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ABSTRACT 
 

We study a nonlinear random reaction-diffusion problem in abstract Banach spaces, driven by a 
real noise, with random diffusion coefficient and random initial condition. We consider a polynomial 
non linear term. The reaction-diffusion equation belongs to the class of parabolic stochastic partial 
differential equations. We assume that the initial condition is an element of Hilbert space. The real 
noise is a Wiener process. We construct a suitable stochastic basis and define the solution of 
reaction-diffusion problem in the weak sense. We define the stationary process in abstract Banach 
spaces in the strong sense of Doob-Rozanov. That is, the probability density function of the 
stochastic process is independent of time shift. We define the invariant measure for random 
reaction-diffusion equation in the sense of Arnold, DaPrato, and Zabczyk [1,2]. In other words, we 
define the invariant measure for random dynamical system, associated with random reaction-
diffusion problem. 
Using the Variation Inequalities Theory, we prove the uniqueness of stationary solution for 
nonlinear random reaction-diffusion problem. The obtained theoretical results have several 
applications in Quantum Physics, Biology, Medicine, and Economic Sciences. Especially, we can 
study the existence of stationary solution for the stochastic models of tumor growth. 
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1. INTRODUCTION 
 
Random reaction-diffusion equations form an 
important part of the theory of random partial 
differential equations that is both very rich 
changelings mathematically and is related in 
physics, chemistry, biology, medicine, 
astronomy, and Economic Sciences. To be 
specific, in this paper we consider a random 
reaction-diffusion equation with a polynomial 
nonlinearity. Of course, we can consider more 
general mathematical models. For example, we 
can investigate the random nerve equations, 
random Lotka- Volterra equations, random 
Boussinesq- Glover equations, random 
superfluid equations, random Belousov-
Zhabotinsky reaction equations in chemical 
dynamics, etc. 
 
Let (Ω, F, (F�)���, �) be a stochastic basis, and let 
� (�) = (��(�), ��(�), …… , ��(�))  be a standard 
m-dimensional Wiener process defined on 

(Ω, F, (F�)���, �). Let ��(�) be a stationary solution 
of the Ito equation in �� 
 

��(�) = ��(�)��+ ��(�)�� (�), �≥ 0,         (1) 
 
where a(∙) and b(∙)  satisfy the assumptions of 
section 2.1 below. We look at the process 
(Ω, F, (F�)���, �, (ξ(t))���) as a model of real noise, 
stationary in time. Having assumed that the noise 
process is given, we consider the random 
nonlinear evolution equation in Hilbert spaces 

driven by the real noise ��(�) : 
 

��(�,�)

��
+ � ���(�, �), �(�, �)� = � ���(�, �)� , �≥

0,   � ∈ Ω,                                                    (2)    
 

Where {�(�,∙), � ∈ �� } is a family of monotone 
operators in a Gelfand triplet ⊂ � ⊂ �′ , 
 
and f is a function from �� �� �′  (see           
section 2.2.1 for detailed assumptions on A      
and f). The aim of this paper is to prove the 
existence of a stationary solution of equation (2). 
Note that this equation does not contain Ito 
differential. 
 
In the last few years a lot of papers appeared on 
invariant measures and stationary solutions for 
Ito type equations in Hilbert spaces. The case of 
real noise is not treated. In comparison with the 
existing literature, we mention two aspects of this 
paper. 

The first one is that we want to consider the real 

noise ��(�)  as a given Markov process,     
stationary in time. Corresponding to this 

process��(�), we would find a stationary solution 
of equation (2). This fact motivates some 
technical details of the following analysis, like the 
choice of a special stochastic basis (see section 
3.1) and Theorem 3.1, which are novel with 
respect to the literature conceding with Ito 
equations. 
 
The second point is that we shall not assume any 
compactness. At our knowledge, all the methods 
know in the literature to prove the existence of 
invariant measures or stationary solutions use 
some compactness, coming from the topologies 
of the function spaces involved. It is well-know 
that the structure of the monotonicity allows to 
prove existence of solutions without any 
compactness assumption.  
 
At the end of the paper we give some 
applications, which contributed to motivate our 
analysis. 
 

2. EXISTENCE OF A STATIONARY 
SOLUTION 

 

2.1 Definition of Stationary Solution 
 
We introduce now the stochastic basis necessary 
for the sequel. Let us choose an invariant 

measure ��  for equation ��(�) = ���(�)���+

���(�)��� (�),     �≥ 0  with finite moments of 

every order, or at least with finite moment of 
order r, with r given by assumption (A.4) there 
are a function �:�� → [0,∞)  and constants 
�≥ 2, �∈ �, �> 0, �≥ 0, �� > 0,  such that for 

every � ∈ ��, � ∈ � , 
 

2 〈�(�, �), �〉+ �|�|��(�) ≥ �‖�‖�,  and  
�(�) ≤ ��(1+ |�|

��
� ). 

 

Let (Ω�, ��, (��
�)���, �

�)  be any stochastic basis 
supporting a m-dimensional standard Wiener 
process � (�). Let 

 
Ω = �� × [0,1]×Ω

�
, � = �(��)⨂�(0,1)⨂��, 

 
 F� = �(��)⨂�(0,1) ⊗ ��

�  , � = ��⨂�⨂�� (3) 
 
where B stands for the Borel �−algebra , and � 
is the Lebesgue measure on [0,1]. 
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Consider � (�) as a Brownian motion on the new 
stochastic basis (Ω, �, (��)���, �). 
 

In other words, define 
 

��(�, �, �, ��) = � (�, ��),   � ∈ �� ,

�∈ [0,1],    �� ∈ Ω� 
 

then denote ��(�) simply by � (�). 
 

Let ��� ∶Ω → �� be defined as  
 

���(�, �,�
�) = �, � ∈ �� , �∈ [0,1], �� ∈ Ω�  (4) 

 

Then law of ��� is ��. By the assumption of the r-

th moment of �� , we have ��� ∈ ��(Ω, ��, �, �
�). 

Since �� is an invariant measure, and equation 

(3) defines a Markov process, the solution��(�) of 

equation ��(�) = ���(�)���+ ���(�)��� (�),     �≥

0,  with the initial condition ���   is a stationary 
process. We have used the component�� of the 

stochastic basis to construct ���    and the 

stationary solution ��(�). The component [0,1] of 
the stochastic basis will be used to construct 
suitable initial conditions for the Galerkin 
approximations of the monotone equation 
(equation with monotone operator). Given the 
stochastic basis and the stationary 
process �(�, �)  just defined , we say that a 

stochastic process ��(�  in the sense of the 
previous subsection, with respect to some initial 
condition �� satisfying (10), and in addition � is a 
stationary process in H. This means that for all 
�∈ �, 0 ≤ �� < �� < ⋯ < �� ��� ℎ> 0,  and joint 
law of random element 
 

(�(�� + ℎ), �(�� + ℎ), … , �(�� + ℎ) ∈ �� 
 

is independent of h. 
 

Remark 3. The definition given above 
corresponds to the viewpoint that the noise is a 
given process. So, in a sence, we look for a form 
of strong solutions, instead of weak solutions. 
However, we choose a suitable stochastic basis 
from the beginning so that our concept is in 
betweens from weak and strong solutions, see 
[3,4]. 
 

A stronger version of the previous would require 

that the joint process (��(�), �(�)) is stationary in 
�� × �. In fact, this is the form of stationarity that 
we shall prove. 
 

3. MAIN RESULTS 
 

Call the definition of � .Let �> 0 be a constant 
satisfying the (Poincare type) inequality 

|�|� ≤ �‖�‖�,    ∀�∈ � 
 
Theorem 3.1  
 
Asume conditions: 
 
(A.1) for every ∈ �  , � → �(�, �)  is a strong 
measurable mapping from ��  to �� ,bounded in 
bounded sets,  
 
(A.2) for every  � ∈ ��      � ,�, �∈ � , the function 
 
�→ 〈�(�, �+ ��), �〉 is continuous on R. 
 
On the stochastic basis (3) consider the random 

variable ���   defined by (4) and the associated 

stationary solution ��(�)   of equation ��(�) =

���(�)���+ ���(�)��� (�),     �≥ 0,. 

 
Under the hypotheses  
 
(A.1) for every, � → �(�, �)  is a strong 
measurable mapping from ��  to ��, bounded in 
bounded sets,  
 
(A.2) for every  � ∈ ��      � ,�, �∈ � , the function 
 
�→ 〈�(�, �+ ��), �〉 is continuous on R. 
 
(A.3) there is a constant �� ∈ �  such that for 
every ∈ �� , � ,�∈ � 
 

2〈�(�, �) − �(�, �), � − �〉+ ��|� − �|� ≥ 0, 
 
(A.4) there are a function �:�� → [0, ∞)  and 
constants �≥ 2, �∈ �, �> 0, �≥ 0, �� > 0,  

such that for every � ∈ ��, � ∈ � , 
 

2 〈�(�, �), �〉+ �|�|��(�) ≥ �‖�‖�,  and  
�(�) ≤ ��(1+ |�|

��
� ) 

 
(A.5) with p as above, there is a constant �� > 0 
such that for every ∈ �� , � ∈ � , 
 

‖�(�, �)‖�′ ≤ ��(1+ ‖�‖���) 

 
Finally, let � = �(�):�� → �′  be a given strong 
measurable function which satisfies the 
assumption (f.1) there is constant �� > 0  , such 

that for all � ∈ �� 
 

‖�(�)‖
�′
�′

≤ ��(1+ |�|
��
� ) 

 

Where �′  is the conjugate exponent of p (i.e 
�

�
+

�

�′ = 1) suppose that �<
�

�
.  
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Then equation 
��(�,�)

��
+ �(�(�, �) , u( �,�)) =

���(�, �)� , �≥ 0, � ∈ Ω, with the initial condition 

�(0, �) = ��(� ),   � ∈ , satisfying �� ∈
��(Ω, F�, �, �)  , has a stationary solution. 
 
Proof 
 
Step 1.Invariant measure for the approximating 
problem 
 
For each given natural number n, let as consider  
 

���(�,�)

��
+ ����(�, �), ��(�, �)�= ����(�, �)�, �≥

0,   � ∈ Ω                                                        (5) 
 

��(�) = ���(�)���+ ���(�)��� (�) , �≥ 0  (6) 

 
With initial conditions 
 
��(0, �) = ���(� ),     �(0, �) = ��(�)                (7) 
 
on the stochastic basis (3). In (7) choose as �� 

the random variable ���  defined by (4). Moreover, 
choose��� = 0 for all n. 
 
Corresponding to these initial conditions, let 

(��(�), ��(�) ) be the solution of (5)-(6). Denote by 
��
�  the law of 

(��(�), ��(�) �� � × �� ��� �� ��
� �ℎ� ���  �� � ×

�� defined as  
 

��
� =

�

�
∫ ��

��

�
��                                            (8) 

 
Both ��

�  and ��
�  have marginal �� �� �

� . The 
family{��

�  , �≥ 0} is tight. To prove this, in the 
inequality 
 

|��(�, �)|
� ≤ ���|���(�)|

� + ∫ ��(���) ∙ [� −
�

�

� + (���(�) + ��)(1+ |�(�)|
��
� )]∙ �� ,  for all 

�∈ � , �> 0 , � − �. �. � ∈ Ω                       (9) 
 
take � > 0 so small that � < 0. Note that 
 

����(�) �
��
�

            is constant. 

 
Hence  
 

sup
���

� � ��
(���)∙(�����(�) �

��
�

) ∙ ��< ∞
�

�

 

 
we obtain 
 

�|��(�)|
� ≤ ��,     ∀�∈ �  , ∀�≥ 0            (10) 

for some constant �� > 0 indenpendent of � and 
�. The bound (10), along with the uniform bound 

for ����(�) �
��
�

, imply by Chebishev that the    

family of measures {��
� , �≥ 0} is tight. In fact the 

family 
 
 {��

� , �≥ 0,�∈ �} is tight, but it Isere not easy to 
use this additional information for a more direct 
proof of the Theorem. 
 
Since we have proved that the family {��

�, �≥
0}is tight, the family{��

� , �≥ 0} is also tight. By 
Prohorov theorem, applied for every given �, 
there exists a probability measure ��  on � ×��  
that is weak limit of some sequence 
{���

� }�∈�.Clearly, ��has marginal �� on ��. 

 
By a classical argument (see [5]) and based on 
the Markov and Feller property for system 
(13),(14) we can prove that ��  is an invariant 
measure for this system. We have used the 
Krylov-Bogoliubov method, except that we have 
stressed the fact that all measures �� have the 
same marginal ��. 
 
Finally, we notice that there exists a constant �� 
independent of n, such that  
 

∫ (|ℎ|� + |�|�)���((ℎ, �) ≤ ��  ,   ∀�∈ �
�×��

    (11) 

 
To prove this inequality, let {��(ℎ, �)}�∈�  be a 
sequence of continuous bounded function 
(ℎ, �) ∈ � × ��, which converges as � → ∞, from 
below, to the function  
 
(ℎ, �) → |ℎ|� + |�|�  defined on � × �� 
 
We have 
 

� ��(ℎ, �)��
��(ℎ, �)�= lim

�→∞
��(ℎ, �)����

��(ℎ, �)�
�×��

=
1

�
� �(|��(�)|

�
�

�

)��+ �(���(�) �
��

�
) ≤ �� 

 
for some constant ��  independent of  �  and �  
(this follows from (10) and the proposition that 

�(���(�) �
��
�

 is constant) 

 
Summarizing, we prove that there exists an 
invariant probability measure �� for the system 
(14)-(15), with marginal �� on ��  , satisfying the 
inequality (4). 
 
Step 2. Stationary solutions for the approximating 
system 
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Again, we consider the system (5)-(6) for each 
given � separately. On the stochastic basis (3) 
(in fact, it is sufficient to use the component 
�� × [0,1] of the basis), for each � there exists an 
��  measurable random variable ���,�  such that 

(��,�  ���,�)  has joint law �� . This follows from 
Proposition 3.1 below:in the assumptions of the 
Proposition we take � = �� .Then, the 
Propositions gives the random variables �  and 
� , and we denote �  by ���,� , so that � =

(��,�  ���,�)  (recall definition (4) of ���) 
 

By the Markov property, the solution (��(�), ���(�)) 
of the system corresponding to the initial 

condition (��,�  ���,�)   is a stationary process in 

�� × � 
 
Finally, we have  
 

� �����,��
�
� ≤ �(|���|

�) ≤ �� ,   ∀�∈ �        (12) 

 
Step 3. Limiting procedure 
 
Let as now study the convergence, as�→ ∞, of 
the interval [0,T]. Let as apply part (iii) of Lemma 

2.1 with initial conditions (��,�  ���,�)  found in the 
previous step. Therefore, there is a subsequence 
����(�) , still denoted by ���(�)  for simplicity of 

notation, such that 
 

���(�) → �� weakly in ��(Ω ×[0, �];�) 
 

���(�) → �� weak-star in ��(Ω; �∞(0, �; �)) 
 

 ��(��, ���) → ��(��, ��  ) weakly in ��
′
�Ω ×[0, �];�′� 

 
����(�)

��
=

���(�)

��
 weakly in    ��

′
�Ω ×[0, �];�′� 

 
���(0) → �� weakly in ��(Ω; �) 

 
���(�) → ��(�) weakly in ��(Ω; �) 

 
Using conditions (A.2)-(A.4) and the classical 
monotonicity argument of [6] or [5]. A fortiori we 
can prove that  
 

�� ∈ ��(Ω, �([0, �];�)) ∩ ��(Ω ×[0, �];�) 
 
by classical arguments. The continuity of paths 
can be proved path by path, using the 
deterministic technique as in [7]. 
 
By a diagonal procedure, the construction of the 
weakly convergent subsequence can be 

performed in such a way that the subsequence 
converges over each interval [0,T] to the same 
limiting process u.  
 
In order to prove the stationary of the solution�� =
��(�, �) we need (19) and the proposition 
 

��� → �� weak-star in ��(Ω, �∞(0, �; �)) 
 
If  
 

�� = ���  ��� in ��(Ω, �∞(0, �; �)) 
 

� = ���  �� in ��(Ω, �∞(0, �; �)) 
 
then (by Prohorov Theorem) there exists a 
subsequence {���}of the sequence �� such that 

��� → � �� � → ∞ (in the weak sense). The proof 

is complete. 
 
Let ��, [0,1], and H be endowed with Borel �- 
algebras, and let ʎ be the Lebesgue measure on 
[0,1]. The next Proposition 3.1, used above in 
Step 3 deals with random variables from 
�� × [0,1], to �� × �. It is assumed to have the 
product measure ��⨂� on �� × [0,1],. Given a 
measure � ���� × � , we can always find a 
random variable. 
 

� → �� × [0,1]→ �� ×  �  
 
such that �(��⨂� )=  � . The Proposition 3.1 
assert that, if � has marginal�� �� �

� one cane 
choose ɸ as a special form. The proof is adapted 
from Skorohod Representation Theorem (see [8], 
pp. 9-10 and [9])  
 
Proposition 3.1 Given the spaces ��, [0,1], and H 
be endowend with Borel �- algebras, given a 
measure �� �� �

�, the Lebesgue measure ʎ on 
[0,1], and a measure � on �� ×� with marginal 
�� �� �

�. Then, there exists a random variable. 
 

�: �� ×[0,1]→ � 
 
such that, denoted by 
 

�: �� × [0,1]→ �� ×� 
 

the mapping 
 

�(�,�) = ��, �(�, �)�,      � ∈  ��,      �∈  [0,1] 
 

we have 
 

�(��⨂� )= �. 
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3.1 Sum of Monotone Operators 
 
It is useful to generalize Theorem 3.1 in the case 
of finite sum of monotone operators. For each 
� = 1,2,… , � we assume to have a real reflexive 
separable Banach space �� ⊂ � (norm ‖⋅‖�) , 

densely embedded into H, with the usual 
identification. 
 

�� ⊂ � ⊂ ��
′ 

 

Moreover, we assume to have a family of 

nonlinear operators from ��  to ��
′ , denoted by 

��(�,∙) ,  � ∈ �� , satisfying assumptions (A.1)–
(A.5) with constants ��, ��, ��, ��, ��, ��, ��� possibly 

depending on � . Finally, we assume to have 
strongly measurable functions. 
 

�� = ��(�):�
� → ��

′ 
 
statisfyng assumption (f.1)  
 
We consider the random evolution equation 
 

��(�,�)

��
+ ∑ ��(��

�
��� (�, �), �(�, �)) =

∑ �� ���(�, �)�  ,      �≥ 0,   � ∈ Ω�
���              (13) 

 

where ��(�, �), denotes the solution of equation 
��(�) = ��(�)��+ ��(�)�� (�),     �≥ 0,  defined in 
section 3.1, on the stochastic basis (Ω, �, ��, �) 
given by (3). The definition of the stationary 
solution is the same as the one given in section 
3.1. Let �� > 0  be a constant satisfying the 
inequality 
 

|�|� ≤ ��‖�‖�
�     ,   ∀� ∈ ��, � = 1,2,… , � 

 
Theorem 3.2  Assume that 
 

�(�� −
��
��
) < 0

�

���

 

 
Then the equation (32)(6) has a stationary 
solution. The proof in the same as the one of 
Theorem 3.1 
 

4 APPLICATIONS IN NON-LINEAR 
RANDOM REACTION – DIFFUSION 
EQUATION WITH REAL NOISE 

 
In this section study the random reaction-
diffusion equation with polynomial nonlinearity 
 

��

��
= �∆� − ∑ ��(�, �)�

�����
���                       (14) 

� ∈ � ⊂ ��,   �≥ 0,    �∈ � , where �  denotes an 
open bounded set of �� . The associated initial 
and boundary conditions are 
 

�(0, �,�) = ��(�, �)                                 (15) 

 
And 
 

�(�, �, �) = 0 ,      � ∈ ��                           (16)  

 
Assume that the diffusion coefficient � = �(�) is 
no negative, bounded, measurable in � , and 
independent on x. 

 
Assume that the random function ��(�, �) , are 
measurable in (�, �)  and there are the real 
constant  �� < ��  and positive constants 
����� < ����� such that 

 
�� ≤ ��(�, �) ≤ ��,        ��� 1≤ ℎ

≤ 2�− 1 ��� ��� ���ℎ(�, �)

∈ � × ��  
 
On the random function ��(�, �) we may impose 
the conditions: 
 
� → ��(�, �)  is measurable in �  ,belongs to 
���(�)  , and satisfies the condition: 
 

|��(�, �)|���(�) ≤ �(1+ |�|
��
� ) 

 
for some positive constants C and r 
 
Assume that the initial conditions ��(�, �) 
satisfies �� ∈ ��(Ω, F�, �, �) 
 
Thanks to the previous assumptions and Young 
inequality, there is constant �̅ > 0 such that 

 

(� ��(�, �)�
�)� ≥

1

2

����

���

������
�� − �̅ 

 
For the abstract formulation of the problem 
(33)(7), (34)(8), (35)(9), let  � = ��(�),   � =
��
�(�)  

 
�′ = ���(�),     �(�, �) =

∑ ��(�, �)�
�   ,          �(�) = −��

����
��� (�, �), 

 
The proof of the conditions (A.1)-(A.5) and (f.1) is 
classical. As to the disiparivity condition, we have 
� = 0 , � = 0     , � = 1 2�����⁄  

 
Thus, we can apply Theorem 3.1 and obtain. 
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Theorem 4.1 
 
Under the previous assumptions, the nonlinear 
random reaction diffusion problem (14), (15), (16) 
ad mints an unique stationary solution. 
 
Corollary 4.1 
 
Under the suitable assumptions, we can prove a 
similar result for the random Hodgkin-Huxley 
equations, Fitz –Hugh-Nagumo equations, Lotka- 
Voltera equations, Boussinesq –Glover equation, 
heat equation, Belousov- Zhabotinsky equations 
in chemical dynamics. For more details regarding 
to the random versions of above mentioned 
equations, see Chung [10], Cordoca and Bras 
[11], Flandoli and Kolaneci [9], Freeze [12], 
Kolaneci [13], Kutler [14], Murray [15], Sagar [4], 
Stengel [16] and [17-20]. 
 
5. CONCLUSION 
 
In this paper we investigate uniqueness of 
stationary solution for nonlinear random reaction-
diffusion equation in Banach spaces, driven by a 
real noise. We assume that diffusion coefficient 
is a random variable and the initial condition is a 
random function. The real noise process is 
defined as a stationary solution of ito stochastic 
differential equation in finite dimensional 
Euclidian space or Hilbert space. To be specific, 
we consider a random reaction – diffusion 
equation with a polynomial nonlinearity. Of 
course, we can investigate more general 
mathematical models, and suggest several 
applications, especially Boussinesq –Glover 
equation. 
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