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ABSTRACT 
 

Flood risk management is essential in Bangladesh, frequently affected by severe flooding due to its 
location at the confluence of the Ganges, Brahmaputra, and Meghna rivers. This study assesses 
the effectiveness of Gumbel and Log-Pearson Type III (LP3) probability distributions for flood 
frequency analysis at the Bhairab Bazar station in the Upper Meghna River. Using 32 years (1990-
2021) of annual peak discharge data from the Bangladesh Water Development Board, flood 
magnitudes were predicted for various return periods. The Gumbel distribution predicted discharges 
from 10,709.71 m³/s for a 2-year return period to 24,519.62 m³/s for a 200-year return period, while 
LP3 estimates ranged from 10,701.51 m³/s to 22,911.84 m³/s for the same periods. The peak over 
threshold (POT) approach yielded higher discharge estimates, showing its sensitivity to extreme 
events. For a 200-year return period, the Gumbel-POT and LP3-POT estimates were 22,117.40 
m³/s and 21,964.07 m³/s, respectively. Goodness-of-fit tests, including Kolmogorov-Smirnov, 
Anderson-Darling, and Chi-squared, favored the LP3 distribution for both extreme value series 
(EVS) and POT data, especially in critical tail regions. A rating curve was also developed using the 
generalized reduced gradient algorithm to better understand the river's hydraulic behavior. These 
findings are crucial for local flood management strategies. Discharges exceeding critical thresholds, 
like the 5.8-m danger level and 6.8-m severe flood level, highlight the need for robust measures. 
This analysis offers essential insights for designing hydraulic structures, planning flood mitigation, 
and improving prediction models to enhance flood risk assessments in the Upper Meghna River 
basin. 
 

 
Keywords: Flood frequency analysis; rating curve; extreme value series; peak over threshold; flood 

risk management. 
 

1. INTRODUCTION 
 

Flooding is a global hazard with devastating 
impacts, including loss of life, economic 
destruction, and widespread community 
disruption [1-3]. The risk of floods is exacerbated 
by climate change, which contributes to more 
intense rainfall and rising sea levels, thereby 
increasing flood risks [4]. This underscores the 
need for robust flood risk management 
strategies, a necessity highlighted by Tanoue et 
al. [5] who point to the escalating hazards posed 
by such environmental changes. This issue is 
particularly acute in Bangladesh, a nation 
uniquely vulnerable due to its geographical 
positioning at the confluence of three major 
rivers: the Ganges, Brahmaputra, and Meghna 
[6,7]. Monsoon rains combined with snowmelt 
from upstream regions frequently cause these 
rivers to overflow, resulting in significant flooding 
events that have repeatedly struck the region [8]. 
The geographical situation of Bangladesh, 
coupled with its high population density and an 
economy deeply reliant on agriculture—a sector 
highly susceptible to flooding—further intensifies 
its vulnerability. 
 

Over the decades, Bangladesh has experienced 
numerous severe floods, with particularly 
disastrous events occurring in 1988, 1998, and 
2007 [9]. These floods inundated large tracts of 

land, displaced millions of people, and led to 
substantial economic losses. For instance, the 
1988 flood affected 61% of the country, 
rendering numerous people homeless and 
creating significant economic upheaval [10]. The 
history of these catastrophic floods underscores 
the urgent necessity for enhanced flood 
management and mitigation strategies in the 
region. Historical data, such as that from England 
Jr et al. [11] highlight the recurring nature of 
these flooding events, necessitating ongoing 
evaluation and enhancement of existing flood 
management practices. 
 

Despite global and regional efforts to manage 
flood risks, the challenge remains formidable due 
to both natural and human-induced factors [2,12]. 
Floods are the primary cause of deaths related to 
natural disasters globally, responsible for 6.8 
million fatalities in the 20th century [13]. The 
number of individuals impacted by natural 
disasters has risen sharply, with the annual 
average increasing from 147 million in the 1980s 
to 211 million in the 1990s, with floods playing a 
significant role in this increase [14]. Traditionally, 
structural measures like dams and levees have 
been central to mitigating flood impacts [15]. 
These strategies depend on accurate river flow 
predictions, achievable through comprehensive 
hydrological studies and flood frequency 
analysis. Flood frequency analysis helps 
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estimate the likelihood of different magnitudes of 
flood events using various probability 
distributions based on historical discharge data, 
essential for designing hydraulic structures and 
flood forecasting [16]. 
 
The selection of probability distributions for flood 
frequency analysis has been a major research 
focus. Flood frequency analysis estimates flood 
magnitudes for various return periods, which is 
essential for designing hydraulic structures and 
planning flood mitigation measures [16]. The 
fundamental premise is that past hydrological 
data can predict future flood events. Models such 
as the Generalized Extreme Value (GEV), Log-
Pearson Type III (LP3), and Gumbel distributions 
are frequently used, though no single model has 
gained universal acceptance [17,18]. The LP3 
model, recommended by the United States 
Water Resources Council, is particularly valued 
for its ability to handle the significant skewness 
and kurtosis typical of peak flood data [19]. In 
Bangladesh, limited research using empirical and 
hydrological models has traditionally favored the 
Gumbel and LP3 distributions for flood risk 
management [20]. Nonetheless, there remains a 
persistent need for regional flood frequency 
analyses in this country. 
 
The present study focuses on the Upper Meghna 
River, a less-researched but crucial area for 
Bangladesh's water resource management. 
Factors like urban expansion, wetland 
degradation, and infrastructural developments 
have heightened flood risks in its basin. Our 
research aims to address these challenges by 
evaluating the effectiveness of the Gumbel and 
LP3 distributions for flood frequency analysis in 
the Upper Meghna River across various return 
periods. The study compares these models and 
assesses the predicted discharge levels against 
severe flood levels identified by the Flood 
Forecasting & Warning Centre, Bangladesh 
Water Development Board (BWDB). This 
comparative analysis aims to assess the 
likelihood of floods exceeding critical thresholds, 
potentially leading to catastrophic overflows, and 
to provide essential insights for future flood 
planning and management initiatives. 
 

2. STUDY SITE AND METHODOLOGY 
 
2.1 Upper Meghna River Basin 
 
The Upper Meghna River basin in Bangladesh is 
critical for flood risk management. The country, 
known for its extensive river systems, has over 

7% of its land occupied by rivers. The Ganges-
Brahmaputra-Meghna catchment spans 1.6 
million km², with only 7.5% within Bangladesh, 
and the rest in India, China, Nepal, and Bhutan 
[7]. The Meghna River catchment is the smallest, 
covering about 65,000 km², with 43% within 
Bangladesh, accounting for 24% of the country's 
territory [21]. The Meghna River, the largest 
waterway flowing into the Bay of Bengal, is vital 
for the region [22]. 
 
The Upper Meghna River basin, located in 
northeastern Bangladesh, features a variety of 
morphological elements, including alluvial ridges, 
natural levees, back swamps, haors, abandoned 
channels, oxbow lakes, and non-tidal plains. The 
main study location is the Bhairab Bazar station 
(latitude: 24° 2' 44.088'' N; longitude: 90° 59' 
28.104'' E) (Fig. 1), which is essential for 
analyzing the basin's hydrology due to its 
drainage of a substantial catchment area fed by 
multiple tributaries. The basin, bordered by the 
Garo Hills to the north and the Tripura Hills to the 
south, merges into the larger Meghna River 
system flowing towards the Bay of Bengal. 
 
The Upper Meghna Basin's low-lying topography 
makes it prone to seasonal flooding during the 
monsoon from June to October, with annual 
rainfall averaging 1700 mm [7]. Heavy rainfall 
and runoff from highlands lead to rapid water 
level increases, causing frequent and severe 
floods. Bhairab Bazar station is crucial for 
monitoring water levels and flood forecasting, 
providing vital historical data for managing flood 
risks. In addition, the basin's high population 
density and reliance on agriculture and fishing 
underscore the importance of effective flood 
management to protect livelihoods and well-
being. The Upper Meghna River basin is 
essential for studying flood dynamics due to its 
geographical position, climatic conditions, and 
socioeconomic significance. Effective flood risk 
management in this basin is critical for protecting 
the local population's livelihoods. Fig. 2 depicts 
the flowchart outlining the methodologies 
employed in this study for flood frequency 
analysis at the Bhairab Bazar station in the 
Upper Meghna River basin of Bangladesh. 

 
2.2 Data Collection and Processing 
 
This study analyzes flood frequency models for 
the Upper Meghna River in Bangladesh, focusing 
on annual peak flows recorded at the Bhairab 
Bazar station over a 32-year period (1990-2021). 
The analysis assumes peak flows are 



 
 
 
 

Islam et al.; Int. J. Environ. Clim. Change, vol. 14, no. 7, pp. 749-765, 2024; Article no.IJECC.120327 
 
 

 
752 

 

independent and identically distributed [23]. 
Accurate flood frequency analyses depend on 
the quality and duration of recorded data, with 
potential inaccuracies leading to significant errors 
[24]. Continuous data series of at least 30 years 
are recommended to minimize sampling errors 
and increase reliability [25]. Larger datasets 
generally provide more reliable estimates [26]. 

The study utilizes discharge data from the 
BWDB, including daily water level and river 
discharge records, crucial for understanding 
flood dynamics and trends. The data was 
meticulously verified for accuracy and 
completeness. Initial processing involved 
cleaning the data by correcting outliers and filling 
missing values using interpolation methods. 

 

 
 
Fig. 1. Map displaying the major rivers of Bangladesh, with focus on the Bhairab Bazar station 

along the upper Meghna River 
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Fig. 2. Flowchart outlining the methodologies employed in this study 
 

 
 

Fig. 3 (a). Time series plots depicting discharges over 32 years (1990-2021), and (b) rating 
curve illustrating observed discharge versus river water level (or stage) at the Bhairab Bazar 

station along the upper Meghna River in Bangladesh 
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Fig. 3a presents time series graphs of daily 
observed discharges, highlighting significant 
trends and patterns over the 32-year period. 
These trends reveal notable inter-annual 
variability in peak discharge values, with extreme 
weather events influencing certain high flood 
years. Continuous and accurate data collection is 
emphasized for improving flood prediction 
models. In addition, Fig. 3b illustrates the rating 
curve, which shows the relationship between 
discharge and river water level at the Bhairab 
Bazar station. This curve was developed using 
the generalized reduced gradient algorithm [27] 
resulting in a stable and predictable relationship 
with a coefficient of determination (R²) value of 
0.602. This stability is crucial for accurate flood 
forecasting and management. The steepness of 
the curve indicates a high sensitivity of river 
stage to discharge changes, which is vital for 
flood risk assessment and infrastructure 
planning. 
 
For the flood frequency analysis, the dataset was 
divided into the extreme value series (EVS) and 
the peak over threshold (POT) series. The EVS 
includes the maximum annual discharge values 
from 1990 to 2021, while the POT series includes 
discharge values exceeding a predefined 
threshold, representing moderate to severe flood 
events. By selecting 32 significant peaks for the 
POT series, the study captures a comprehensive 
range of over-threshold flood events. This dual 
approach enhances the robustness of the flood 
frequency analysis by capturing the full spectrum 
of flood events, from extreme annual floods to 
frequent moderate floods. The study provides 
insights crucial for designing effective flood 
management and mitigation strategies tailored to 
the specific flood dynamics of the Upper Meghna 
River. 
 

2.3 Probability Distribution Models 
 
To analyze the flood frequency of the Upper 
Meghna River, we utilized two commonly applied 
probability distribution models: the Gumbel 
model [28] and LP3 model [29]. These models 
are represented by equations (1) through (13). 
 
2.3.1 Gumbel probability distribution 
 
The Gumbel distribution serves as a statistical 
model for extreme events, especially in 
regionalization procedures. It is considered a 
suitable method for predicting flood recurrence 
intervals (e.g.,[30]. The reduced variate (Yt) for a 

given return period (T) is determined using the 
following formula: 
 

Yt = - [ln {ln (T/(T- 1)}]                      (1) 
 
The reduced mean (Yn) and reduced standard 
deviation (Sn) are obtained from the Gumbel 
distribution table for the given sample size 
(number of recorded years) [28]. The frequency 
factor (Kt) is then estimated using: 

 

 Kt =
(Yt  − Yn)

Sn

                                     (2) 

 
where Kt is the frequency factor, Yt is the 
reduced variate, Yn is the reduced mean, and Sn 
is the reduced standard deviation. The predicted 
discharge is computed using the standard normal 
distribution formula for various return periods: 
 

Qp =  μ + Ktσ                                    (3) 

 
where Qp is the predicted discharge (m³/s), μ is 
the mean, and σ is the standard deviation. 
 
2.3.2 Log-Pearson Type III (LP3) 
 
The Log-Pearson Type III (LP3) distribution is a 
statistical approach employed to model 
frequency distribution values, particularly for 
predicting floods at specific locations. Also 
referred to as the three-parameter Gamma 
distribution [31,30] it has been extensively 
utilized in flood frequency analysis since its 
endorsement by the Water Resources Council of 
the United States [32]. This distribution is 
especially effective for analyzing flood peak data. 
 
To implement the LP3 model, the logarithm of 
the actual discharges (Z) is first calculated, 
followed by determining the logarithmic mean (μ) 
and logarithmic standard deviation (σ): 
 

Z = log10 Q                                                 (4) 
 
Subsequently, the coefficient of skewness (Cs) is 
computed using the logarithmic discharges (Z). 
For a given return period (T), the probability (P) 
is then calculated as follows: 
 

P =  
1

T
 (%)                                                   (5) 

 
Using the standard normal distribution table, we 
interpolated to find the standard normal deviate 
(z). The frequency factor (Kt), which depends on 
the coefficient of skewness (Cs) and the return 
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period (T) [33], is adjusted using the formula 
proposed by Kite [34]: 
 

Kt= z + (z2 − 1)k +
1

3
 (z3 − 6z)k2 − (z2 − 1)k3 + zk4 +

1

3
k5  (6) 

 

where, k =  
Cs

6
                                            (7) 

 
The predicted logarithmic discharge is calculated 
as: 
 

qp =  μ + Ktσ                                   (8) 

 
where qp is the predicted logarithmic discharge. 
The predicted discharge (Qp) in m³/s is then 
obtained by taking the antilog of qp [35]: 
 

Qp = antilog(qp)                                        (9) 

 

2.4 Goodness of Fit Test 
 
The suitability of these distributions for a specific 
study can be evaluated using various statistical 
techniques, such as goodness of fit tests [36]. 
These tests assist in identifying the most 
appropriate probability distribution method rather 
than simply discarding others [31]. They assess 
the difference between observed and expected 
values derived from the applied distributions. We 
employed the following three goodness of fit 
tests: 
 
2.4.1 Anderson- Darling (A-D) 
 
This test evaluates the fit of an observed 
cumulative distribution function (CDF) against an 
expected CDF, placing additional emphasis on 
the tails of the distribution [30]: 
 

D2 =  −m −
1

m
∑ (2j − 1) × [ln F(yj) + ln(1 − F(ym−j+1))]m

j=1   (10) 
 

2.4.2 Kolmogorov–Smirnov (K-S) test 
 

The Kolmogorov–Smirnov (K-S) test evaluates 
the alignment of probability distribution methods, 
suitable even for small sample sizes. It checks if 
a sample originates from a specified continuous 
probability distribution using the empirical CDF 
[30]: 
 

Fm(y) =  
1

m
 × [observation number ≤ y]         (11) 

 

The test statistic (K) is the maximum vertical 
distance between the hypothetical and empirical 
CDFs: 
 

K =  max
1≤j≤m

(F(yj) −
j−1

m
,

j

m
− F(yj))        (12) 

2.4.3 Chi-squared test 
 
The chi-squared test assesses whether a sample 
is drawn from a population with a specified 
distribution. It utilizes binned data, and the value 
of the test statistic depends on the binning. 
Pearson [29] recommended using the chi-

squared (x2) distribution for this test [30]: 
 

x2 =  ∑
(Oj−Ej)2

Ej

l
j=1                                      (13) 

 
where Oj is the observed frequency, j is the 
number of observations, and Ej (the expected 
frequency) is calculated as F(Y2) − F(Y1), with F 
being the cumulative distribution function, l being 
1 + log2 m, and m being the sample size. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Flood Frequency Estimates for 

Various Return Periods 
 
Estimating flood frequency for various return 
periods is essential for effective flood risk 
management. A comparative analysis of flood 
frequency models for the Upper Meghna River at 
Bhairab Bazar station offers valuable insights. 
Table 1 shows predicted discharges for return 
periods from 2 to 200 years using the Gumbel 
distribution. For the EVS data series, discharges 
start at 10,709.71 m³/s for a 2-year return period 
and rise to 24,519.62 m³/s for a 200-year return 
period. The POT data series predicts higher 
discharges, starting at 14,397.00 m³/s for a 2-
year return period and reaching 22,117.40 m³/s 
for a 200-year return period. These higher values 
from the POT series indicate its effectiveness in 
capturing more extreme flood events, which is 
crucial for estimating higher discharges for longer 
return periods [37]. 
 
Similarly, Table 2 provides flood frequency 
estimates using the LP3 distribution. For the EVS 
series, the discharge for a 2-year return period is 
10,701.51 m³/s, increasing to 22,911.84 m³/s for 
a 200-year return period. The POT series 
estimates start at 14,265.76 m³/s for a 2-year 
return period and rise to 21,964.07 m³/s for a 
200-year return period. The LP3 distribution, 
known for better handling skewed data [38] 
shows that the POT series yields higher 
discharge estimates for shorter return periods but 
slightly lower estimates for longer return periods 
compared to the Gumbel distribution. This 
variance highlights the importance of selecting 
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the appropriate distribution model based on data 
characteristics and specific flood risk 
management needs [39]. 
 
Fig. 4 compares the estimated flood discharges 
using both the Gumbel and LP3 distributions for 
EVS and POT data. High coefficients of 
determination (R²) for both distributions indicate 
a good fit to the observed data. However, 
discrepancies in predicted discharges, 
particularly for higher return periods, highlight the 
importance of model selection. The POT data 
series consistently predicts higher discharges 
compared to the EVS series across both 
distributions, indicating its sensitivity to recent 
extreme events. This is critical for near-term 
flood risk management, while the EVS method 
provides more conservative estimates over 
longer periods, offering stable long-term risk 
assessments [40]. 
 
Integrating both EVS and POT approaches could 
enhance flood risk management strategies. 

Short-term infrastructure planning could benefit 
from POT estimates, while long-term policies and 
land-use planning could rely on EVS estimates. 
The study underscores the POT method's 
capability to account for extreme flood events, 
making it a potentially more reliable tool for 
regions prone to high variability in flood 
magnitudes. For example, the 200-year return 
period discharge using the Gumbel distribution is 
24,519.62 m³/s (EVS) versus 22,117.40 m³/s 
(POT), and for the LP3 distribution, it is 
22,911.84 m³/s (EVS) versus 21,964.07 m³/s 
(POT). These findings align with previous studies 
emphasizing the variability in flood frequency 
estimates based on distribution models and data 
series [41]. Ultimately, this study highlights the 
importance of using multiple flood frequency 
models and data series to capture a range of 
potential flood discharges. The choice of            
method should be tailored to the specific               
needs of flood risk management, balancing 
short-term responsiveness with long-term 
reliability.  

 
Table 1. Flood frequency estimates for Bhairab Bazar station along the Upper Meghna River in 

Bangladesh using Gumbel distribution with extreme value series (EVS) and peak over 
threshold (POT) data series 

 

Return period (T)  

in years 

Reduced  

variate, Yt 

Frequency  

factor, Kt 

Predicted discharge, Qp in m3/s 

EVS POT 

2 0.37 -0.15 10709.71 14397.00 

5 1.50 0.86 13885.11 16172.20 

10 2.25 1.53 15987.51 17347.54 

25 3.20 2.38 18643.89 18832.59 

50 3.90 3.01 20614.55 19934.28 

100 4.60 3.63 22570.65 21027.83 

200 5.30 4.25 24519.62 22117.40 

 
Table 2. Flood frequency estimates of Bhairab Bazar station at Upper Meghna River of 

Bangladesh using Log-Pearson Type III distribution with extreme value series (EVS) and peak 
over threshold (POT) data series 

 

Return period  

(T) in years 

Frequency 

factor, Kt 

Predicted logarithmic 

discharge, qp in m3/s 

Predicted discharge, Qp in m3/s 

EVS POT EVS POT EVS POT 

2 -0.03 -0.19 4.03 4.15 10701.51 14265.76 

5 0.84 0.74 4.13 4.20 13568.75 15833.15 

10 1.3 1.34 4.19 4.23 15383.32 16934.61 

25 1.82 2.09 4.25 4.27 17728.42 18419.81 

50 2.16 2.63 4.29 4.29 19451.81 19569.17 

100 2.47 3.15 4.33 4.32 21168.74 20743.69 

200 2.76 3.66 4.36 4.34 22911.84 21964.07 
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Table 3. Goodness of fit test results for gumbel and log-pearson type III (LP3) distributions with extreme value series (EVS) and peak over 
threshold (POT) data 

 

  Kolmogorov–Smirov (K-S) 
(critical value at 0.05 = 0.23424) 

Anderson–Darling (A-D) 
(critical value at 0.05 = 2.5018) 

Chi-squared 
(critical value at 0.05 = 7.814) 

Data Series Distribution Statistic P-Value Reject Rank Statistic Reject Rank Statistic P-Value Reject Rank 

 
EVS 

Gumbel 0.07323 0.99049 No 1 0.2045 No 2 0.3772 0.94491 No 2 

LP3 0.0757 0.98636 No 2 0.19797 No 1 0.36097 0.94818 No 1 

 
POT 

Gumbel 0.14596 0.45999 No 2 0.72069 No 2 1.4953 0.68336 No 2 

LP3 0.11999 0.7017 No 1 0.49299 No 1 1.3846 0.70915 No 1 
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Fig. 4. Comparative analysis of estimated flood discharges using gumbel and log-pearson type 
III (LP3) distributions with (a) extreme value series (EVS) and (b) peak over threshold (POT) 

data 
 

3.2 Goodness of Fit Test 
 
Table 3 displays the results of the K-S, A-D, and 
Chi-squared goodness-of-fit tests for the Gumbel 
and LP3 distributions using EVS and POT data. 
For the EVS data, the K-S test statistic for the 
Gumbel distribution is 0.07323 with a p-value of 
0.99049, indicating no rejection of the null 
hypothesis at the 0.05 significance level. 
Similarly, the LP3 distribution shows a test 
statistic of 0.0757 and a p-value of 0.98636, also 
indicating no rejection of the null hypothesis. 
These results suggest a slightly better fit for the 
Gumbel distribution according to the K-S test, 
though the differences are marginal. The A-D 
test results support these findings, with the 
Gumbel distribution showing a statistic of 0.2045 
and the LP3 distribution slightly better at 
0.19797, both of which do not reject the null 
hypothesis. This consistency across tests is 
essential for validating our model selection. 
Additionally, the Chi-squared test results align 
with this trend, showing non-significant statistics 
of 0.3772 for Gumbel and 0.36097 for LP3 at the 

0.05 level. For the POT data, the LP3 distribution 
is slightly favored. The K-S test statistic for the 
Gumbel distribution is 0.14596 with a p-value of 
0.45999, while the LP3 distribution has a lower 
test statistic of 0.11999 and a higher p-value of 
0.7017. The A-D test and Chi-squared test 
results show a similar pattern, indicating the LP3 
distribution has a marginally better fit for the POT 
data as well. 
 
Figs. 5 and 6 provide visual comparisons of the 
CDF and probability-probability (P-P) plots for the 
Gumbel and LP3 distributions with both EVS and 
POT data. The CDF plots in Fig. 5 demonstrate 
that both distributions fit the EVS data well, with 
the LP3 distribution showing a slightly better fit in 
the tail regions, which are critical for flood risk 
management. The P-P plots in Fig. 6 further 
confirm these findings, as the points for both 
distributions closely follow the 45-degree line, 
indicating a good fit. Notably, the LP3 distribution 
exhibits less deviation from this line, particularly 
for the POT data, suggesting a superior overall fit 
compared to the Gumbel distribution. 
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Fig. 5. Cumulative distribution function comparison of gumbel and log-pearson type III 
distributions for (a) extreme value series (EVS) and (b) peak over threshold (POT) data 

 
The slight edge of the LP3 distribution over the 
Gumbel distribution in both EVS and POT data 
suggests its suitability for flood frequency 
analysis in the Upper Meghna River. This finding 
aligns with previous studies that have highlighted 
the LP3 distribution's ability to better capture the 
skewness and kurtosis of hydrological data [42]. 
The robustness of our findings is further 
supported by the consistent non-rejection of the 
null hypothesis across all goodness-of-fit tests, 
underscoring the reliability of the LP3 distribution 
for flood risk management applications. 
Furthermore, the superior performance of the 
LP3 distribution in the tail regions is critical for 
managing extreme flood events, which are of 
primary concern in risk management strategies 
[43]. Accurate modeling of these tail events can 
lead to improved preparedness and mitigation 
strategies, ultimately reducing the potential 
impacts of floods on communities in the Upper 
Meghna River basin. 

3.3 Comparison of Flood Frequency 
Estimates with Severe Flooding 
Threshold 

 
The analysis compares flood frequency 
estimates with critical water levels as defined by 
local authorities, specifically the BWDB. The 
danger level is set at a 5.8-m water level, while 
the severe flooding threshold is marked at 6.8 m. 
These benchmarks are crucial for assessing the 
risk and potential impact of flooding on the Upper 
Meghna River region. Fig. 7 illustrates the 
predicted discharges for different return periods 
and their relation to these critical water levels. 
The discharge values corresponding to these 
water levels were obtained using the rating curve 
presented in Fig. 3b, which maps the relationship 
between observed discharge and river water 
level at the targeted hydrological monitoring 
station. 
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Fig. 6. Probability-Probability (P-P) plot assessing distribution fitting for gumbel and log-
pearson type III (LP3) distributions with (a) extreme value series (EVS) and (b) peak over 

threshold (POT) data 
 

 
 

Fig. 7. Comparison of flood frequency estimates with the danger level (5.8 m water level) and 
severe flooding threshold (6.8 m water level) set by local authorities. The discharge values for 

these thresholds were derived from the rating curve shown in Fig. 3b 
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For shorter return periods, such as 2 years, the 
predicted discharges indicate a relatively modest 
increase in water levels. These levels generally 
remain above the danger threshold (5.8 m or 
approximately 10,150 m³/s, as shown in Fig. 3b) 
but below or around the severe flooding 
threshold (6.8 m or approximately 13,036 m³/s, 
as shown in Fig. 3b). Specifically, this 2-year 
return period reflects a discharge just above 
normal river levels, indicating minimal risk to the 
surrounding areas. As we progress to the 5-year 
return period, the predicted discharge begins to 
approach the danger level, highlighting an 
increasing risk of severe flooding that 
necessitates vigilant monitoring and early 
warning systems. In contrast, longer return 
periods, such as 10, 25, 50, 100, and 200 years, 
predict significantly higher discharges that 
exceed the severe flooding threshold of 6.8 m. 
These longer return periods indicate a potential 
for catastrophic flooding events. For instance, the 
100-year return period predicts a discharge well 
above 10 m of water level, signifying extreme 
flood events that could severely impact 
infrastructure and communities. These results 
underscore the necessity for robust flood 
management strategies to mitigate the impacts of 
such rare but devastating events. This aligns with 
previous studies that emphasize the importance 
of incorporating long-term flood frequency data 
into risk management frameworks [44]. 
 
From the perspective of hydraulic structure 
design, our findings suggest the imperative to 
construct embankments, levees, and floodwalls 
that can handle the maximum predicted 
discharges for the highest return periods. 
Specifically, these structures need to be 
designed with additional height and strength to 
accommodate the worst-case scenarios as 
identified by the 200-year return period data. 
Regular maintenance and inspections are also 
crucial to ensure these structures remain 
effective over time, particularly in the face of 
wear and potential damage from frequent 
flooding events. In addition to the design and 
maintenance of hydraulic structures, the study 
emphasizes the importance of river dredging to 
increase the water carrying capacity. This 
measure can help mitigate the impact of floods 
by allowing larger volumes of water to flow 
through the river channel without breaching the 
danger thresholds. From a risk management 
perspective, the study highlights the importance 
of incorporating these flood frequency estimates 
into urban and rural planning processes. By 
understanding the probabilities and magnitudes 

of potential flood events, local authorities and 
planners can better allocate resources and 
implement proactive measures to protect 
communities and infrastructure. 
 

4. FUTURE RESEARCH DIRECTIONS 
 

The current study identifies several critical areas 
for future research to improve flood risk 
management in the Upper Meghna River basin, 
Bangladesh. Key priorities include incorporating 
advanced hydrological and climate models to 
enhance flood prediction accuracy, with high-
resolution climate projections essential for 
assessing future flood risks under various climate 
change scenarios [5,4]. Developing sophisticated 
predictive models and comprehensive multi-
model approaches that integrate both EVS and 
POT methods is crucial for understanding and 
predicting flood risks in diverse hydrological 
contexts [37]. In addition, utilizing geographic 
information systems nd remote sensing 
technologies can significantly enhance flood 
monitoring and management, offering continuous 
monitoring of water levels and land use changes 
for real-time flood prediction [45,46]. Integrating 
these technologies with traditional hydrological 
data can create a comprehensive flood risk 
assessment framework [21].  
 
Research should also explore the socio-
economic impacts of flooding and the 
effectiveness of various mitigation strategies. 
Mixed-methods approaches should assess 
structural and non-structural mitigation 
measures, such as floodplain zoning and 
community-based flood management [14,9]. 
Developing early warning systems that combine 
local knowledge with scientific data is critical for 
enhancing community resilience [7]. Moreover, 
longitudinal studies tracking the effectiveness of 
flood management interventions over time are 
necessary to understand different strategies' 
performance under varying conditions, offering 
insights for adaptive management practices 
[26,41]. Evaluating the performance of existing 
flood mitigation infrastructure and investigating 
nature-based solutions can provide co-benefits 
for biodiversity and ecosystem services [15]. 
 
Finally, policy-oriented research is essential to 
develop comprehensive flood risk management 
frameworks aligned with national and regional 
development plans. Collaborative efforts among 
governments, research institutions, and 
international organizations are crucial for 
addressing flood risk management challenges in 
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the Upper Meghna River basin [6]. Addressing 
these research directions will enable more 
resilient and adaptive flood management 
strategies, mitigating the negative impacts of 
flooding on communities and ecosystems. 
 

5. CONCLUSION 
 
The comparative analysis of regional frequency 
models for flood risk management in the Upper 
Meghna River basin reveals important insights. 
Evaluating the Gumbel and Log-Pearson Type III 
(LP3) probability distributions using data from the 
Bhairab Bazar station highlights the need for 
precise flood prediction models to inform local 
strategies. The Gumbel distribution predicted 
higher discharges for extreme flood events, 
especially using the peak over threshold (POT) 
approach, indicating higher sensitivity to extreme 
events. In contrast, the LP3 distribution, 
supported by goodness-of-fit tests, effectively 
captured the skewness typical of flood data, 
particularly in the tail regions. The findings 
suggest that the LP3 distribution provides a 
marginally better fit for both extreme value series 
(EVS) and POT data, which is crucial for robust 
flood risk management. Predicted discharges for 
various return periods indicate the potential for 
severe flooding events, exceeding critical 
thresholds set by local authorities. This analysis 
is vital for designing hydraulic structures, 
planning flood mitigation measures, and 
improving prediction models. Additionally, 
integrating advanced hydrological and climate 
models and continuous data collection is 
recommended to enhance flood risk 
assessments. Combining EVS and POT 
approaches can offer a comprehensive 
understanding of flood risks, balancing short-
term responsiveness with long-term reliability. 
These findings support policy formulation and the 
development of resilient infrastructural and non-
structural measures to mitigate flood impacts in 
the Upper Meghna River basin. 
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