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Abstract

Image data augmentation plays a crucial role in data augmentation (DA) by increasing the

quantity and diversity of labeled training data. However, existing methods have limitations.

Notably, techniques like image manipulation, erasing, and mixing can distort images,

compromising data quality. Accurate representation of objects without confusion is a chal-

lenge in methods like auto augment and feature augmentation. Preserving fine details and

spatial relationships also proves difficult in certain techniques, as seen in deep generative

models. To address these limitations, we propose OFIDA, an object-focused image data

augmentation algorithm. OFIDA implements one-to-many enhancements that not only pre-

serve essential target regions but also elevate the authenticity of simulating real-world set-

tings and data distributions. Specifically, OFIDA utilizes a graph-based structure and object

detection to streamline augmentation. Specifically, by leveraging graph properties like con-

nectivity and hierarchy, it captures object essence and context for improved comprehension

in real-world scenarios. Then, we introduce DynamicFocusNet, a novel object detection

algorithm built on the graph framework. DynamicFocusNet merges dynamic graph convolu-

tions and attention mechanisms to flexibly adjust receptive fields. Finally, the detected target

images are extracted to facilitate one-to-many data augmentation. Experimental results vali-

date the superiority of our OFIDA method over state-of-the-art methods across six bench-

mark datasets.

1 Introduction

Data augmentation (DA) is an essential technique in machine learning and data analysis. By

augmenting the labeled training data with greater quantity and diversity, data augmentation

effectively tackles the issue of limited data availability, thereby preventing the model from

memorizing specific instances and promoting better generalization to unseen data.

Numerous image data augmentation techniques have been studied to address the problem

of limited or scarce data. Image manipulation [1, 2], image erasing [3–5], and image mix [6, 7],

are some of the basic image data augmentation methods. Advanced image data augmentations

include auto augment [8, 9], feature augmentation [10, 11], and deep generative models [12,

13].
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These methods contribute to improving training data diversity and quality, but face chal-

lenges. Firstly, traditional methods struggle to capture the complexity of real-world objects

accurately [14]. Secondly, image erasing techniques may unintentionally remove crucial details

or distort image structures, resulting in information loss [15]. Additionally, image mix and

auto augment methods can generate unrealistic pixel values or patterns, deviating from real

image distributions and affecting visual quality [14]. Lastly, GAN-based approaches require

large-scale datasets and significant computational resources, posing constraints on data and

computational requirements, limiting their feasibility in some applications [16].

To address these limitations, the aim of this paper is to propose a novel image data augmen-

tation method that can preserve important target regions and simulating real-world scenes

and data distributions, while providing more diverse and precise image samples to improve

the performance of machine learning models in learning data features and variations.

A potential approach to aforementioned problem is to accurately identify target regions in

images and perform precise and diverse one-to-many data augmentation that separate

detected objects from the original images. However, this approach may face several challenges,

such as low detection accuracy of typical object detection algorithms, difficulty in detecting

small objects, and limited sensitivity to object occlusion, density, and shape variation. In addi-

tion, existing image data augmentation methods often are not easy to generate entirely new

samples or capture the full complexity of real-world objects, and may risk removing important

details or introducing unrealistic results. The aforementioned limitations can be referred to as

an object-focused image data augmentation (OFIDA) problem. This paper comprehensively

addresses the problem and our contribution is two-fold:

1. OFIDA model: A new model for the OFIDA problem is proposed with the aim of perform-

ing precise and diverse augmentations that preserve important target regions and improve

the simulation of real-world scenes and data distributions. Specifically, the model identifies

object regions in images and applies a one-to-many data augmentation strategy that sepa-

rates detected objects from the original images. This ensures that object regions are accu-

rately preserved while also enabling the generation of diverse samples.

2. OFIDA algorithm: Based on the OFIDA model, we further introduce the OFIDA algorithm,

which is based on the following core concept:

(a). We introduce the OFIDA algorithm, which involves initial object detection to identify

target regions. A unique one-to-many data augmentation strategy is then applied, sepa-

rating detected targets from original images for accurate preservation and diverse

samples.

(b). To achieve more precise identification and classification of target regions, we introduce

the DynamicFocusNet algorithm based on a graph structure. This approach addresses

the limitations of current object detection methods that solely rely on basic convolutional

layers for classification, effectively resolving issues related to inaccurate classification and

recognition(elaborated further in Section 4).

(c). We extensively analyze our approach on large-scale public datasets including

CIFAR10, CIFAR100, ImageNet, PASCAL VOC, CITYSCAPES, and MS-COCO 2017.

Experimental findings consistently demonstrate the superior performance of our pro-

posed methodology compared to state-of-the-art benchmark methods. This validation

underscores the efficacy of OFIDA across a diverse range of computer vision tasks.

The paper is organized as follows. Section 2 describes the related work. Section 3 formulates

a new mathematical model for the OFIDA problem. Section 4 presents our proposed
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algorithm for the problem of OFIDA. Section 5 shows numerical results. Section 6 concludes

the paper and draws potential future research directions.

2 Related work

2.1 Image data augmentation

Image data augmentation techniques have become a critical component in enhancing the gen-

eralization capability and performance of data-driven inference in recent years, particularly in

fields such as computer vision (CV) [17, 18]. Image data augmentation enables the creation of

realistic variations of existing data, thereby increasing the amount of training data without

requiring additional ground-truth labeling efforts. Generally, image data augmentation tech-

niques can be classified into two main branches: basic and advanced image data augmenta-

tions. The former encompasses fundamental techniques, while the latter encompasses more

complex ones. Each image data augmentation method is described below.

2.1.1 Basic image data augmentations. Basic image data augmentations can be further

divided into three main categories: image manipulation, image erasing, and image mix.

Image manipulation is a commonly used technique in computer vision tasks. Basic image

manipulations like rotation, flipping, cropping, and direct image transformations are valid

only if they are compatible with the data distribution of the images being manipulated. How-

ever, some basic manipulations like translation and rotation can cause loss of image content or

moving some parts out of the boundary, known as the padding effect. Image erasing is becom-

ing popular, and techniques like Cutout [1], Hide-and-Seek [2], Random Erasing [3], Grid-

Mask [4], and FenceMask [5] are some examples of it. Image mix data augmentation is

another popular technique, and techniques like Fmix [6], AugMix [7], and ManifoldMix [19]

have been proposed in this regard. Although these techniques can improve the performance of

convolutional neural networks, they also have certain limitations and drawbacks. One major

limitation is the risk of overfitting or poor generalization if the augmentation is too aggressive

or introduces unrealistic features.

2.1.2 Advanced image data augmentations. The field of computer vision has experienced

a surge in interest in image data augmentation techniques in recent years, leading to the devel-

opment of a variety of innovative methods for augmenting image data. Some of these methods

include auto augment, feature augmentation, and deep generative models.

Various automated methods have been proposed to search for effective augmentation oper-

ations, such as RandAugment [9], KeepAugment [20], and OHL-Auto-Aug [21], but they have

limitations in terms of their search space and computational cost. Additionally, feature aug-

mentation has gained attention as an alternative to input space augmentation [22], with meth-

ods such as Moment Exchange [11], but it may require domain-specific knowledge to identify

meaningful features. Deep generative models, such as GANs [23], can generate synthetic data,

but evaluating the quality of generated data remains a challenge [24]. Conditional adversarial

networks [25], can learn the mapping from input to output images, but they may struggle to

handle complex and diverse image domains. StarGAN [12] and StarGAN v2 [13] have

improved scalability and diversity across multiple domains, but may still suffer from domain

shift issues.

2.2 Graph convolutional networks

Graph Neural Networks (GNNs) [26], which inherit the power of neural networks and utilize

the structural information of graph data concurrently, have achieved remarkable success in

various graph-based tasks [27–32], including node classification, graph classification, and

graph generation.
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Recent advancements in graphical architectures have greatly accelerated progress in multi-

label image recognition. Li et al. [33] utilize a Graphical Lasso framework to model image-

dependent conditional label structures. Li et al. [34] create a tree-structured graph in the label

space using a maximum spanning tree algorithm. Additionally, Graph Convolutional Net-

works (GCNs) have shown remarkable capacity in various vision tasks. For instance, Chen

et al. [35] employ GCNs to propagate prior label representations, such as word embeddings,

and generate a classifier by replacing the last linear layer in a typical deep convolutional neural

network such as ResNet [36]. Moreover, Chen et al. [37] utilize label annotations to compute a

probabilistic matrix as the relation edge between each label in a graph.

In this paper, we develop a new object-focused image data augmentation (OFIDA) that

tackles the challenges in accurately identifying target regions and generating diverse and pre-

cise image samples. Our proposed method integrates multiple algorithms, including an opti-

mized attention mechanism, a dynamic graph convolutional network (D-GCN), a novel object

detection algorithm called DynamicFocusNet, and a modified cropping technique, to enable

one-to-many data augmentation.

3 Mathematical model

The aim here is to utilize a concept of one-to-many through object-separation in order to cre-

ate a new data augmentation algorithm, known as object-focused image data augmentation

(OFIDA). In this section, a mathematical model is presented for the OFIDA problem. To facil-

itate the description, the process is divided into three parts: feature extraction, classification

and regression, and separation. The mathematical models for each part are introduced below.

Feature extraction. To begin with, feature extraction is necessary to detect objects in the

input image, F represents the process of feature extraction, which transforms the input image I

into the feature pyramid Fl:

FðIÞ ¼ fFlg
L
l¼1
; ð1Þ

I 2 RHl�Wl�Cl : ð2Þ

where I represents the input image, Fl represents the l-th layer feature map in the pyramid. the

l represents an index ranging from 1 to L (L = 5). Hl, Wl, and Cl denote the height, width, and

number of channels of the l- th feature map.

Classification and regression. After obtaining the feature maps F1, F2, . . ., Fl, the feature

maps are then utilized for classification and regression.

In the classification stage, each position (x, y) on each feature map Fl is divided into i anchor

boxes, which can generate a candidate boxes of different scales and aspect ratios. Each candi-

date box is classified using the classification function, yielding the probability of belonging to

each class. Specifically, for each position (x, y) on each feature map Fl and each candidate

box bi:

cð0Þ ¼ Pl;ori
cls ðx; y; iÞ; ð3Þ

where c(0) represents the probabilities of the classification by a basic classification function

Pl;ori
cls ðx; y; iÞ. However, in (3), the classification function Pl;ori

cls ðx; y; iÞmay suffer from accuracy

issues in complex scenes, especially in data augmentation tasks based on detection and separa-

tion, where high classification accuracy is crucial.

To overcome this drawback, we utilize a dynamic graph neural network with proposed con-

tent-aware attention module (CAAM) to further refine the classification results and obtain a
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new classification function:

cð1Þ ¼ Pl;gcn
cls ðx; y; iÞ; ð4Þ

where c(1) represents the probabilities of the classification by a improved classification function

Pl;gcn
cls ðx; y; iÞ.

Inspired by the concept of the averaging strategy, which serves to mitigate potential biases

or errors and harmonize the performance disparities between the base model and the

enhanced model, the ultimate classification outcomes, denoted as c, are derived.

c ¼
1

2
cð0Þ þ cð1Þ
� �

: ð5Þ

Next, the regression function R is utilized to regress the offset of each candidate bounding

box relative to its anchor point. Specifically, for each position (x, y) on the feature map Fl and

each candidate bounding box bi:

H ¼ Δbþ bi

¼ RðbiÞ � bi þ bi:
ð6Þ

where H denotes the regression vector of candidate bounding box bi at position (x, y) on the

feature map Fl. The symbol� denotes the element-wise multiplication operation and position

offset Δb is obtained by R(bi)� bi.

Non-maximum suppression algorithm (NMS) is used to filter all candidate bounding boxes

based on their confidence scores, remove highly overlapped bounding boxes, and obtain the

final detection results, NMS is expressed as follows:

Si ¼
Si; IoUðm;biÞ < Nt

Sið1 � IoUðm;biÞÞ: IoUðm;biÞ⩾Nt

(

ð7Þ

where Si represents the score assigned to each bounding box, reflecting its likelihood of con-

taining the object of interest. The value of Si is influenced by the particular algorithm employed

and the chosen strategy for scoring. m represents the ground truth bounding box, bi represents

each candidate bounding box, and Nt is the set threshold. It can be observed that the score of

the bounding box linearly decreases when the IoU score exceeds Nt. IoU generally refers to the

Intersection over Union ratio function between the candidate bounding box bi and the ground

truth bounding box m:

j ¼ IoUðm;biÞ

¼
bi \m

bi þm � ðbi \mÞ
:

ð8Þ

where j represents the calculated value of IoU, which is a measure of overlap between two

bounding boxes. It ranges between 0 and 1, indicating the extent of spatial agreement between

the bounding boxes.

Separation. After the NMS algorithm, the bounding box with the highest score is selected

as the final detection result, denoted as the target bounding box ti. For each target bounding

box ti, a set of information can be obtained based on the classification score c and the candi-

date bounding box score Si, that is, ti = {xi, yi, wi, hi, ci}, where (xi, yi) represents the coordinate

of the upper-left corner of the target bounding box ti, wi represents the width, hi represents the

height, and ci represents the color of the target bounding box ti for different classes. The
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separation function CP is defined as:

Ii ¼ CPðI; tiÞ: ð9Þ

where I refers to the input image, and Ii refers to the i-th cropped small image from the original

image.

Ultimately, building upon (1) to (8), we propose a novel object detection algorithm known

as DynamicFocusNet. It uses a dynamic graph neural network with proposed content-aware

attention module (CAAM) and draws inspiration from the averaging strategy to improve the

accuracy of detection results. Furthermore, we introduce a one-to-many data augmentation

technique, referred to as object-focused image data augmentation (OFIDA), which utilizes (1)

to (9) to classify, localize, and separate the target images.

4 Object-focused image data augmentation

In this section, we present an integrated multi-task algorithm in a two-step solution where

object-focused image data augmentation (OFIDA) is performed to solve the problem in (9), as

shown in Fig 1. The first step is to utilize the DynamicFocusNet algorithm to detect and locate

the target regions within the images. The second step is to apply cropping technique to sepa-

rate target regions, enabling precise one-to-many image data augmentation of samples.

Ethics statement The images presented in the figures are sourced from the publicly avail-

able MS-COCO Dataset [Dataset Link: https://cocodataset.org/], which is constituted by a

diverse group of volunteers. The utilization of this dataset has been explicitly approved and

authorized by the dataset providers for academic research purposes.

4.1 Proposed OFIDA algorithm

The OFIDA consists of four main components: Backbone, Neck, Head, and Separation, as

depicted in Fig 2(a). Among them, Backbone, Neck, and Head constitute the DynamicFocus-

Net. In the following sections, we will provide detailed descriptions of each module, explaining

their individual roles and functionalities within the framework.

Backbone. According to (1), our goal is to transforms the input image I into the feature

pyramid Fl. To achieve this, we develop a lightweight CSPNetX as our backbone network,

which possesses advantages such as high efficiency, powerful feature extraction ability, and

low GPU memory consumption. Fig 2(a)ⓐ a illustrates the architecture of CSPNetX, com-

prising three modules: the Feature Extraction Module (FEM), the Adaptive Internal-

Fig 1. The working process of the OFIDA. Training DynamicFocusNet with the MS-COCO 2017 dataset to achieve accurate classification and

localization of target images (a). Evaluating the performance of DynamicFocusNet using the MS-COCO 2017 test set (b). Utilizing the trained

DynamicFocusNet to detect and localize target images in original images (c), and employing a cropping technique to accurately separate detected

objects from original images (d), enabling precise one-to-many image data augmentation of samples.

https://doi.org/10.1371/journal.pone.0302124.g001
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Fig 2. Integrated view of the OFIDA framework and its modules.

https://doi.org/10.1371/journal.pone.0302124.g002
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Depthwise-and-Output (AIDO) module, and the MPC module. The FEM and MPC modules

are responsible for extracting features and performing downsampling operations, while the

AIDO module serves as an efficient network structure that controls the shortest and longest

gradient paths, enabling the network to learn more features and enhance its robustness. The

backbone network performs feature extraction on the input image, generating multi-layer fea-

tures at different scales, which are commonly referred to as a pyramid structure.

Neck. The neck network consists of three main components: Spatial Pyramid Pooling

Cross Stage Partial Network (SPPCSPC), UPN, and Light-weight and Versatile Integrated Net-

work (LVIN), as shown in Fig 2(a)ⓑ. The SPPCSPC module utilizes max pooling to acquire

diverse receptive fields, enabling the DynamicFocusNet algorithm to adapt to images of vari-

ous resolutions. The UPN module performs upsampling operations. The LVIN module repre-

sents an enhanced version of the AIDO module, incorporating techniques such as expand,

shuffle, and merge cardinality to continually improve the module’s learning capacity while

preserving the original gradient path. Through the integration of features from different levels

and scales, the neck network seamlessly connects these features to the head.

Head. In previous object detection algorithms, the head network often relied on fully con-

nected layers or simple convolutional layers for object classification and localization, as

depicted in (3). However, this conventional approach had limited capacity to capture complex

patterns and fully leverage the rich image features. According to (4), we introduce attention-

driven graph convolutional networks (AGCN) to enhance the performance of the head net-

work. Eqs (5) and (6) represent the final outcomes for classification and regression. Fig 2(a)

ⓒ illustrates the components of the head network, including Replicated Convolutional

(RepConv), AGCN, and DETECT modules. The upper part of the diagram provides a specific

schematic of the head network, while Fig 3 provides a detailed structural diagram to illustrate

the individual roles and implementation details of each module.

Fig 3. The framework of our head network. Given a feature map X, RepConv conducts parameter reorganization, resulting in X0. Then, the content-

aware attention module (CAAM) separates content-aware category representations M from X0. The Dynamic Graph Convolutional Network (D-GCN)

models global and local relations in M, generating a robust representation P with rich relational information across categories. Object detection is

performed by DETECT on X0, producing classification scores Cls and bounding box regression results Bbox. Finally, the classification scores Cls are

averaged with S, yielding the final scores Y for each category.

https://doi.org/10.1371/journal.pone.0302124.g003
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RepConv introduce a parameter restructuring mechanism, which decomposes and recom-

bines convolutional kernels to decouple the training and inference processes. This mechanism

can reduce the computational and storage costs of the model to some extent, while also helping

to improve the performance of object detection models.

A notable inclusion in the head is the attention-driven graph convolutional module

(AGCN). This module integrates the content-aware attention module (CAAM) to enhance the

focus on the target region while mitigating the influence of irrelevant information. Further-

more, it constructs a graph structure based on the extracted high-level features. By leveraging

graph convolutional networks (GCN), the AGCN module effectively learns the spatial relation-

ships between target objects in the graph. Through these relationships, the AGCN module is

able to model the content-aware category representations generated by the CAAM, thereby

forming static and dynamic graphs. The head framework, which incorporates the AGCN mod-

ule, is visually illustrated in Fig 3.

Separation. The trained DynamicFocusNet algorithm is a valuable tool for object detection

in target images. Through the integration of a modified cropping technique, known as the CP

module, the algorithm accurately determines the coordinates and dimensions of the target

object based on the output of the bounding box algorithm, as evidenced by (9), Figs 1(d) and 2

(a)ⓓ. This integration enables the precise separation of detected objects from the original

images, preserving important visual information and minimizing distortion. Consequently,

the object-focused image data augmentation (OFIDA) facilitates high-quality one-to-many

image data augmentation of samples, ensuring diversity and quantity of data that closely repre-

sents real-world scenarios. By reducing the risk of introducing unrealistic and misleading

visual patterns that could confuse the model.

The object-focused image data augmentation algorithm is summarized in Algorithm 1.

4.2 Loss functions

In object-focused image data augmentation, classification and localization are two core sub-

tasks. A variety of classification loss and box regression loss have been proposed in recent

years. In this section, we will provide an overview of these loss functions, followed by our selec-

tion of the most suitable loss functions for DynamicFocusNet.

4.2.1 Classification loss. To address class imbalance and optimize the classifier in object

detectors, various classification loss functions have been proposed. These include Focal Loss,

Quality Focal Loss, VariFocal Loss, and Poly Loss. Focal Loss effectively handles class imbal-

ance, VariFocal Loss balances the importance of positive and negative samples, and Poly Loss

adapts to different tasks and datasets. For DynamicFocusNet, we evaluated these advanced loss

functions and ultimately chose VariFocal Loss as the optimal solution.

Lcls ¼
� qðq logðpÞ þ ð1 � qÞ logð1 � pÞÞ; q > 0

� apg logð1 � pÞ: q ¼ 0

(

ð10Þ

where p denotes the predicted IoU-aware classification score (IACS) and q represents the

objectness score.

4.2.2 Box regression loss. The accuracy of object localization is ensured through

box regression loss. Early works employed L1 loss for box regression, while more recent

approaches introduced well-designed losses such as IoU-series los. Variants of IoU-series loss,

including GIoU, DIoU, CIoU, and α-IoU, have shown effectiveness due to their alignment

with evaluation metrics. In our study, we conducted experiments with GIoU, CIoU, and

DIoU. CIoU, which considers factors like overlapping area, center point distance, and aspect
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ratio, was specifically applied in DynamicFocusNet. CIoU is defined as follows:

Lbox ¼ 1 � IoUþ
r2ð b; bgtÞ

c2
þ av: ð11Þ

where b and bgt represent the center points of the predicted box and the ground truth box,

respectively, and ρ represents the Euclidean distance between the two center points. c denotes

the diagonal distance of the smallest closed rectangle that can simultaneously contain the pre-

dicted box and the ground truth box. α is a weighting function, while v is used to measure the

similarity of aspect ratios. When the aspect ratios of the ground truth box and the predicted

box are closer, v becomes smaller.

4.2.3 Object loss. Object loss was originally proposed in FCOS [38] with the aim of reduc-

ing the scores of low-quality bounding boxes, making them filterable in post-processing. Its

application in YOLOX [39] has been proven to accelerate convergence. As an anchor-free

framework, DynamicFocusNet also adopts object loss to further improve the accuracy of

object detection.

Lobj ¼ lobj

XS2 � 1

i¼0

XB� 1

j¼0

½1obj
ij �

 

� logðp̂ijÞ þ lcoord

X

k2x;y;w;h

ðt̂ kij � tkijÞ
2

!

: ð12Þ

where p̂ij represents the predicted probability of whether the j − th bounding box in prediction

i contains an object, tkij represents the true value of the kth coordinate for the jth bounding

box in grid cell i, and t̂ kij represents its corresponding predicted value. The Iverson bracket

function ½1obj
ij � indicates whether the jth bounding box in prediction i contains an object and

whether it is the prediction with the highest Intersection over Union (IoU). The hyperpara-

meter λcoord is used to balance the box regression loss and objectness classification loss, and

λobj is a hyperparameter used to balance the number of positive.

In summary, the loss function of the OFIDA algorithm consists of three parts:

LOFIDA ¼ Lcls þ Lbox þ Lobj: ð13Þ

where Lcls, Lbox, and Lobj represent classification loss, box regression loss, and object loss,

respectively.

Algorithm 1 Object-Focused Image Data Augmentation Algorithm
Input: One image or sequence of images I to be detected.
Output: The images Ii of each separated target category by (9).
1. Object classification scores c computation.

c ¼ 1

2
cð0Þ þ cð1Þ
� �

,

where c(0) and c(1) are defined as in (3) and (4).
2. Regression vector H and candidate box bi score Si computation.
H = Δb + bi = R(bi) � bi + bi,

Si ¼
Si; IoUðm;biÞ < Nt

Sið1 � IoUðm;biÞÞ: IoUðm;biÞ⩾Nt

(

where IoU is defined as in (8).
3. Loss function of DynamicFocusNet.

LOFIDA ¼ Lcls þ Lbox þ Lobj,
where Lcls, Lbox, and Lobj are defined as in (10), (11), and (12).

4. Object separation Ii: one-to-many image data augmentation.
Ii = CP(I, ti),
where ti is the target bounding boxes.
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4.3 Lion optimizer

The Lion optimizer [40] is a recently developed optimization algorithm. In this paper, we inte-

grate it into the target detection algorithm DynamicFocusNet. To provide a clearer under-

standing of the Lion algorithm, this section will elaborate on three aspects: operating

principles, differences from previous algorithms, and specific reasons for its adoption.

4.3.1 Operating principles. The Lion optimizer operates on the principle of simplicity

and efficiency, relying solely on momentum without the need to simultaneously maintain first

and second-order moments. This streamlined approach not only conserves memory resources

but is particularly advantageous for training large-scale models with substantial batch sizes.

Additionally, Lion generates updates in the form of element-wise binary operations, represent-

ing the optimization process as symbolic operations. This feature facilitates updates with larger

norms, thereby enhancing the overall optimization process.

4.3.2 Differences from previous algorithms. Memory efficiency, computational speed,

and simplicity of hyperparameters are crucial metrics for evaluating the performance of opti-

mization algorithms. In these aspects, the Lion optimizer demonstrates significant advantages

compared to algorithms like AdamW and various adaptive optimizers that require storing first

and second-order moments. It exhibits notable improvements in terms of memory require-

ments, computational speed, and the number of hyperparameters.

Memory Efficiency: Compared to algorithms like AdamW and various adaptive optimizers

requiring storage of first and second-order moments, Lion significantly reduces memory

requirements by relying solely on momentum. This becomes crucial when training large mod-

els with substantial batch sizes, such as ViT-B/16.

Computational Speed: Lion exhibits faster execution times (steps per second) compared to

AdamW and Adafactor, with speed improvements ranging from 2% to 15%. The simplicity of

Lion contributes to enhanced efficiency across various tasks, codebases, and hardware

configurations.

Simplicity of Hyperparameters: In contrast to AdamW and Adafactor, Lion introduces

fewer hyperparameters, streamlining the tuning process. The default values for Lion’s hyper-

parameters are discovered through a systematic programming search process, enhancing user-

friendliness.

4.3.3 Reasons for lion optimizer adoption. By incorporating the Lion optimizer into

DynamicFocusNet, significant improvements in the performance of DynamicFocusNet for

object detection tasks can be achieved through the following optimization strategies:

Adaptive Learning Rate Adjustment: Harnessing the characteristics of the Lion optimizer,

dynamically adjust the learning rate size and step length based on the gradient situation of

each parameter for adaptive learning rate tuning. The advantage lies in enhancing the effi-

ciency of DynamicFocusNet during training, facilitating faster convergence, thereby bolstering

the model’s accuracy.

Momentum Acceleration: Utilizing the momentum mechanism of the Lion optimizer to

reduce oscillations and fluctuations in gradient updates, contributing to the enhanced stability

of the DynamicFocusNet model. Appropriately adjusting the momentum parameter value of

the Lion optimizer can accelerate the convergence speed of the DynamicFocusNet model, fur-

ther optimizing the performance of object detection.

Parameter Distribution Balancing: Leveraging the Lion optimizer’s features to dynami-

cally adjust gradients, mitigating issues related to excessively sparse or dense parameter set-

tings. In DynamicFocusNet, judiciously configuring the parameters of the Lion optimizer

adjusts the distribution of parameters, improving the model’s generalization ability and

robustness.
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5 Experiments

In this section, we present comprehensive evaluations of the object-focused image data aug-

mentation (OFIDA) algorithm.

5.1 Experimental setup

Dataset. We use a diverse set of datasets for our experimental evaluation, including CIFAR10,

CIFAR100, ImageNet, PASCAL VOC, CITYSCAPES, and MS-COCO 2017. These datasets

were selected to cover a wide range of image recognition, semantic segmentation, and object

detection tasks, providing a comprehensive assessment of our proposed approach.

Implementation details. The OFIDA algorithm was trained from scratch, and other meth-

ods that rely on pre-trained models obtained from online resources provided by the authors.

We relied solely on the corresponding training data without any external pre-training or fine-

tuning. This approach allowed us to assess the genuine performance of our model on the data-

sets. The experiments were conducted on a system comprising an Intel(R) CoreTM i9-10900X

CPU @ 3.70GHz × 20, NVIDIA Quadro RTX 8000 GPU, 96GB memory, and Ubuntu 20.04

LTS 64-bit operating system. Detailed information about the specific parameters employed

during the training process can be found in Table 1.

Evaluation index. For the CIFAR10, CIFAR100, and ImageNet datasets, the Accuracy is

employed to evaluate the algorithm’s performance in image classification. On the PASCAL

VOC and CITYSCAPES datasets, the proposed OFIDA algorithm is evaluated for semantic

segmentation using the mean Intersection over Union (mIoU). For the MS-COCO 2017 data-

set, the performance of the proposed DynamicFocusNet algorithm is evaluated using multiple

metrics. The mean average precision (mAP) provides an overall assessment of the algorithm’s

precision across different Intersection over Union (IoU) thresholds. The average precision

(AP) at an IoU of 0.5 (AP50) and AP at an IoU of 0.75 (AP75) specifically measure the algo-

rithm’s precision at those IoU thresholds. Additionally, the frames per second (FPS) metric is

used to evaluate the algorithm’s computational efficiency.

The Accuracy can be defined as:

Accuracy ¼
Number of correctly classified samples

Total number of samples
: ð14Þ

The mIoU can be defined as:

mIoU ¼
1

N

XN

i¼1

Ai \Bi

Ai þBi � ðAi \BiÞ
: ð15Þ

Table 1. Parameters setting.

Hyperparameter Value

Input imagesize 640 x 640

Number of classes 80

Learning rate (1, 1e-5, 1e-1)

Optimizer Lion [40]

Batch size 32

Number of epochs 300

Feature pyramid layers 5

Detection layers 3

IoU threshold (0, 0.1, 0.7)

https://doi.org/10.1371/journal.pone.0302124.t001
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where N represents the total number of samples or classes, while Ai and Bi refer to the pre-

dicted region and ground truth region, respectively, for the i-th sample or class.

The mAP is the average value of AP. AP (Average Precision) measures the average precision

of the model across different levels of recall. The definitions of Precision and Recall are as fol-

lows:

Precision ¼
TP

TP þ FP
; ð16Þ

Recall ¼
TP

TP þ FN
; ð17Þ

where TP represents true positives, FP represents false positives, and FN represents false nega-

tives. The AP and mAP can be respectively defined as:

AP ¼
Xn� 1

i¼1

riþ1 � ri
riþ1

� �

Pinterðriþ1Þ; ð18Þ

where r1, r2,. . ., rn are the recalls corresponding to the first interpolated precision value in each

interval. Pinter is the interpolated precision at the corresponding recall level ri+1 The summa-

tion is taken over the range from 1 to n − 1, where n is the number of recall levels.

mAP ¼
Pk

i¼1
APi

k
: ð19Þ

where k is the total number of classes.

5.2 Comparing OFIDA with state-of-the-art methods

In this section, based on the taxonomy presented in 2.1, we present detailed results for image

classification and semantic segmentation. To validate the effectiveness of OFIDA across vari-

ous computer vision tasks, we maintain consistency with the testing methodology outlined in

previous image data augmentation approaches [14]. In the field of deep generative models, we

opted to compare with the advanced StarGAN v2 model [13]. StarGAN v2 [13], an upgraded

version of StarGAN [12], is dedicated to further enhancing the quality and diversity of multi-

domain image translation. The model introduces a probabilistic generator and discriminator,

along with an unbalanced feature alignment mechanism, significantly improving the quality

and diversity of generated images. The incorporation of complementary sample generation

further strengthens the model’s performance. StarGAN v2 has made notable strides in improv-

ing the quality and diversity of generated images, rendering it more suitable for practical appli-

cations and a broader range of image translation tasks.

5.2.1 Visualization. Visual examples of our proposed (OFIDA) algorithm are shown in

Fig 4. This algorithm incorporates a localization, classification, and separation technique to

effectively generate new training images, facilitating one-to-many data augmentation.

5.2.2 Image classification. In this experiment, we compile and compare the results from

the OFIDA and several state-of-the-art (SOTA) data augmentation methods, which are the

same as those mentioned in Section 2.1. We compare the classification accuracy of various

image classification techniques, including Wide-ResNet [41], DenseNet [42], and Shake

ResNet [43], with and without data augmentation. The evaluation is performed on popular

image classification datasets, namely CIFAR-10, CIFAR-100, and ImageNet.

Table 2 presents a summary of the image classification results obtained with and without

data augmentation. It is evident that data augmentation leads to an average improvement in
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accuracy. Notably, the OFIDA algorithm achieves the highest accuracy among the data aug-

mentation methods.

5.2.3 Semantic segmentation. This subsection presents the results of semantic segmenta-

tion experiments conducted on the PASCAL VOC and CITYSCAPES datasets. To evaluate the

effectiveness of the OFIDA algorithm and state-of-the-art (SOTA) data augmentation tech-

niques in semantic segmentation tasks, we collected the validation set results on these datasets.

The evaluation metric used is the mean Intersection over Union (mIoU), which represents the

accuracy of the segmentation.

Table 2. Performance comparison of the OFIDA and several SOTA data augmentation methods for image classification.

Augmentation CIFAR-10 CIFAR-100 ImageNet

Accuracy(%) Model Accuracy(%) Model Accuracy(%) Model

Baseline 86.32 Wide-ResNet [41] 62.36 DenseNet [42] 74.12 Shake ResNet [43]

image manipulation 89.56 Wide-ResNet [41] 64.21 DenseNet [42] 77.02 Shake ResNet [43]

image erasing 93.24 Wide-ResNet [41] 67.34 DenseNet [42] 78.35 Shake ResNet [43]

image mix 92.36 Wide-ResNet [41] 66.51 DenseNet [42] 77.95 Shake ResNet [43]

auto augment 95.56 Wide-ResNet [41] 72.35 DenseNet [42] 79.56 Shake ResNet [43]

feature augmentation 95.89 Wide-ResNet [41] 73.21 DenseNet [42] 80.51 Shake ResNet [43]

deep generative models [13] 94.99 Wide-ResNet [41] 72.59 DenseNet [42] 80.23 Shake ResNet [43]

OFIDA 96.54 Wide-ResNet [41] 80.55 DenseNet [42] 84.03 Shake ResNet [43]

https://doi.org/10.1371/journal.pone.0302124.t002

Fig 4. Visual examples of object-focused image data augmentation algorithm: Localization, classification, and separation of target regions from

original images.

https://doi.org/10.1371/journal.pone.0302124.g004
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Tables 3 and 4 present the achieved mIoU scores on the PASCAL VOC dataset and the

CITYSCAPES dataset. These tables include the results obtained by several semantic segmenta-

tion models, namely deeplabv3+ [44], PSPNet [45], GCNet [46], and ISANet [47]. The analysis

reveals that the incorporation of data augmentation techniques enhances the performance of

semantic segmentation models. Notably, the OFIDA algorithms demonstrate substantial

improvements in performance compared to other techniques.

5.3 DynamicFocusNet performance evaluation

Our study primarily focused on exploring innovative data augmentation techniques, placing a

higher emphasis on the accuracy performance of our model and its ability to accurately extract

cropped target images from the original image after localization. Therefore, we did not priori-

tize the reduction of FLOPs (floating-point operations) or the number of parameters in our

approach. Additionally, our secondary objective was to develop a model that could harness the

capabilities of graph neural networks and overcome limitations of conventional object detec-

tion models, while achieving state-of-the-art accuracy.

Table 5 comprehensively presents the performance of DynamicFocusNet in terms of accu-

racy, speed, and robustness. Comparative results indicate that our approach strikes an ideal

balance between speed and accuracy. DynamicFocusNet exhibits significant improvements

compared to previous models such as YOLOR, YOLOv5, and YOLOX, achieving increases of

4.7%, 10.1%, and 8.6%, respectively, in average precision (AP). In comparison with PPYOLOE,

which shares a similar inference speed, DynamicFocusNet demonstrates a noteworthy AP

improvement of 6.5%. Despite the high inference speed of YOLOv6 and YOLOv7, Dynamic-

FocusNet successfully boosts AP by 5.5% and 4.3%, respectively, while maintaining optimal

efficiency. Notably, at a frame rate of 80 FPS, DynamicFocusNet achieves an AP of 55.5%,

Table 3. Performance evaluation of semantic segmentation on the PASCAL VOC 2012 validation set using mIoU.

Augmentation deeplabv3+ [44] PSPNet [45] GCNet [46] ISANet [47]

Baseline 72.31 70.46 69.34 69.27

image manipulation 75.32 73.34 72.17 72.45

image erasing 74.89 73.12 71.86 71.37

image mix 76.24 74.34 73.57 73.30

auto augment 76.84 75.93 74.69 74.75

feature augmentation 75.93 74.94 72.37 72.71

deep generative models [13] 77.21 75.35 74.57 74.21

OFIDA 79.86 78.02 76.96 76.34

https://doi.org/10.1371/journal.pone.0302124.t003

Table 4. Performance evaluation of semantic segmentation on the CITYSCAPES validation set using mIoU.

Augmentation deeplabv3+ [44] PSPNet [45] GCNet [46] ISANet [47]

Baseline 66.29 65.96 67.19 68.10

image manipulation 69.34 68.96 70.11 70.79

image erasing 68.78 68.43 69.68 70.28

image mix 70.19 69.85 71.08 71.94

auto augment 70.90 70.47 71.80 72.46

feature augmentation 69.46 69.16 70.39 71.11

deep generative models [13] 71.14 70.57 71.80 72.52

OFIDA 73.86 73.18 74.51 75.05

https://doi.org/10.1371/journal.pone.0302124.t004
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outperforming YOLOv8, which attains 53.9% AP at a frame rate of 68 FPS. Beyond the com-

prehensive AP evaluation, DynamicFocusNet excels in IoU threshold assessment (AP50 and

AP75) and target size evaluation (APS, APM, and APL), showcasing its broad applicability.

6 Conclusion

The model and the algorithm for the problem of object-focused image data augmentation

(OFIDA) have been investigated in this paper. Our contributions to this challenging problem

are as follows:

Model: We form a novel model of the OFIDA problem to accurately identify and separate

target regions in images while generating diverse and precise image samples to enable one-to-

many data augmentation.

Algorithm: Based on the OFIDA model, an integrated algorithm which combines an opti-

mized attention mechanism, a dynamic graph convolutional network (D-GCN), a novel object

detection algorithm called DynamicFocusNet, and a modified cropping technique is presented

as a solution to the OFIDA problem.

Numerical experiments were conducted to evaluate the performance of the proposed

OFIDA algorithm. The results demonstrate that the OFIDA algorithm, through its ability to

accurately classify, identify, and separate target images, and enable one-to-many data augmen-

tation, significantly improves the performance of various computer vision tasks, such as image

classification and semantic segmentation. Furthermore, the experimental findings highlight

the superiority of the proposed DynamicFocusNet algorithm over other state-of-the-art object

detection algorithms. In the future, it would be interesting to investigate how to further

improve the accuracy and robustness of object detection. Additionally, considering the success

of OFIDA in tasks like image classification and semantic segmentation, it becomes tempting

to extend its application to other areas of computer vision, such as object tracking or scene

understanding. Evaluating the performance of OFIDA in domains like medical imaging or

remote sensing holds promise for new advancements and discoveries.
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