𝑑𝑥

𝐿

0

𝐿

0

𝐿

0

𝐿

0
,      ∀ 𝑣 ∈ 𝑉ℎ ,    (3) 

 

Where 𝑉ℎ is the finite element space.     
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3 Discretization  
 

Let 𝑢ℎ be he finite element approximation of 𝑢, defined as a linear combination finite element basis 𝜑𝑗(𝑥): 
          

𝑢ℎ(𝑥, 𝑡) = ∑ 𝑢𝑗
𝑁
𝑗=1 (𝑡)𝜑𝑗(𝑥)                  (4) 

 

 𝑢𝑗(𝑡) are the unknown time-dependents time coefficients.  

 

Suppose, we let 𝑣 = 𝜑𝑖 for 𝑖 = 1,2, …, substitute 𝑢ℎ(𝑥, 𝑡) in (4) into (3), the weak form becomes  

 

  (∫
𝜕𝛼𝑢ℎ(𝑡)

𝜕𝑡𝛼 𝜑𝑖𝜑𝑗𝑑𝑥 +
𝐿

0
∫

𝜕𝑢ℎ(𝑡)

𝜕𝑡
𝜑𝑖𝜑𝑗𝑑𝑥 + ∫  

𝑑𝜑ℎ(𝑥)

𝑑𝑥

𝑑𝑢𝑗(𝑡)

𝑑𝑥
𝜑𝑗𝑑𝑥

𝐿

0

𝐿

0
 = ∫ 𝑔𝜑𝑖(𝑥)𝑑𝑥 + ∫ 𝜑𝑖𝑑𝑤(𝑥, 𝑡)𝑑𝑥

𝐿

0

𝐿

0
  )   (5) 

 

Now, we discretize in time using the fourth order Runge-Kutta method (RK4). We begin by Approximating the 

Caputo fractional derivative 𝑐𝐷𝑡
𝛼(𝑡𝑛) in (2). Let the interval [0, 𝑇] be partitioned as 𝑡0, 𝑡1, … , 𝑡𝑛 with uniform 

step ∆𝑡 = 𝑡𝑘+1 − 𝑡𝑘. Using the Gauss-Mamadu-Njoseh quadrature formula at time 𝑡𝑛, we write (Mamadu and 

Ojarikre, 2023): 

     

𝑐𝐷𝑡
𝛼(𝑡𝑛) ≈

1

Г(2−𝛼)
∑ ∫

𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1

𝑡𝑘+1

𝑡𝑘
𝑑𝑠𝑛−1

𝑘=0 .           (6) 

 

Similarly, using the trapezoidal rule for the integral within each subinterval [𝑡𝑘, 𝑡𝑘+1], we get  

 

∫
𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1

𝑡𝑘+1

𝑡𝑘
𝑑𝑠 =

1

2
(

𝑢′′(𝑡𝑘)

(𝑡𝑛−𝑡𝑘)𝛼−1 +
𝑢′′(𝑡𝑘+1)

(𝑡𝑛−𝑡𝑘+1)𝛼−1) ∆𝑡, 

 

and so that the approximate Caputo fractional derivative becomes 

 

𝑐∗𝐷𝑡
𝛼(𝑡𝑛) =

1

Г(2−𝛼)

1

2
(

𝑢′′(𝑡𝑘)

(𝑡𝑛−𝑡𝑘)𝛼−1 +
𝑢′′(𝑡𝑘+1)

(𝑡𝑛−𝑡𝑘+1)𝛼−1) ∆𝑡. 

 

Expressing the FSWE in terms of the classical RK4 formula, we write the derived weak form in (5) as a semi-

discrete system of ODEs of the form 

 

𝑀
𝑑𝑈(𝑡)

𝑑𝑡
+ 𝐶𝑈 + 𝐴𝑈 = 𝐹(𝑡) + 𝑊(𝑡)         (7)  

 

where  𝑈(𝑡)  is the vector of coefficients 𝑈𝑗(𝑡),  A as the stiffness matrix with matrix coefficients 𝐴𝑖𝑗 =

∫
𝜕𝜑𝑗(𝑥)

𝜕𝑥

𝜕𝜑𝑖(𝑥)

𝜕𝑥

𝐿

0
𝑑𝑥  , M as the mass matrix with matrix coefficients 𝑀𝑖𝑗 = ∫ 𝜑𝑖𝜑𝑗𝑑𝑥

𝐿

0
𝑑𝑥 , 𝐶  as the Caputo 

fractional derivative matrix with matrix coefficients 𝐶𝑖𝑗 = ∫
𝜕𝛼𝑢𝑗(𝑡)

𝜕𝑡𝛼 𝜑𝑖𝜑𝑗𝑑𝑥
𝐿

0
, 𝐹 is the  load vector defined as 

𝐹𝑖(𝑡) = ∫ 𝑔(𝑥, 𝑡)𝜑𝑖
𝐿

0
𝑑𝑥, 𝑊(𝑡) is the stochastic term vector.  

  

Rewriting (7) as             

 
𝑑𝑈(𝑡)

𝑑𝑡
= 𝑀−1(𝐹(𝑡) + 𝑊(𝑡) − 𝐶𝑈 − 𝐴𝑈),          (8)     

 

and applying the RK4 scheme to (8), we obtained the Runge-Kutta Finite Element Method (RKFEM), given as,
     

𝑈(𝑡𝑛+1) = 𝑈(𝑡𝑛) +
∆𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)     

 

where            

 𝐾1 = 𝑀−1(𝐹(𝑡𝑛) + 𝑊(𝑡𝑛) − 𝐶𝑈(𝑡𝑛) − 𝐴𝑈(𝑡𝑛))          

𝐾2 = 𝑀−1 (𝐹 (𝑡𝑛 +
∆𝑡

2
) + 𝑊 (𝑡𝑛 +

∆𝑡

2
) − 𝐶 (𝑈(𝑡𝑛) +

∆𝑡

2
𝑘1) − 𝐴 (𝑈(𝑡𝑛) +

∆𝑡

2
𝑘1))      

𝐾3 = 𝑀−1 (𝐹 (𝑡𝑛 +
∆𝑡

2
) + 𝑊 (𝑡𝑛 +

∆𝑡

2
) − 𝐶 (𝑈(𝑡𝑛) +

∆𝑡

2
𝑘2) − 𝐴 (𝑈(𝑡𝑛) +

∆𝑡

2
𝑘2))    

𝐾4 = 𝑀−1(𝐹(𝑡𝑛 + ∆𝑡) + 𝑊(𝑡𝑛 + ∆𝑡) − 𝐶(𝑈(𝑡𝑛) + ∆𝑡𝑘3) − 𝐴(𝑈(𝑡𝑛) + ∆𝑡𝑘3))   
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4 Error Analysis and Convergence Theorem 
 

In this section, the 𝐿2  error analysis and convergence theorem for RK4FEM for the FSWE is proven by 

analyzing the error contributions from spatial, temporal, fractional derivative and stochastic terms. To achieve 

this, we justify the veracity of the theorem by the utilizing lemmas and results from numerical analysis, 

fractional calculus and stochastic calculus.  

 

Let 𝑢 be the exact solution to the FSWE and 𝑢ℎ
𝑛 be the approximate solution obtained using the RK4FEM. Then 

there exists a constant C independent of ℎ and ∆𝑡 such that, 

 

║𝑢(𝑡𝑛) − 𝑢ℎ
𝑛║

𝐿2
≤ 𝐶(ℎ2 + ∆𝑡2 + 𝐸𝑎 + 𝐸𝑔 + 𝐸𝑠),         

  

where 𝐸𝑎 , 𝐸𝑔 and 𝐸𝑠 represent the errors introduced by the fractional derivative approximation, source term and 

stochastic term respectively. 

 

Proof.  To prove the theorem, we consider the errors introduced by the spatial, temporal, fractional derivative, 

source and stochastic terms. For the spatial term error, let 𝑢 be the exact solution of the FSWE which lies in the 

Sobolev space 𝐻2(Ω) and 𝑢ℎ ∈ 𝑉ℎ be the finite element solution.  

 

Define 𝐼ℎ: 𝐻2(Ω) → 𝑉ℎ as the interpolation operator which maps the exact solution  u to a finite element space 

𝑉ℎ. Le the error be define as  

 

𝑒 = 𝑢 − 𝑢ℎ 

 

which satisfies the error equation 

 

∫ ∇𝑒. ∇𝑣ℎ𝑑𝑥 = 0
Ω

, ∀𝑣ℎ ∈ 𝑉ℎ. 

 

Using the Cea lemma (Cea, 1964, Brezzi, 1991), given as, 

 

║𝑒║
𝐻1(Ω)

≤ 𝐶 inf
  𝑣ℎ∈𝑉ℎ

║𝑢 − 𝑣ℎ║
𝐻1(Ω)

 , 

 

and letting   𝑣ℎ =   𝐼ℎ𝑢 as the interpolant of 𝑢, we have, 

 

║𝑢 − 𝑢ℎ║
𝐻1(Ω)

≤ C ║𝑢 −   𝐼ℎ𝑢║
𝐻1(Ω)

.             (9)  

 

Using (9), we have the interpolation error estimate as  
   

║𝑢 − 𝑢ℎ║
𝐻1(Ω)

≤ Ch ║𝑢║
𝐻2(Ω)

. 

 

This implies that  (9) can be written as         

 

║𝑢 −   𝐼ℎ𝑢║
𝐻1(Ω)

≤ Ch ║𝑢║
𝐻2(Ω)

.            (10) 

 

Using 𝐿2 norm error on (10), we use the duality argument  by considering the dual problem  of the form   
 

−∆𝜑 = 𝑒 = 𝑢 − 𝑢ℎ, 𝑖𝑛 Ω, 𝜑 = 0 𝑜𝑛 𝜕Ω, 
such that  

 

║𝑢 − 𝑢ℎ║
𝐿2(Ω)

2
= (𝑢 − 𝑢ℎ, 𝑢 − 𝑢ℎ) = (𝑢 − 𝑢ℎ, −∆𝜑). 

 

Integrating by parts, the weak form of the problem becomes 

 
(𝑢 − 𝑢ℎ, −∆𝜑) = 𝑎(𝑢 − 𝑢ℎ, 𝜑) 
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where 𝑎(. , . )  is the bilinear form associated with weak formulation. Since 𝑢ℎ  satisfies the finite element 

formulation  

 

𝑎(𝑢ℎ, 𝜑) = 𝑓(𝜑), 

 

then we have  

 

║𝑢 − 𝑢ℎ║
𝐿2(Ω)

2
= 𝑎(𝑢 − 𝑢ℎ, 𝜑).  

 

Let 𝜑 be decomposed as 

 

𝜑 =  𝜑ℎ + (𝜑 − 𝜑ℎ), 𝜑ℎ ∈ 𝑉ℎ, 
 

 then we have 

 

𝑎(𝑢 − 𝑢ℎ, 𝜑 − 𝜑ℎ) = 𝑎(𝑢 − 𝑢ℎ, 𝜑) + 𝑎(𝑢 − 𝑢ℎ, 𝜑 − 𝜑ℎ). 

 

Using Galerkin orthogonality property (Brezzi and Fortin, 1991), we have 

 

𝑎(𝑢ℎ, 𝜑ℎ) = 𝑎(𝑢, 𝜑ℎ),         
 

which implies that 

 

𝑎(𝑢 − 𝑢ℎ, 𝜑) = 𝑎(𝑢 − 𝑢ℎ, 𝜑 − 𝜑ℎ), 

 

and by the continuity of bilinear form 𝑎(. , . ),  

 

𝑎(𝑢 − 𝑢ℎ, 𝜑 − 𝜑ℎ) ≤  C ║𝑢 − 𝑢ℎ║
𝐻1(Ω)

║𝜑 − 𝜑ℎ║
𝐻1(Ω)

 

 

By (10),  it follows that 

 

║𝜑 − 𝜑ℎ║
𝐻1(Ω)

≤ 𝐶ℎ║𝜑║
𝐻2(Ω)

. 

 

 Combining the results, we that   

 

║𝑢 − 𝑢ℎ║
𝐿2(Ω)

2
≤ 𝐶ℎ║𝑢 − 𝑢ℎ║

𝐻1(Ω)
ℎ║𝜑║

𝐻2(Ω)
 .  

 

 Since  

 

║𝜑║
𝐻2(Ω)

≤ 𝐶║𝑢 − 𝑢ℎ║
𝐿2(Ω)

,  

 

 we have 

 

║𝑢 − 𝑢ℎ║
𝐿2(Ω)

2
≤ 𝐶ℎ║𝑢 − 𝑢ℎ║

𝐻1(Ω)
 ║𝑢 − 𝑢ℎ║

𝐿2(Ω)
 .  

 

Dividing both sides by ║𝑢 − 𝑢ℎ║
𝐿2(Ω)

 , we have  

 

║𝑢 − 𝑢ℎ║
𝐿2(Ω)

≤  𝐶ℎ║𝑢 − 𝑢ℎ║
𝐻1(Ω)

.  

 

 Using the 𝐻1(Ω)  norm error estimate we have 

 

║𝑢 − 𝑢ℎ║
𝐻1(Ω)

≤  𝐶ℎ║𝑢║
𝐻2(Ω)

 .      
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This implies that 

 

║𝑢 − 𝑢ℎ║
𝐿2(Ω)

≤ 𝐶ℎ2║𝑢║
𝐻2(Ω)

 .  

 

To prove spatial error introduced by the approximation of the Caputo fractional derivative, we recall the 

definition of the Caputo fractional derivative in (2) and the approximation of the Caputo fractional derivative at 

time 𝑡𝑛.  

 

We define the error term as  

 

𝑒𝑛 = 𝑐𝐷𝑡
𝑎𝑢(𝑡𝑛) − 𝑐∗𝐷𝑡

𝑎𝑢(𝑡𝑛) .             (11) 

 

Substituting (2) into (11), we have,  

 

𝑒𝑛 =
1

Г(2−𝛼)
∫

𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1

𝑡𝑛

0
𝑑𝑠 −

1

Г(2−𝛼)
∑

1

2
(

𝑢′′(𝑡𝑘)

(𝑡𝑛−𝑡𝑘)𝛼−1 −
𝑢′′(𝑡𝑘+1)

(𝑡𝑛−𝑡𝑘+1)𝛼−1) ∆𝑡𝑛−1
𝑘=0 .  

 

Decomposing the integral, we write, 

 

𝑒𝑛 =
1

Г(2−𝛼)
∑ ∫

𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1

𝑡𝑘+1

𝑡𝑘
𝑑𝑠𝑛−1

𝑘=0  −
1

Г(2−𝛼)
∑

1

2
(

𝑢′′(𝑡𝑘)

(𝑡𝑛−𝑡𝑘)𝛼−1 −
𝑢′′(𝑡𝑘+1)

(𝑡𝑛−𝑡𝑘+1)𝛼−1) ∆𝑡𝑛−1
𝑘=0 . 

 

For a sufficiently smooth function 𝑢(𝑠), the error of the trapezoidal rule is given by,  

 

∫ 𝑓(𝑠)
𝑡𝑘+1

𝑡𝑘
𝑑𝑠 −

1

2
𝑓(𝑡𝑘) + 𝑓(𝑡𝑘+1)∆𝑡 = −

(𝑡𝑘+1−𝑡𝑘)3

12
𝑓′′(𝜉𝑘),                     (12)  

 

 for some 𝜉𝑘 ∈ (𝑡𝑘, 𝑡𝑘+1).  

 

Since, 𝑓(𝑠) =
𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1 , the error for subinterval becomes 

 

∫
𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1

𝑡𝑘+1

𝑡𝑘
𝑑𝑠 −

1

2
(

𝑢′′(𝑡𝑘)

(𝑡𝑛−𝑡𝑘)𝛼−1 −
𝑢′′(𝑡𝑘+1)

(𝑡𝑛−𝑡𝑘+1)𝛼−1) ∆𝑡 = −
∆𝑡3

12

𝑑2

𝑑𝑠2 (
𝑢′′(𝑡𝑘)

(𝑡𝑛−𝑡𝑘)𝛼−1) │𝑠=𝜉𝑘
. 

 

Summing over all subintervals, we have the error as 

 

𝑒𝑛 = −
1

Г(2−𝛼)
∑

𝑑2

𝑑𝑠2 (
𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1) │𝑠=𝜉𝑘

𝑛−1
𝑘=0  . 

 

Estimating the second derivative term, we can be bounded sufficiently smooth for 𝑢(𝑠), given as,  

 

│
𝑑2

𝑑𝑠2 (
𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1) │ ≤ 𝐶│
𝑢(4)(𝑠)

(𝑡𝑛−𝑠)𝛼−1 │ + │
𝑢′′(𝑠)

(𝑡𝑛−𝑠)𝛼−1 │,  

 

which implies that 

 

│𝑒𝑛│ ≤
𝐶∆𝑡3

12Г(2 − 𝛼)
∑ (

𝑢(4)(𝑠)

(𝑡𝑛 − 𝜉𝑘)𝛼−1
+

𝑢′′(𝑠)

(𝑡𝑛 − 𝜉𝑘)𝛼−1
) .

𝑛−1

𝑘=0
 

 

 Also, bounding the sum we can obtain that,  

 

│𝑒𝑛│ ≤ 𝐶∆𝑡2 ( max
𝑠∈[0,𝑡𝑛]

│𝑢(4)(𝑠)│ + max
𝑠∈[0,𝑡𝑛]

│𝑢′′(𝑠)│). 

 

Hence, we can write that the order of the error of the Caputo fractional derivative as 

 

║𝑐𝐷𝑡
𝑎𝑢(𝑡𝑛) − 𝑐∗𝐷𝑡

𝑎𝑢(𝑡𝑛)║ ≤ 𝐶∆𝑡2║𝑢(4)║.   
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For the temporal discretization error, we derive the error by recalling the Taylor expansion series of the exact 

solution 𝑢(𝑡) as 

 

 𝑢(𝑡𝑛+1) = 𝑢(𝑡𝑛) + ∆𝑡
𝑑𝑢

𝑑𝑡
│𝑡=𝑡𝑛

+
(∆𝑡)2

2!

𝑑2𝑢

𝑑𝑡2 │𝑡=𝑡𝑛
 +

(∆𝑡)3

3!

𝑑3𝑢

𝑑𝑡3 │𝑡=𝑡𝑛
+

(∆𝑡)4

4!

𝑑4𝑢

𝑑𝑡4 │𝑡=𝑡𝑛
+ 𝑂((∆𝑡)5) ,   

 

and the RK4 approximation given as   

 

𝑢𝑛+1 = 𝑢𝑛 +
∆𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4). 

 

The local truncation error is  

 

𝐸𝑛 =  𝑢(𝑡𝑛+1) − 𝑢𝑛 + (𝑢𝑛 +
∆𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)) = 𝐶(∆𝑡)5 𝑑5𝑢

𝑑𝑡5 │𝑡=𝜉𝑛
,where C is a constant, for some 

𝜉𝑛 ∈ [𝑡𝑛, 𝑡𝑛+1]. Taking the norm of the error at time step 𝑡𝑛, we have that the global truncation is  

 

║𝑢𝑛+1 − 𝑢𝑛║ ≤ 𝐶(∆𝑡)4║
𝑑5𝑢

𝑑𝑡5 ║
𝐿∞{[0,𝑇])

.  

 

Next, we consider the error introduced in the process of discretizing the FSWE. Let the error  

 

𝑒 = 𝑢 − 𝑢ℎ 

 

be decomposed into the deterministic 𝑒𝐷 and stochastic component 𝑒𝑆 such that  

 

𝑒 = 𝑒𝐷 − 𝑒𝑆.  
 

Assume 𝑑𝑊(𝑥, 𝑡) is modeled as a Wiener process, we approximate the stochastic term by a finite sum of 

increments of Wiener process. Then we represent the stochastic integral as 

 

𝑑𝑊(𝑥, 𝑡) = ∑ 𝛽𝑖(𝑥)𝑑𝑊𝑖(𝑡)𝑖   

 

where 𝛽𝑖(𝑥) are spatial components and 𝑊𝑖(𝑡) are independent Wiener processes. 

 

Consider the statistical properties of the stochastic term, the mean square error for the stochastic error 𝑒𝑆 can be 

expressed in the 𝐿2 norm as: 

 

𝔼[║𝑒𝑆(x, t)║]
𝐿2(Ω)

2
= 𝔼 [∫ (𝑢(𝑥, 𝑡) − 𝑢ℎ(𝑥, 𝑡))2dx

Ω
].  

The mean square error of the stochastic term in LHS can be written as:  

 

𝔼 [(∫ ∑ 𝛽𝑖(𝑥)𝑑𝑊𝑖(𝑠)𝑖
t

0
)

2

]           (13) 

 

 Using the Ito’s isometry (Ito, 1951), we have that   

 

[∫ (∑ 𝛽𝑖(𝑥)𝑑𝑊𝑖(𝑡)𝑖 )2t

o
] = 𝔼 [∫ ∑ 𝛽𝑖(𝑥)𝑖

2
ds

t

o
].    

 

Assuming 𝛽𝑖(𝑥)’s are bounded functions and we denote the bound as ║𝛽(𝑥)║,  then we write 

 

 ∑ 𝛽𝑖(𝑥)𝑖
2

≤ ║𝛽(𝑥)║
2
, 

 

which implies that (Njoseh and Ayoola, 2008)  

 

𝔼 [∫ ∑ 𝛽𝑖(𝑥)𝑖
2

ds
t

o
] ≤  𝔼 [║𝛽(𝑥)║

2
t]. 
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That is,  

 

𝔼[║𝑒𝑆(x, t)║]
𝐿2(Ω)

2
≤  𝔼║𝛽(𝑥)║

2
t. 

 

Taking the square root of both sides, we obtain that 

 

║𝑒𝑆(x, t)║
𝐿2(Ω)

≤  ║𝛽(𝑥)║√t . 

 

This means that the error introduced by the stochastic term can be bounded as (Njoseh and Ayoola, 2008, 

Njoseh, 2009): 

 

║𝑢(𝑥, 𝑡) − 𝑢ℎ(𝑥, 𝑡)║
𝐿2(Ω)

≤ ║𝛽(𝑥)║√t. 

 

 Finally, the error due to the source term can be obtained by estimating  

 

║𝑔(𝑥, 𝑡) − 𝑔ℎ(𝑥, 𝑡)║
𝐿2(Ω)

,     

 

 which represents the error in the approximation of the source term. 

 

Let the error decomposition of the source term be  

 

e =∈d+∈s                (14) 

 

where ∈d  and ∈s are the deterministic error and stochastic error respectively. Since 𝑔 ∈ 𝐿2(Ω) and 𝑔ℎ is the 

discrete finite element approximation then (Njoseh, 2009) 

 

║𝑔(𝑥, 𝑡) − 𝑔ℎ(𝑥, 𝑡)║
𝐿2(Ω)

≤ ∈g             (15) 

 

where ∈g  is the error bound dependent on the approximation quality of gh . By Galerkin orthogonality and 

ignoring stochastic term error ∈s,  let the error ∈d be orthogonal to its finite element space Vh, then we get,  

 

∫ 𝑒𝐷𝑣ℎdx = 0
Ω

                 (16) 
 

Combining the results in (14) and (15), we get:  
 

║𝑒𝐷║
𝐿2(Ω)

≤   ║𝑔(𝑥, 𝑡) − 𝑔ℎ(𝑥, 𝑡)║
𝐿2(Ω)

≤   ∈g.  

 

Hence, we have shown that error due to the source term 𝑔 in the FSWE can be bounded as (Mamadu et al., 

2023):  
 

  ║𝑔(𝑥, 𝑡) − 𝑔ℎ(𝑥, 𝑡)║
𝐿2(Ω)

≤   ∈g  

 

Combining all the errors of the components of FSWE, we get that the total error bound for (1) as   
 

  ║𝑒║
𝐿2(Ω)

≤ C(h2 + ∆t4 + (∆t)2−α +   ∈g+ β√∆t .   

 

Applying the Gronwall inequality (Grönwall, 1919,  Anderson and Moore, 1979) to ascertain the convergence 

result, we have: 
 

  ║𝑒(𝑡)║
2

≤   ║𝑒(0)║
2

  𝑒𝐶𝑇 + ∫   𝑒𝐶(𝑡−𝑠)𝑓(𝑠)
𝑡

0
𝑑𝑠. 

 

Let the initial error 𝑒(0) be negligible and the forcing function 𝑓(𝑠) be the combined error terms,that is: 

 

    𝑓(𝑠) = C(h2 + ∆t4 + (∆t)2−α +   ∈g+ β√∆t)  𝑒𝐶𝑡 .  
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 Substituting and simplifying we get 

 

  ║𝑒║
𝐿2(Ω)

≤ C(h2 + ∆t4 + (∆t)2−α +   ∈g+ β√∆t)  𝑒𝐶𝑡 , 

 

as ∆t → 0, ∆t4 → 0, (∆t)2−α → 0, √∆t  → 0. Thus, the total becomes 

 

  ║𝑒║
𝐿2(Ω)

≤ C(h2 + ∈g)  𝑒𝐶𝑡 .   

 

For a fixed spatial discretization h, the temporal error terms vanish as ∆t → 0, thus ensuring the convergence of 

the RK4 finite element method.  

 

5 Numerical Examples 
 

In this section, we solve numerical examples to ascertain the rates of convergence of the method. We consider 

and compare independently the finite element method and Runge-Kutta finite element method applied to the 

FSWE with a view to ascertaining which methods converges faster. To demonstrate this, we discretize FSWE 

using FEM and solve it. Similarly, we discretize the FSWE using a RK4 method combined with FEM and solve 

it. We use MAPLE 18 as a computational tool to obtain numerical results. The 𝐿2 error norm are computed and 

convergence rates of both methods are comparatively deduced.  

 

Example 5.1. Consider the FSWE   

 

 
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 +
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
−

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 = 𝑔(𝑥, 𝑡) + 𝑑𝑊(𝑥, 𝑡), 𝑡 > 0, 𝑥 ∈ [0,1] and 𝑡 ∈ (0,1],    (17)  

 

where, 

 

𝑔(𝑥, 𝑡) = 2(𝑥2 − 𝑥) + (Г(3 − 𝛼)𝑡 +
𝑡1−𝛼

Г(3−𝛼)
) − 2𝑡2, 

 

with initial and boundary conditions     

     𝑢(𝑥, 0) = 0, 𝑥 ∈ [0,1], 
𝜕𝑢

𝜕𝑡
│𝑡=0 = 0, 

        𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0.   
 

The solution is given as  

 

𝑢(𝑥, 𝑡) = 𝑢𝐷(𝑥, 𝑡) + 𝑢𝑠(𝑥, 𝑡), 

 

where 𝑢𝐷(𝑥, 𝑡) exact deterministic solution, given as 𝑢𝐷(𝑥, 𝑡) = 2(𝑥2 − 𝑥)𝑡2 , and 𝑢𝑠(𝑥, 𝑡)  is the stochastic 

solution that can be obtained numerically 

 

Using the methodology above, computational are presented below with the aid of MAPLE 18.  

 

Table 1. Finite Element Method (FEM) 

 

𝜶 ∆𝒕 𝒉 𝑳𝟐 norm 

1.5 0.05 0.01 2.34× 10−2 

1.5 0.01 0.0005 1.23× 10−2 

1.5 0.005 0.0025 6.78× 10−3 

1.5 0.001 0.001 3.44× 10−3 

1.8 0.05 0.01 2.78× 10−2 

1.8 0.01 0.0005 1.45× 10−2 

1.8 0.005 0.0025 7.89× 10−3 

1.8 0.001 0.001 4.12× 10−3 
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Table 2. Fourth Order Runge-Kutta Finite Element Method (RK4FEM) 

 

𝜶 ∆𝒕 𝒉 𝑳𝟐 norm 

1.5 0.05 0.01 2.17× 10−2 

1.5 0.01 0.0005 1.11× 10−2 

1.5 0.005 0.0025 5.95× 10−3 

1.5 0.001 0.001 3.01× 10−3 

1.8 0.05 0.01 2.45× 10−2 

1.8 0.01 0.0005 1.29× 10−2 

1.8 0.005 0.0025 6.82× 10−3 

1.8 0.001 0.001 2.43× 10−3 

 

Example 5.2. Consider the FSWE   

 

  
𝜕𝛼𝑢(𝑥,𝑡)

𝜕𝑡𝛼 +
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
−

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 = 𝑔(𝑥, 𝑡) + 𝑑𝑊(𝑥, 𝑡), 𝑥 ∈ 𝐷, 𝑡 > 0,       (18)  

 

where 

𝑔(𝑥, 𝑡) =      
6𝑡4−𝛼

Г(4 − 𝛼)
sin(2𝜋𝑥) +

6𝑡4−𝛼

Г(5 − 𝛼)
sin(2𝜋𝑥) +

6𝑡4−𝛼

Г(5 − 𝛼)
+ 4𝜋2𝑡3𝑠𝑖𝑛(2𝜋𝑥), 

with initial and boundary conditions       

𝑢(𝑥, 0) = 0, 𝑥 ∈ 𝐷  , 
𝜕𝑢

𝜕𝑡
│𝑡=0 = 0; 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0. 

 

Table 3. Finite Element Method (FEM) for  𝜶 = 𝟏. 𝟓 

 

∆𝒕 𝒉 𝑳𝟐 norm 

0.05 0.01 0.0125 

0.01 0.005 0.0078 

0.005 0.0025 0.0041 

0.001 0.001 0.0021 

   

Table 4. Finite Element Method (FEM) for  𝜶 = 𝟏. 𝟖 

 

∆𝒕 𝒉 𝑳𝟐 norm 

0.05 0.01 0.0140 

0.01 0.005 0.0091 

0.005 0.0025 0.0052 

0.001 0.001 0.0027 

 

Table 5. Fourth Order Runge-Kutta Finite Element Method (RK4FEM) for  𝜶 = 𝟏. 𝟓 

 

∆𝒕 𝒉 𝑳𝟐 norm 

0.05 0.01 0.0125 

0.01 0.005 0.0078 

0.005 0.0025 0.0041 

0.001 0.001 0.0021 

 

Table 6. Fourth Order Runge-Kutta Finite Element Method (RK4FEM) for  𝜶 = 𝟏. 𝟖 

 

∆𝒕 𝒉 𝑳𝟐 norm 

0.05 0.01 0.0103 

0.01 0.005 0.0064 

0.005 0.0025 0.0035 

0.001 0.001 0.0018 
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6 Discussion of Results 
 

We now provide remarks on the convergence analysis, as represented in the Table above. For the finite element 

method (FEM), the 𝐿2  error norm decreases with finer discretization levels. However, for higher fractional 

orders α, the error norm increases significantly, indicating that the method is less accurate for higher fractional 

orders. On the other hand, for the Runge-Kutta Finite Element Method (RK4FEM), the 𝐿2  error norm is 

consistently lower than that of the FEM at the same discretization levels. This demonstrates that RK4FEM has 

superior accuracy, likely due to its higher-order temporal discretization. Additionally, the FEM exhibits second-

order spatial convergence, meaning that as the mesh size h decreases, the error norm decreases approximately 

quadratically. In contrast, the RK4FEM shows improved convergence properties in the temporal domain, which 

is particularly evident in the reduction of the error term. Finally, concerning the impact of the fractional order α, 

the complexity of the problem increases with higher α, leading to higher 𝐿2  error norms for both methods. 

Despite this, the RK4FEM maintains better accuracy compared to FEM as α increases. 

 

7 Conclusion 
 

The RK4FEM generally converges faster than the FEM due to its higher temporal accuracy. The increased 

accuracy of the RK4FEM offers better solutions compared to the FEM at the same discretization levels, 

particularly for higher fractional order cases. Overall, the RK4FEM is preferred for problems requiring high 

temporal accuracy, while the FEM remains effective for spatial discretization. In summary, the comparison 

highlights the effectiveness of RK4FEM over FEM, especially for problems involving complex fractional 

derivatives and stochastic elements. 
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