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ABSTRACT 
 
Depression and anxiety disorder are the most common mental disorders worldwide and their 
treatments are combinations of pharmacological and psychotherapeutic approaches. Depression 
treatment depends largely on a pharmacotherapy that improves the transmission of monoamines 
in the brain. However, the drugs available have adverse reactions and do not contemplate 
positively all patients, which stimulates scientific research that seeks new molecules, including 
from natural sources. Lectins are proteins capable of binding reversibly and non-covalently to 
specific sugars. For example, it has been reported the antimicrobial, antitumor, antiparasitic, anti-
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inflammatory and antinociceptive activities of lectins. The ability of some lectins in modulating 
nociception and inflammation stimulated studies on the possible effects on processes that share 
some pathways and molecular agents, like depression and anxiety. Lectins isolated from plants 
showed antidepressant effects, which were demonstrated to be linked to activation of serotonergic, 
adrenergic, and dopaminergic systems as well as to inhibition of the glutamatergic system and L-
arginine–NO–cGMP pathway. In view of their immunomodulatory properties, it is also suggested 
that lectins can ameliorate the inflammatory framework associated with depression. Anxiolytic 
effects were also reported and associated with modulation of GABAergic mechanisms, 
serotonergic system, and NO pathway. It should be taken in account that some lectins induced 
depressive-like behavior, associated with an neuroinflammatory action, as well anxiogenic action. 
Thus, it is important to use combinations of batteries for testing anxiety, depression, despair, and 
anhedonia behaviors in the studies with lectins. The mechanisms by which lectins exactly 
modulate depression or anxiety frameworks are still unclear but important windows had already 
been open by researchers and preclinical studies with lectins have indicated these proteins as 
candidates for alternative or complementary agents in therapies of depression and anxiety 
disorder. 
 

 

Keywords: Anti-depressive effect; anxiolytic effect; anti-inflammatory action; plant bioactive proteins. 
 

1. NTRODUCTION 
 
The latest edition of the “Diagnostic and 
Statistical Manual of Mental Disorders” (DSM-V, 
2013) classifies mental disorders in several 
groups, including mood disorders (e.g. 
depression) and anxiety disorders. According to 
the report "Depression and Other Common 
Mental Disorders: Global Health Estimates", 
released by the World Health Organization 
(WHO) in 2017, it is estimated that anxiety 
disorder affects 3.6% of the population 
worldwide, with characteristics as fear and 
apprehension that can become a generalized 
anxiety disorder, panic disorder, and different 
types of phobias. The symptoms can vary 
according to the degree of intensity, from mild to 
strong [1]. In Brazil, about 18 million people 
(9.3% of the population) suffer from anxiety 
disorder [2]. 

 
Depression is a chronic mental illness that                       
can lead to physical and social interaction 
disabilities with a significant relationship with 
comorbidities and morbidities. Similar to                     
anxiety disorder, depression also has a variability 
in the intensity of symptoms [3,4]. It is 
characterized by profound mood changes as      
well as by states of euphoria, irritability, 
insomnia, or hypersomnia, and even thoughts of 
death and suicide on a recurring basis [3,4,5]. It 
is often characterized by a constant feeling of 
sadness and lack of interest or pleasure in 
activities that were previously gratifying or 
pleasant (a condition called anhedonia) [6]. 
About 320 million people are affected by 
depression, around 4.4% of the world population 

[4,7]. In Brazil, this percentage reaches 
approximately 5.8% of the population [4]. 
Approximately 800,000 people die every                     
year from depression-related suicide, which is 
the second leading cause of death in young 
people aged 15 to 29 [1]. Depression is                      
complex and considered a product of 
biopsychosocial interactions. Currently, it is 
widely known that it is not caused by a                       
single factor, but by a combination of                            
several biological and environmental factors                 
that can influence its appearance over the                      
years [6,8]. Treatment for depression and          
anxiety disorders is a combination of 
pharmacological and psychotherapeutic 
approaches [3,9,10,11]. 
 

At the neurobiological level, depression is 
characterized by changes in the level of 
neurotransmitters – including serotonin, 
dopamine, and norepinephrine – and by 
functional and structural changes in brain 
regions, including the prefrontal cortex, 
amygdala, basal ganglia, and hippocampus 
[12,13]. The most recognized theory of 
depression is based on the monoaminergic 
hypothesis, which postulates that there is a 
reduced activity of neurotransmitters such as 
serotonin, norepinephrine, and dopamine in the 
brain of people with depression [6,8]. 
Consequently, therapy for depression depends 
largely on a pharmacotherapy that improves the 
transmission of monoamines in the brain. The 
therapy is similar for individuals with anxiety 
disorder, but in this case there is another factor, 
which is the neuronal stimulation factor, such as 
glutamate over-stimulation and reduced GABA 
stimulation [14]. 
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The drugs most used as antidepressants are the 
selective serotonin reuptake inhibitors (SSRIs), 
norepinephrine reuptake inhibitors (NRIs), 
tricyclic antidepressants, and monoamine 
oxidase inhibitors [3,5,11]. However, these drugs 
have adverse reactions, such as drowsiness, 
fatigue, tremors, weight gain, and sexual 
dysfunction [15,16], and do not contemplate 
positively all patients, with a variation of 30% to 
50% of individuals who do not benefit from the 
treatment [5,11]. This margin of non-benefited 
patients as well as the described adverse 
reactions lead to low adherence to treatment 
and, consequently, non-stabilization of symptoms 
[15,17]. Individual variations in the expression of 
receptors as well as in the release level of 
neurotransmitters may be behind the low 
response and even refractoriness to the 
pharmacotherapy. The central nervous system 
(CNS) takes time (about 2 weeks) to adapt the 
synthesis of neurotransmitters and receptors and 
many times the patient abandons treatment 
before that because he/she does not see 
immediate results. In turn, the adverse effects 
are related to the lack of specificity of the drugs 
and many of them end up giving side effects 
even before the pharmacological effect itself 
[18,19,20]. 
 
Carvalho et al. [21] described that important 
inflammatory genes were identified in circulating 
leukocytes in individuals with depression, in 
addition to high serum levels of pro-inflammatory 
cytokines like interleukins (IL) 6 and 8. 
Corroborating this finding, meta-analysis studies 
reported significant concentrations of pro-
inflammatory cytokines, such as IL-6 and tumor 
necrosis factor (TNF), and an association 
between C-reactive protein and depressive 
conditions [22,23]. These reports stimulate the 
investigation of putative effects of anti-
inflammatory agents on depression. 

 
The context of the COVID-19 pandemic – 
comprising social isolation, uncertainties, the fear 
of losing loved ones and the economic recession 
– can make people even more vulnerable to 
anxiety disorder and depression [24]. 
Consequently, this scenario tends to raise or 
aggravate mental health problems, increasing 
the risk of suicidal behavior [25]. A strong             
impact of the pandemic on these statistics is 
expected     in the coming years. 

 
The limited success rate of conventional 
therapeutic approaches in depression and 
anxiety stimulates scientific research that seeks 

new molecules, including from natural sources, in 
order to increase the effectiveness of therapies 
and reduce adverse effects. In this review, we 
will approach the anti-depressive and anxiolytic 
effects of lectins, a special class of proteins 
broadly studied. Before this, we gathered some 
information about the animal models that have 
been used in preclinical studies to evaluate the 
efficacy of these proteins. 
 

2. ANIMAL MODELS FOR STUDY OF 
ANXIETY AND DEPRESSION 

 
Animal models with rodents have been improved 
over the years, in which cognitive and emotional 
aspects can be better evaluated, enabling 
research into models of anxiety and depression. 
Animal models provide a crucial way to examine 
neural circuits along with molecular and cellular 
pathways that can be critical in the pathogenesis 
of depression and are essential for the study of 
new drugs. However, no independent test or 
individual model is acceptable. Instead, 
combinations of batteries for testing anxiety, 
depression, despair, and anhedonia behaviors 
can be used to assess the occurrence and 
severity of depression. Using these 
assessments, a researcher may be able to study 
different aspects of depression in order to 
deepen knowledge and treatment as a whole [3]. 
 
Among the main tests to assess behavior similar 
to anxiety in animals, there are the open field test 
(OFT) and the elevated plus maze (EPM). The 
level of anxiety is determined by the OFT through 
the relation of time/entries in the periphery and 
center. A non-anxious rodent obeys a less 
curious exploitation profile, being more in the 
center of the apparatus [3,26]. The EPM is based 
on the fact that rodents tend to avoid open and 
brightly lit places, but at the same time they tend 
to explore new spaces. Thus, the proportion of 
these opposite stimuli is assessed [27]. The 
frequency of entries into the open and closed 
arms in the central zone and the total time spent 
in these zones are recorded. The increase in 
time spent in open arms indicates a lower degree 
of anxiety in the animal [28]. 
 
Among the most used behavioral tests to assess 
depression-like behavior, there are the Forced 
Swimming Test (FST), tail suspension test (TST) 
and the sucrose preference test (SPT) [29]. FST 
is the most used to evaluate the effects of 
antidepressants. For instance, a rat that is placed 
in water typically tries to escape. However, if it 
exhibits a depressive behavior, it will simply float 



 
 
 
 

Lima et al.; AIR, 21(11): 102-112, 2020; Article no.AIR.64637 
 
 

 
105 

 

without attempting to escape until rescued [3]. 
This easily identifiable behavioral immobility has 
been described as the state of “despair” when 
the animal realizes that the escape is impossible 
and gives up. Antidepressants reduce the 
immobility time, which is used as the main 
predictor of antidepressant action [29,30]. 
 
The TST assumes that the animal will try to 
escape the stressful situation. After a while, the 
animal stops fighting, and immobility occurs; 
longer periods of immobility are signs of 
depressive behavior [27]. Consequently, it is 
proposed that substances with antidepressant 
activity decrease the animal immobility time in 
this test, without altering their locomotor activity 
[31]. 
 
On the other hand, SPT is based on the fact that 
normal rodents will exhibit a greater preference 
for water with dissolved sucrose instead of 
ordinary water. However, rodents with behaviors 
similar to depression will exhibit a reduced 
preference for the sweetened solution, which is 
indicative of a loss of interest in something that 
was previously satisfactory and pleasurable (an 
anhedonia framework) [29, 32]. The consumption 
or preference for sucrose decreases over weeks 
of exposure to chronic stress but it can be 
restored to normal levels by chronic treatment 
with antidepressant drugs [33]. 
 
The unpredictable moderate chronic stress 
model (UMCS) aims to chronically develop the 
depressive state in response to unpredictable 
stress stimuli and, consequently, reproduces the 
main symptoms observed in depressed patients, 
including decreased sugar consumption, weight 
and appetite loss, and decreased response to 
rewarding brain stimulation. In addition, factors 
such as an increase in the size of the adrenal 
gland can be observed, which is related to 
exposure to long periods of stress and 
hyperactivity of the hypothalamic-pituitary-
adrenal axis and, consequently, an increase in 
circulating glucocorticoids [3]. 
 

3. LECTINS 
 
3.1 Generalities 
  
Lectins are defined as multidomain proteins of 
non-immune origin capable of binding reversibly 
and non-covalently to specific sugars, which can 
be free or present in larger structures forming 
glycoproteins and glycolipids. Interactions 
between proteins and carbohydrates are critical 

in many biological processes, such as: viral, 
bacterial, and parasitic infections; fertilization; 
cell growth and differentiation; and cancer 
metastasis. Lectins are unique in their ability to 
decipher the biological information encoded in 
the three-dimensional structure of sugars, called 
glycocode [34]. The lectins possess 
carbohydrate recognition domains (CRD), which 
can interact with carbohydrates through Van der 
Waals and hydrophobic interactions as well as 
hydrogen bonds [35]. Carbohydrate-binding 
specificity, requirements of additional functional 
groups and spatial configuration of CRDs are 
important aspects for the diversity of applications 
of lectins in chemical biology and drug research 
[36]. 
 
Lectins are produced by microorganisms, plants, 
and animals [37,38]. However, the largest 
number of known lectins are from the plant 
kingdom. Lectins are present in several organs 
like leaves, rhizomes, flowers, fruits, tubers, and 
seeds [39]. In plants, these proteins can act as 
reserve proteins, in defense against pathogens 
and predators, as carriers of plant hormones, in 
symbiotic interactions with microorganisms, and 
in cell recognition, for example [40]. Many plant 
lectins have been purified, characterized, and 
applied in studies in the areas of Agronomy, 
Medicine and Biotechnology. Lectins have shown 
antimicrobial [41], antitumor [42], and 
antiparasitic [43] activities, among others. They 
have also gained interest in pharmaceutical 
technology as active excipients to modulate the 
release of drugs [44]. 
 

3.2 Anti-inflammatory and Antinociceptive  
Activities of iectins 

 
Plant lectins are promising molecules in the 
study of inflammatory processes. Assreuy et al. 
[45] suggested that anti-inflammatory effects of 
Dioclea violacea and Dioclea guianensis lectins 
result from the competitive blocking of 
glycosylated selectin binding sites in the 
membranes of leukocytes and/or endothelial 
cells. Lectins can also modulate immune 
response and its products by stimulating the 
release of pro- or anti-inflammatory mediators, 
for example [46,47]. 
 
Pires et al. [48] aimed to investigate the anti-
inflammatory activity of Lonchocarpus 
araripensis lectin (LAL). In the dose of 10 mg/kg, 
LAL reduced carrageenan-induced paw edema 
in mice by about 77% and also slightly reduced 
vascular permeability. LAL also showed anti-
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inflammatory effect against edemas induced by 
serotonin (5-HT), bradykinin (BK), and sodium 
nitroprusside. The preincubation of LAL with N-
acetyl-D-glucosamine reversed the effect, 
indicating the involvement of its CRDs. It was 
also suggested that the effect depended on the 
inhibition of 5-HT, BK, prostaglandin E2, nitric 
oxide, TNF-α, and leukocyte rolling and 
adhesion. Santos et al. [49] demonstrated that 
the Machaerium acutifolium seed lectin (MaL) 
significantly decreased inflammation in the 
formalin test, inhibited cell migration in 
carrageenan-induced peritonitis, and blocked the 
formation of paw edema induced by carrageenan 
and dextran. In vitro studies in LPS-stimulated 
macrophages showed that MaL downregulated 
gene expression of pro-inflammatory cytokines, 
inducible nitric oxide synthase (iNOS) and TNF-
α, while upregulated the anti-inflammatory IL-10 
gene. 
 

The antinociceptive potential is already described 
for plant lectins. A lectin isolated from Canavalia 
grandiflora seeds showed potential for new 
analgesic and anti-inflammatory therapies, as it 
was able to inhibit neutrophil migration and 
inflammatory hypernociception [50]. Another 
work reported that the Lonchocarpus campestris 
lectin (LCaL) presented antinociceptive effect in 
the formalin and acetic acid-induced writhing 
tests in mice; the authors verified that this lectin 
reduced inflammatory parameters, such as 
vascular permeability, neutrophil migration, paw 
edema and hypernociception induced by 
carrageenan [51]. The lectin purified from 
Tetracarpidium conophorum seeds (TcSL) 
showed significant inhibition of nociception as 
measured by paw licking time upon pain 
induction by formalin. TcSL also significantly 
reduced carrageenan-induced leucocyte 
migration to the peritoneum [52]. 
 

Campos et al. [53] studied the antinociceptive 
effect of Bauhinia monandra leaf lectin (BmoLL) 
in male Swiss mice and found that the analgesic 
effect of this lectin was attributed to both 
peripheral (through the inhibition of inflammatory 
mediators) and central (through the lectin-
carbohydrate interaction and cellular receptors) 
mechanisms. The potent BmoLL anti-
inflammatory and antinociceptive properties 
could explain the basis for the use of B. 
monandra in folk medicine in treating diseases 
associated with inflammation and pain. 
 
A lectin from the green kelp Caulerpa 
cupressoides (CcL) inhibited the inflammatory 

nociception in the temporomandibular joint of 
male Wistar rats through the inhibition of TNF-α, 
IL-1β, cyclooxygenase-2 (COX-2) and 
intercellular adhesion molecule-1 (ICAM-1); the 
authors also found an effect independent of the 
cannabinoid and opioid systems [54]. AEL lectin, 
isolated from okra (Abelmoschus esculentus) 
seeds, reduced the hypernociception of the 
temporomandibular joint in male Wistar rats, 
depending on the central activation of δ and κ 
opioid receptors [55]. AEL was also able to 
reduce inflammatory hypernociception of the 
zymosan-induced temporomandibular joint in 
male Wistar rats through inhibition of TNF-α and 
IL-1β and dependently on the integrity of the 
heme oxygenase-1 (HO-1) pathway [56]. 

 
Depression and pain are closely correlated from 
the perspectives of both brain regions and the 
neurological function. The classical monoamine 
hypothesis proposes that depression may occur 
as a result of decreased availability of 
monoamine neurotransmitters, which in fact are 
also vital to the occurrence and development of 
pain. Thus, some antidepressants have been 
used to treat pain [57]. Some lectins that showed 
anti-depressant effect also displayed 
antinociceptive activity, as presented in the next 
section. 

 
In addition, the association between states of 
depression and pro-inflammatory cascades has 
been described. Cytokines are likely to play a 
role in the behavior of depression through a 
diverse set of mechanisms. Studies showing 
antidepressant effects of anti-inflammatory drugs 
and depressogenic effects of pro-inflammatory 
drugs in patients and rodents suggest a specific 
role for the immune system [58,59]. You et al. 
[60] reported that the levels of pro-inflammatory 
cytokines were positively regulated in rodents 
exposed to UMCS model while anti-inflammatory 
cytokines have been inhibited. In view of the 
capacity of some plant lectins to modulate 
nociception and inflammation, it has been 
hypothesized whether these proteins can have 
any effect on other processes that share some 
pathways and molecular agents, like depression 
and anxiety. 

 
3.3 Lectins against Anxiety and 

Depression 
 
Lectins isolated from plants have gained 
prominence in studies of neurobiological 
modulation, being promising biomolecules with 
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effects on the CNS, demonstrating responses 
that are involved in behavioral regulation, 
neuroplasticity, and neuroprotection [61]. These 
effects can occur through the interaction of these 
lectins with glycoconjugates present on the cell 
surfaces of the CNS, which act as cell regulators 
and are actively involved in the modulation of 
signal transduction [62]. Alternatively, lectins can 
have therapeutic effects on neurological 
disorders because they possess                                    
anti-inflammatory action, since neuropathies 
require complex signaling, and varied metabolic 
cascades for pathophysiological development 
[63,64,65,66]. 

 
The lectin from Canavalia brasiliensis seeds 
(ConBr), a glucose/mannose-binding protein, 
when administered by intracerebroventricular 
(i.c.v) route in Swiss mice, showed an 
antidepressant effect in FST model that was 
dependent on the activation of serotonergic 
(5HT1 and 5HT2 receptors), adrenergic (α1-
adrenadrenergic receptor) and dopaminergic (D2 
receptor) systems [67]. Rieger et al. [68] showed 
that ConBr administered centrally (i.c.v) in Swiss 
mice exerts an antidepressant-like    effect in the 
FST assay by a mechanism involving inhibition of 
the glutamatergic system (NMDA receptors)  and 
L-arginine–NO–cGMP pathway. It is interesting 
to mention that ConBr showed antinociceptive 
activity both peripheral and central, mediated by 
the opioid system and involving δ-and κ-
receptors [69]. 

 
FTL (frutalin), α-D-galactose-binding lectin from 
Artocarpus incisa seeds, administered by 
intraperitoneal (i.p) injection in Swiss mice, 
presented an antidepressant-type effect in 
neurobehavioral models of depression (FST and 
TST). This effect was mediated by the 
glutamatergic system through NMDA receptors 
and the nitrergic pathway (L-Arginine/NO/cGMP) 
[66]. FTL was also reported to be able of 
reducing acute and neuropathic nociceptive 
behaviors in rodent models of orofacial pain, with 

action mediated by TRPA1, TRPV1 and TRPM8 
receptors [70]. 
 
Araucaria angustifolia seed lectin (AaL), a N-
acetyl-D-glucosamine-specific lectin, 
administered intraperitoneally, reduced 
locomotor activity of Swiss mice in the OFT test 
similar to diazepam, an anxiolytic drug. This 
anxiolytic effect was mediated by a GABAergic 
mechanism [71, 72]. DAL, a lectin isolated from 
the seeds of the Dioclea altissima with binding 
affinity to D-glucose or D-mannose, showed 
anxiolytic-like effect in the OFT and EPM tests 
when administered (i.p.) in Swiss mice. Its effect 
was mediated by the serotonergic and 
GABAergic systems as well as NO pathway [73]. 
 
Conversely, a lectin from seeds of Vatairea 
macrocarpa (VML) – a protein with galactose/N-
acetyl-galactosamine binding specificity– 
produced a depressive-like behavior in the FST 
test when administered centrally (i.c.v) in Swiss 
mice, which was associated with an 
neuroinflammatory action [74]. In addition, the 
lectin FTL presented a possible anxiogenic-like 
effect observed in the EPM test when 
administered (i.p.). in Swiss mice [66]. Thus, it is 
important to use combinations of batteries for 
testing anxiety, depression, despair, and 
anhedonia behaviors in the studies with lectins. 
 
Although the direct relation between central 
effects of lectins and other biological activities 
described for them is not clear in literature, some 
association can be suggested. For example, the 
antidepressant and antinociceptive effects of FTL 
were blocked with pre-treatment with L-NAME (a 
non-specific NOS inhibitor), suggesting 
involvement of the L-arginine-NO pathway in 
both effects [66, 75]. In contrast, the depressive-
like effect of VML can be directly associated with 
its pro-inflammatory effect [74,76,77]. Table 1 
describes a possible relation between the central 
effects of the lectins described here and other 
biological activities of them. 

 
Table 1. Central effects of plant lectins and possible related biological activities 

 

Lectin Central effects Other activities Reference 

Araucaria angustifolia seed lectin (AaL) Anxiolytic Anti-inflammatory [71] 

Artocarpus incisa seeds lectin (FTL)  

 

Antidepressant 
and anxiogenic 

Antinociceptive 
effect 

[75] 

 

Canavalia brasiliensis seeds lectin (ConBr) Antidepressant Antinociceptive [69] 

Vatairea macrocarpa seeds lectin (VML) Depressive-like Pro-inflammatory  [76, 77] 
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Fig. 1. Hypothetical mechanisms of antidepressive effects of lectins. The lectin (red circle) can 

bind directly to serotonergic (5HT1 and 5HT2 receptors) and dopaminergic (D2 receptor) 
receptors or can stimulate the binding of the ligand neurotransmitter, activating these 

systems. The stimulation of 5-HTR and D2R leads to activation of inhibitory G proteins (Gi), 
decreasing the activity of adenylyl cyclase. Lectin can also bind to NMDA receptors or prevent 
the binding of glutamate to them, which leads to blockage of Ca

2+
 influx through the receptor 

pore channel, inhibiting glutamatergic system. In addition, lectin can inhibit the activation of L-
arginine–NO–cGMP pathway. In view of their immunomodulatory properties, lectins can 

ameliorate the inflammatory framework associated with depression by reducing the circulating 
levels of pro-inflammatory cytokines and C-reactive protein 

 
4. CONCLUSION 
 
Previous works have shown the anti-
inflammatory and antinociceptive activities of 
lectins as well as some reports on antidepressant 
activity. The mechanisms by which lectins can 
modulate depression or anxiety frameworks are 
still unclear but it has been hypothesized that 
these proteins can act on the molecular basis of 
these pathologies: the monoaminergic system. 
Thus, pathways associated to serotonergic, 
adrenergic, dopaminergic, and glutamatergic 
systems have become of interest by researchers 
in order to understand the lectin physiological 
effects in depression and anxiety. In addition, 
possible correlations between the modulation of 
inflammatory responses and antidepressant and 
anxiolytic effects of lectins should gain attention 

in the next years. In summary, important 
windows had already been open by researchers 
and preclinical studies with lectins have indicated 
these proteins as candidates for alternative or 
complementary agents in therapies of depression 
and anxiety disorder. 
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