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Abstract

While time-to-event data are often continuous, there are several instances where discrete

survival data, which are inherently ordinal, may be available or are more appropriate or use-

ful. Several discrete survival models exist, but the forward continuation ratio model with a

complementary log-log link has a survival interpretation and is closely related to the Cox pro-

portional hazards model, despite being an ordinal model. This model has previously been

implemented in the high-dimensional setting using the ordinal generalized monotone incre-

mental forward stagewise algorithm. Here, we propose a Bayesian penalized forward con-

tinuation ratio model with a complementary log-log link and explore different priors to

perform variable selection and regularization. Through simulations, we show that our Bayes-

ian model outperformed the existing frequentist method in terms of variable selection perfor-

mance, and that a 10% prior inclusion probability performed better than 1% or 50%. We also

illustrate our model on a publicly available acute myeloid leukemia dataset to identify geno-

mic features associated with discrete survival. We identified nine features that map to ten

unique genes, five of which have been previously associated with leukemia in the literature.

In conclusion, our proposed Bayesian model is flexible, allows simultaneous variable selec-

tion and uncertainty quantification, and performed well in simulation studies and application

to real data.

Introduction

Often when performing survival analyses, most consider the response to be continuous time-

to-event data. However, time-to-event data may also be reported on a discrete, ordinal scale,

either for ease of interpretation [1, 2] or because continuous time data are unavailable [3]. For

example, the European Society for Medical Oncology (ESMO) clinical recommendations for

cutaneous malignant melanoma direct follow-up visits to occur every three months during the

first three years and then decrease the frequency to every 6–12 months [3]. Due to this follow-

up schedule, time-to-relapse would be an interval censored discrete measurement based on
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follow-up visit number, as the actual date of relapse is not observed. In another study,

researchers classified non-ST-segment elevation myocardial infarction patients as short-, inter-

mediate-, or long-term survivors to investigate the effect of in-hospital major bleeding on time

to death [4].

A similar follow-up schedule has been proposed for acute myeloid leukemia (AML), a type

of blood cancer. In the 2010 European LeukemiaNet (ELN) guidelines, the recommended fol-

low-up schedule for AML was every 3 months for the first 2 years and then every 6 months up

to 5 years [5]. In this case, relapse-free survival would be interval-censored and recorded on a

discrete scale. Thus, building models to identify factors associated with these survival out-

comes on a discrete scale could provide more clinically meaningful results than using continu-

ous data models. There is particular interest in identifying genomic features related to AML

prognosis to further our understanding of the disease. These identified features might be useful

prognostic biomarkers and potential targets of novel therapeutic interventions. Many AML

datasets are publicly available on repositories such as Gene Expression Omnibus (GEO)

including our example dataset, GSE6891 [6, 7].

In low-dimensional settings, many discrete survival models are based on logistic regression,

as the censored data likelihood for a discrete survival model can be written in the form of a

binary data likelihood [8–10]. However, if we assume the data were generated from a continu-

ous-time proportional hazards model, then we can use a complementary log-log (clog-log)

link function to model the covariate dependence of the discrete hazard [11]. Then the esti-

mates from this model are equivalent to those from a Cox proportional hazards model [10].

Hence, this clog-log model is also known as a grouped proportional hazards model [12]. This

clog-log model is equivalent to the forward continuation ratio (FCR) ordinal model, and thus

has a nice dual survival and ordinal interpretation that is useful for discrete time-to-event

outcomes.

To fit a discrete survival model to identify genomic features associated with relapse-free sur-

vival, we must take into account the high-dimensional nature of the genomic dataset. The

technology used to assay these genomic variables can measure tens of thousands to hundreds

of thousands of genomic features for each sample, resulting in the property that the number of

features, P, exceeds the number of samples, N. One way to account for this high-dimensional

data is through penalization. Ferber & Archer [13] implemented the penalized clog-log FCR

model in the R package ordinalgmifs [14]. This frequentist-based method uses the gener-

alized monotone incremental forward stagewise (GMIFS) algorithm to fit the FCR model with

an ℓ1 penalty. They also incorporate different censoring schemes and the option to include an

unpenalized subset of covariates. However, this method has some limitations, namely that it

cannot simultaneously perform variable selection and uncertainty quantification and that it is

dependent on a single choice of the penalty parameter.

The Bayesian framework can overcome these limitations. Penalized Bayesian models can be

used to identify important genomic features while simultaneously performing inference. Addi-

tionally, the Bayesian paradigm better accounts for the uncertainty associated with the choice

of the penalty parameter by incorporating a prior for this parameter into the hierarchical

model.

Herein, we describe a novel Bayesian FCR model which combines the Bayesian Least Abso-

lute Shrinkage and Selection Operator (LASSO) [15–19] with variable inclusion indicators

[20–23] to select genomic features that are associated with discrete survival outcomes. In the

Materials and methods section, we introduce notation and describe discrete survival models,

in particular the FCR model. We also review Bayesian penalization methods, with particular

emphasis on the Bayesian LASSO, and present our proposed hierarchical penalized Bayesian

FCR model. In the Simulation studies subsection, we describe our simulation design and
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results. In the Real data application and description subsection, we describe the example AML

dataset downloaded from GEO under accession number GSE6891. Our Results and discussion

section presents our findings from both our simulation studies and application of our method

to the AML dataset. Finally, a brief discussion follows in the Conclusions section.

Materials and methods

To model these discrete survival responses, we first introduce some notation. Suppose we have

N independent subjects (i = 1, 2, 3, . . ., N), and that each subject has P predictors, where P>
N. Thus for each subject a P × 1 vector of covariates xi is observed. Let time be divided into K
+ 1 intervals [a0 = 0, a1), [a1, a2), . . ., [aK−1, aK), [aK, aK+1 =1) and note that we are assuming

time intervals are the same for each subject. Let the discrete survival time response variable be

represented by Ti = min(Yi, Ci), where Yi is the event time for subject i and Ci is the censoring

time of subject i. In general, we only observe the minimum of Yi and Ci, not both times. Then

Ti = kmeans that the subject experienced the event or was censored in interval [ak−1, ak), also

known as time interval k, where k 2 {1, . . ., K + 1}.

Define the N × 1 vector δ to be the event indicator, where δi = I(Yi< Ci). To express the

likelihood as in [10, 11, 24], we define an N × (K + 1) matrix for the event times with elements

yik ¼
1 if Yi ¼ k

0 otherwise
:

(

ð1Þ

Note that Ti = Yi when δi = 1. That is, uncensored observation times are event times. We begin

with the usual censored data likelihood, where censoring is omitted because we assume the

parameters do not depend on censored observations [25]

L ¼
YN

i¼1

PrðYi ¼ kiÞ
di PrðYi > kiÞ

ð1� diÞ: ð2Þ

Next we define the discrete hazard rate to be πik = πk(xi) = Pr(Yi = k|Yi� k, xi), which is the

probability that a subject experiences the event at time interval k given that they have not yet

experienced the event. The discrete hazard ratio,
pik

1� pik
, is equivalent to a forward continuation

ratio in ordinal regression [26]. Using properties of conditional probabilities, we can express

the components of the likelihood in Eq (2) as functions of the discrete hazard rate: PrðYi ¼

kiÞ ¼ piki
Qki � 1

j¼1
ð1 � pijÞ and PrðYi > kiÞ ¼

Qki
j¼1
ð1 � pijÞ; where ki 2 {1, 2, . . ., K + 1}. Substi-

tuting these expressions into Eq (2) yields the following likelihood:

L ¼
YN

i¼1

�

piki

Yki � 1

j¼1

ð1 � pijÞ

�di�Yki

j¼1

ð1 � pijÞ

�ð1� diÞ

: ð3Þ

The equivalent log-likelihood can be written as

log L ¼
XN

i¼1

Xki

j¼1

yij log
pij

1 � pij

 !

þ
XN

i¼1

Xki

j¼1

logð1 � pijÞ; ð4Þ
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because
PN

i¼1

Pki
j¼1
yij ¼

PN
i¼1
di. Simplifying further,

log L ¼
XN

i¼1

Xki

j¼1

½yij logðpijÞ þ ð1 � yijÞ logð1 � pijÞ�: ð5Þ

Notice that Eq (5) is the log-likelihood function for a Bernoulli distribution with response

yij and probability πij [27]. The likelihood in Eq (3) assumes that censoring occurs at the end of

the time interval in which censoring was recorded [11]. That is, censored observations are

observed at interval ki but not at interval ki + 1. However, censoring often occurs in the interior

of the survival time interval, and this assumption may lead to bias if the observation was cen-

sored soon after the start of interval ki rather than near the end of the interval [12]. We will

assume that censoring occurs at the beginning of the interval in which is recorded, since we

assume that once a subject drops out of the study, no additional information is available.

The likelihoods for this alternative censoring scenario can be derived as in [28]. First, con-

sider the case where every subject under study experiences the event of interest. That is, no

censoring occurs, as in [1, 29]. The likelihood can be written as the product of N conditionally

independent binomial random variables. If πik = Pr(Yi = k|Yi� k, xi), then 1 − πik = Pr(Yi> k|

Yi� k, xi). Recall that we previously defined an N × (K + 1) event matrix, Ymat which has ele-

ments yik = 1 if Yi = k and yik = 0 otherwise. Then the likelihood under the case of no censoring

is given by

L ¼
YN

i¼1

YK

k¼1

p
yik
ik ð1 � pikÞ

PKþ1

j¼k
yij� yik

ð6Þ

Next assume Yi> Ci − 1. That is, we assume subjects with Ci = k are censored at the begin-

ning of interval k and so Yi> k − 1. To do this we need to define some additional notation. We

define the N × (K + 1) response matrix, Tmat with elements

tik ¼
1 if Yi ¼ k OR Ci ¼ kþ 1

0 otherwise

(

ð7Þ

Now the likelihood can be written as

L ¼
YN

i¼1

YKþ1

k¼1

p
yik
ik ð1 � pikÞ

PKþ1

j¼k
tij� yik

: ð8Þ

The log-likelihood is given by

log ðLÞ ¼
XN

i¼1

XKþ1

k¼1

yik logðpikÞ þ
XKþ1

j¼k

tij � yik

 !

logð1 � pikÞ

" #

: ð9Þ

Note that Ti = Ci when δi = 0. That is, observation times are equivalent to censoring times for

the censored subjects.

We next model the relationship between covariates and the discrete hazard, π. Specifically,

our application of interest is to identify genomic features that are related to discrete relapse-

free survival in AML. Therefore, we are particularly interested in the penalized FCR model

with the clog-log link so that we can select features from a high-dimensional set of genomic
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predictors. The linear form of the FCR model is:

log½� logð1 � pikÞ� ¼ ak þ xiβ

k ¼ 1; :::;K
ð10Þ

where αk represents the intercept, or threshold, for the kth distinct time interval, and β are the

coefficients for the penalized predictors. This model assumes proportional hazards and has the

nice property of dual survival and ordinal outcome interpretations. An ℓ1 penalty can be used

to perform variable selection. The penalized solution is:

β̂ ¼ arg max
b

 

log½Lðα; βjy;XÞ� � l
XP

m¼1

jbmj

!

ð11Þ

where the tuning parameter λ controls the amount of shrinkage.

The frequentist penalized FCR model proposed by [13] could be used to identify genomic

features, but the models are dependent on the choice of the penalty parameter, λ, and do not

quantify uncertainty. Discrete random forests might be used to predict survival, but these mod-

els are difficult to interpret which is not ideal, as the identified genomic features associated with

survival might be useful targets to develop new therapies. To overcome the limitations of these

existing methods, we propose a new Bayesian penalized FCR model for high-dimensional data.

Bayesian penalized methods have the advantage of simultaneously performing variable

selection and uncertainty quantification, and as well as capturing the variability associated

with the choice of the penalty parameters. ℓ1 penalties, as in the Bayesian LASSO, are very

common [16–19]. These models induce this penalization through the use of double-exponen-

tial (i.e. Laplace) priors on the regression coefficients. This prior has the form:

f ðbmÞ ¼
1

2t
exp �

jbmj

t

� �

ð12Þ

where τ = 1/λ andm = 1, . . ., P.

To improve variable selection performance, we can multiply the regression coefficients in

the Bayesian model by a binary variable γ [20–23]. Note that γ is a variable inclusion indicator

and is given a prior to incorporate a priori information about the probability a variable will be

selected into the model. Our group has previously implemented Bayesian LASSO models with

variable inclusion indicators for variable selection with ordinal responses [30–33]. Here we

extend this idea to the discrete survival FCR model.

Proposed hierarchical penalized Bayesian forward continuation ratio

model

Our hierarchical Bayesian LASSO FCR model with clog-log link and variable inclusion indica-

tors is given by:

pikðxiÞ ¼ 1 � expf� expðak þ XiDgβÞg

Dg ¼ diagðg1; :::; gPÞ

ak � Normalð0;s2Þ for k ¼ 1; :::;K

bmjl � LaPlaceð0; 1=lÞ

l � Gammaða; bÞ

gm � Binomialð1; ymÞ

ð13Þ

We will set θm = s for some fixed s.
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We will use the log-likelihood in Eq (9) together with the hierarchical model in Eq (13) to

define the posterior distribution. When performing the posterior sampling, we use the event

matrix, Ymat, with elements given by Eq (1) and the response matrix, Tmat, with elements given

by Eq (7). We implement the Bernoulli form of the model by restructuring Ymat and the cumu-

lative response matrix, Tcum, into long format and removing cases where cumulative T is zero.

A matrix in wide format can be converted into long format by stacking the rows of the matrix

into columns and labeling the entries with the appropriate column names. For example, let

our wide matrix have the form

Y1 Y2 Y3

1 0 0

0 0 1

0 1 0

0

B
@

1

C
A

Then the long format of this matrix is

Y Indicatior
Y1 1

Y1 0

Y1 0

Y2 0

Y2 0

Y2 1

Y3 0

Y3 1

Y3 0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

Proof of unimodality of the posterior of β under hierarchical model in Eq 13 is provided in S1

Appendix.

Variable selection with variable inclusion indicators

Though the Bayesian LASSO can perform automatic variable selection when using posterior

models, it is more common to summarize posterior distributions using means or medians.

Often posterior intervals, such as credible intervals (CI) or highest posterior density intervals

(HPDI) are used to perform variable selection. A variable is selected into the model if its CI or

HPDI does not contain zero. Specific variable selection methods related to variable inclusion

indicators have also been developed. One option is to use the posterior probabilities of the

inclusion indicators (Pr(γ|Data)) as in [20, 22, 34]. A variable is selected into the model if it’s

associated variable inclusion indicator, γ, has a posterior probability greater than 0.5.

Another variable selection method for variable inclusion indicators is to use Bayes factors.

The Bayes factor (BF) is defined as the ratio of posterior odds to prior odds, where

Prior Odds ¼
PrðHAÞ

PrðH0Þ
; ð14Þ

Posterior Odds ¼
PrðHAjDataÞ
PrðH0jDataÞ

; ð15Þ
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and

BF ¼
Posterior Odds

Prior Odds
: ð16Þ

To apply Bayes factors to β, we testH0 : |β|� � vs.HA : |β|> �, as in [35]. Using the marginal

prior for β derived in S1 Appendix and assuming that � is a small positive value close to 0, we

have

Prðjbj � �Þ ¼ Prð� � � b < 0Þ þ Prð0 � b � �Þ

¼

Z 0

� �

baGðaþ 1Þ

2GðaÞ
1

ðb � bÞaþ1
dbþ

Z �

0

baGðaþ 1Þ

2GðaÞ
1

ðbþ bÞaþ1
db

¼
baGðaþ 1

aGðaÞ
1

ba
�

1

ðbþ �Þa
� �

Prðjbj > �Þ ¼ Prðb < � �Þ þ Prðb > �Þ

¼

Z � �

� 1

baGðaþ 1Þ

2GðaÞ
1

ðb � bÞaþ1
db þ

Z 1

�

baGðaþ 1Þ

2GðaÞ
1

ðbþ bÞaþ1
db

¼
baGðaþ 1Þ

aGðaÞ
1

ðbþ �Þa

The prior odds can therefore be derived as

Prðjbj > �Þ

Prðjbj � �Þ
¼

ba

ðbþ �Þa
:

The posterior odds will be obtained using the posterior samples.

Similarly, to apply Bayes factor methodology to βγ we test the hypothesis H0 : |βγ|� � vs.

HA : |βγ| > � for some small value �. Under the hierarchical model, assuming � > 0 and λ and β
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are independent,

Prðjgbj � �Þ ¼ Prð� � � gb � �Þ

¼ Prðgb ¼ 0Þ þ Prð� � � gb < 0Þ þ Prð0 < gb � �Þ

¼ Prðg ¼ 0Þ þ Prðg ¼ 1ÞPrð� � � b < 0Þ þ Prðg ¼ 1ÞPrð0 < b � �Þ

¼ Prðg ¼ 0Þ þ Prðg ¼ 1Þ

Z 0

� �

baGðaþ 1Þ

2GðaÞ
1

ðb � bÞaþ1
db

þ Prðg ¼ 1Þ

Z �

0

baGðaþ 1Þ

2GðaÞ
1

ðbþ bÞaþ1
db

¼ Prðg ¼ 0Þ þ Prðg ¼ 1Þ
baGðaþ 1Þ

aGðaÞ
1

ba
�

1

ðbþ �Þa
� �

;

Prðjgbj > �Þ ¼ Prðgb > �Þ þ Prðgb < � �Þ

¼ Prðg ¼ 1ÞPrðb > �Þ þ Prðg ¼ 1ÞPrðb < � �Þ

¼ Prðg ¼ 1Þ

Z 1

�

baGðaþ 1Þ

2GðaÞ
1

ðbþ bÞaþ1
db

þPrðg ¼ 1Þ

Z � �

� 1

baGðaþ 1Þ

2GðaÞ
1

ðb � bÞaþ1
db

¼ Prðg ¼ 1Þ
baGðaþ 1Þ

aGðaÞ
1

ðbþ �Þa

The prior odds can therefore be derived as

Prðjgbj > �Þ

Prðjgbj � �Þ
¼

Prðg ¼ 1ÞbaGðaþ 1Þ

Prðg ¼ 1Þððbþ �Þa � baÞGðaþ 1Þ þ Prðg ¼ 0Þaðbþ �ÞaGðaÞ

and the posterior odds will be calculated using the posterior samples.

Finally, we can also apply the BF methodology directly to the inclusion indicator γ. When

applying the Bayes factor to γ, we test the hypothesisH0 : γ = 0 vs.HA : γ = 1. The prior odds

depend on the choice of hyper parameter on θ. When θm = s then γm* Bin(1, s) and so the

prior odds are

PrðHAÞ

PrðH0Þ
¼

Prðg ¼ 1Þ

Prðg ¼ 0Þ
¼

s
1 � s

: ð17Þ

The posterior odds will be found empirically from the posterior samples. Typically with BF

methodology, a threshold is chosen to determine variable importance [36]. We will consider

genomic features important if their BF exceeds 5.

Simulation studies

Simulation studies for the high-dimensional Bayesian penalized FCR models were conducted

in R version 4.1.2 [37]. Bayesian analysis was performed using Just Another Gibbs Sampler

(JAGS) [38] with the runjags R package [39]. We utilized the high performance computing

power of the Ohio Supercomputer Center (OSC) [40].

Simulation design. We used an existing dataset to generate our simulated data, so as to

better capture the complex correlation structure present in high-dimensional genomic datasets.

To generate simulated data, we used a publicly available gene expression dataset of AML

patients in the German AMLCG 1999 trial (GEO accession number: GSE37642) [41–44]. These
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publicly available archived data are fully de-identified and thus are not considered human sub-

jects research. The data were read into R using the GEOquery library. This dataset contains

562 samples with gene expression measured using different Affymetrix arrays (140 HGU-

133plus2; 422 HGU-133A; 422 HGU-133B). We used only the U133A GeneChip data in our

simulation. After excluding patients that were missing overall survival and removing the control

probesets, we had 417 samples and 22215 features for our simulations and the overall censoring

rate was 26.1%. The time-interval-specific censoring rate is reported in Table 1, where the inter-

val cutpoints were chosen so that the sample size was balanced across the intervals.

Before building our simulation datasets, we preprocessed these data. We used the caret
package to filter the data to remove probesets with near zero variance and probesets that are

highly correlated (ρ> 0.75) [45]. Then we applied a variance filter to keep the top 1,000 most

variable probesets. We also centered and scaled the expression values prior to generating the

survival outcomes.

We generated both balanced and unbalanced simulation datasets. For both settings, we gen-

erated survival data by first selecting five features in the dataset to have β = log(2), an addi-

tional five features to have β = −log(2), and the remaining 990 features to have β = 0. We then

used this β vector to generate the linear predictor, and next randomly generated survival times

with rate equal to exp(βTX). We randomly generated censoring time from an exponential dis-

tribution with rate equal to 0.2676, which was the estimated rate from an intercept-only expo-

nential survival model fit to the data. We set the observed time to be the minimum of the event

time and the censoring time and created the censoring indicator. Finally, we grouped the con-

tinuous survival times into 5 discrete intervals.

For the balanced simulation datasets, we used the quintiles of the first simulated dataset to

define the grouping, so that there would be a robust sample size for model fitting in each time

interval. The thresholds were 0.09, 0.32, 0.67 and 1.7. Summary statistics of the quintiles across

the 100 simulated datasets are reported in Table 2 and are on average close to the thresholds

used. The mean proportion of samples per interval and the mean censoring proportion for the

100 simulated balanced datasets are reported in Table 3. The sample size is similar in the five

intervals, and the censoring rate increases over time (as the interval number increases), as in

the actual dataset.

Table 1. Censoring rates for each time interval in the GSE37642 dataset.

Time-interval Proportion Censored

1 0.000

2 0.061

3 0.059

4 0.301

5 0.881

https://doi.org/10.1371/journal.pone.0300638.t001

Table 2. Summary statistics of quintiles across the 100 simulated balanced datasets generated using the GSE37642 dataset.

Percentile Min 1st Quartile Median Mean 3rd Quartile Max

20% 0.06 0.07 0.08 0.08 0.09 0.11

40% 0.20 0.25 0.26 0.27 0.29 0.34

60% 0.57 0.65 0.69 0.69 0.73 0.82

80% 1.37 1.63 1.72 1.73 1.84 2.14

https://doi.org/10.1371/journal.pone.0300638.t002
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For the unbalanced simulation datasets, we defined the intervals to be similar to those in

the ELN guidelines [5]. The thresholds were 0.25, 0.5, 0.75, and 1 to reflect the recommended

follow-up schedule of every 3 months for the first year. The mean proportion of samples per

interval and the mean censoring proportion for the 100 simulated unbalanced datasets are

reported in Table 4. Now there are more samples in the first and last classes, which reflects the

actual AML dataset. The censoring rate increases over time, as in the actual dataset and the

simulated unbalanced datasets.

For each dataset, we fit our proposed Bayesian LASSO FCR model with variable inclusion

indicators (BLASSO-FCR) in Eq (13) with s = 0.01, 0.1, or 0.5. These models were fit using

runjags on OSC with 500 adaptation steps and 500 burn-in steps, which were discarded.

We then fit 3 chains and thinned every third step so that we saved a total of 9,999 iterations.

We assessed model convergence using potential scale reduction factor (PSRF), where

PSRF> 1.1 indicates lack of convergence [46]. Sample R code can be found in S1 Appendix.

Code for a toy example can be found at https://github.com/annaSeffernick/BayesianLassoFCR.

We also fit the frequentist OGMIFS FCR model for comparison.

In the simulation studies, variable selection performance was assessed using true positive

rates (TPR), true negative rates (TNR), positive predictive values (PPV), negative predictive

values (NPV), and false discovery rates. The definition of these quantities are as follows:

TPR ¼
# True Positives Identified

# True Positives
;

TNR ¼
# True Negatives Identified

# True Negatives
;

PPV ¼
# True Positives Identified
# Discoveries Identified

;

Table 3. Average proportion of samples per time-interval and average interval-specific censoring proportion

across the 100 simulated balanced datasets generated using the GSE37642 dataset.

Time Interval Proportion of Samples Proportion Censored

1 0.218 0.096

2 0.217 0.187

3 0.158 0.291

4 0.203 0.393

5 0.204 0.574

https://doi.org/10.1371/journal.pone.0300638.t003

Table 4. Average proportion of samples per time-interval and average interval-specific censoring proportion

across the 100 simulated unbalanced datasets generated using the GSE37642 dataset.

Time Interval Proportion of Samples Proportion Censored

1 0.386 0.132

2 0.144 0.253

3 0.091 0.311

4 0.065 0.374

5 0.314 0.519

https://doi.org/10.1371/journal.pone.0300638.t004
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NPV ¼
# True Negatives Identified

# Negatives Identified
;

and

FDR ¼
False Discoveries Identified

Discoveries Identified
:

Ideally, TPR, TNR, PPV, and NPV will be 1 and FDR will be close to 0. Note that we are not

strictly controlling FDR. These quantities will be calculated for the different variable selection

methods described in the Methods Section. For the BLASSO-FCR models, we use Bayes factors

(BF) for β, γβ, and γ, posterior probabilities (Pr(γ|D) > 0.5), and 95% credible intervals (CI).

For the OGMIFS models, features are selected using Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC).

Real data application and description

To identify genomic features predictive of discrete survival, we applied our proposed BLAS-

SO-FCR model to a publicly available gene expression dataset (GEO accession number:

GSE6891) [6, 7]. These publicly available archived data are fully de-identified and thus are not

considered human subjects research. This dataset includes 521 AML patients (� 60 years old),

was collected using Affymetrix HG U133 Plus 2.0 GeneChip arrays, and the outcome of inter-

est was relapse-free survival (RFS). We grouped RFS into 5 discrete time intervals based on 4

cutpoints: 6 months, 12 months, 18 months, and 24 months, as described in the ELN guide-

lines [5]. We used cutpoints every six months rather than 3 months so that each group had

large enough sample size for robust estimation. The distribution of samples across these 5 time

intervals is presented in Table 5.

Prior to applying our Bayesian method, we processed the data through a number of filtering

steps. The data were read into R using the GEOquery library [47]. Initially, there were 521

samples and 54,675 genomic features. We first removed 107 samples who were missing RFS.

Next we removed genomic features that had missing values (p = 62). Then we used the nzv
function in the caret package to identify features with near zero variance [45]. While none

of the features were flagged as having zero variance, there were several features with the major-

ity of samples having the same expression values. Thus, we filtered to keep only those features

with at least 20% unique values, based on the 1st quartile cutoff of the percentage of unique val-

ues across all features. This left 40,636 features. We additionally used the caret package to

remove highly correlated features (ρ> 0.75), which left 33,011. Next, we applied a variance fil-

ter to keep the 1,000 most variable features. Finally, we centered and scaled the expression

Table 5. Distribution of GSE6891 patients across relapse-free survival groups. Time interval 1 is defined as 0 to 6

months, interval 2 is 6 to 12 months, interval 3 is 12 to 18 months, interval 4 is 18 to 24 months, and interval 5 is greater

than 24 months.

Time Interval Censored Relapsed Total

1 0 65 65

2 2 107 109

3 0 43 43

4 0 14 14

5 138 45 183

https://doi.org/10.1371/journal.pone.0300638.t005
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values before fitting the Bayesian models. The final application dataset contains 414 samples

and 1000 gene expression variables.

As in the simulation studies, we fit our proposed BLASSO-FCR model with θ = 0.01, 0.1,

0.5 and evaluated the two best performing BF variable selection methods. All analyses were

done in R version 4.1.2. [37] Bayesian models were fit using JAGS with the runjags R pack-

age [39] on OSC [40].

Results and discussion

Simulation results

The variable selection results for the BLASSO-FCR models are reported in Table 6 and Fig 1

for the simulated balanced datasets. The βγ and γ BF methods tend to perform quite well.

PPVs and FDRs are improved for larger values of θ, while TPRs and NPVs worsen slightly as θ
increases. The CI method also has good performance, but the βγ BF and γ BF methods gener-

ally perform the best in terms of TPR and NPV, and these methods select close to the true

number of features. The Pr(γ|D) selection method for θ = 0.5 identifies a very large number of

features which decreases the TNR and PPV and increases FDR. For TPR, TNR, and NPV, the

oracle value θ = 0.01 performs best.

The variable selection results from the BLASSO-FCR model fit for the simulated unbal-

anced datasets are in Table 7 and Fig 2. The results are very similar to those for the balanced

datasets, with very similar patterns across the values of θ. The positive predictive values are

slightly lower and the FDR and number of discoveries slightly higher for these unbalanced

datasets compared to the balanced datasets.

The convergence results for both simulation settings are in Table 8. As the fixed value of θ
decreased, the number of datasets with lack of convergence increased and the mean number of

parameters with PSRF> 1.1 out of the 3016 monitored parameters also increased. Conver-

gence was especially poor for the oracle value θ = 0.01, with all datasets having at least one

parameter that failed to converge and a much higher mean number of parameters with

PSRF> 1.1. For θ = 0.1 and θ = 0.5, only a small number of parameters failed to converge.

Table 6. Variable Selection performance from Bayesian LASSO FCR model with different prior inclusion probabilities θ fit to simulated balanced data containing

10 significant features with 1000 covariates from GSE37642 dataset. Model was selected using credible intervals (CI), Bayes factors (BF), or mean posterior probability

of inclusion (Pr(γ|D)).

θ Method Discoveries FDR TPR TNR PPV NPV

0.01 CI 9.86 0 0.986 1 1 0.9999

βγ BF > 5 13.82 0.247 1 0.996 0.753 1

β BF > 5 9.87 0 0.987 1 1 0.9999

γ BF > 5 13.85 0.249 1 0.996 0.751 1

Pr(γ|D) > 0.5 10.07 0.007 0.999 0.9999 0.993 0.99999

0.1 CI 8.04 0.002 0.802 0.99998 0.998 0.998

βγ BF > 5 12.55 0.200 0.989 0.997 0.800 0.9999

β BF > 5 7.11 0.001 0.710 0.99999 0.999 0.997

γ BF > 5 13.1 0.231 0.989 0.997 0.769 0.9999

Pr(γ|D) > 0.5 10.85 0.0939 0.976 0.999 0.907 0.9998

0.5 CI 3.53 0 0.353 1 1 0.994

βγ BF > 5 5.43 0.003 0.541 0.99998 0.997 0.995

β BF > 5 1.98 0 0.198 1 1 0.992

γ BF > 5 7.17 0.032 0.691 0.9997 0.968 0.997

Pr(γ|D) > 0.5 240.11 0.958 0.997 0.768 0.042 0.99996

https://doi.org/10.1371/journal.pone.0300638.t006
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Fig 1. Balanced data simulation results. Variable selection performance for Bayesian LASSO FCR model fit to

simulated balanced data containing 10 truly related features among 1000 covariates from GSE37642 dataset.

https://doi.org/10.1371/journal.pone.0300638.g001

Table 7. Variable Selection performance from Bayesian LASSO FCR model with different prior inclusion probabilities θ fit to simulated unbalanced data containing

10 significant features with 1000 covariates from GSE37642 dataset. Model was selected using credible intervals (CI), Bayes factors (BF), or mean posterior probability

of inclusion (Pr(γ|D)).

θ Method Discoveries FDR TPR TNR PPV NPV

0.01 CI 9.44 0.00125 0.943 0.99999 0.999 0.9994

βγ BF > 5 16.25 0.347 1 0.994 0.653 1

β BF > 5 9.41 0.00125 0.94 0.99999 0.999 0.9994

γ BF > 5 16.25 0.3467 1 0.994 0.653 1

Pr(γ|D) > 0.5 9.98 0.011 0.987 0.9999 0.989 0.9999

0.1 CI 6.63 0.00125 0.662 0.99999 0.999 0.997

βγ BF > 5 13.52 0.276 0.957 0.996 0.724 0.9996

β BF > 5 5.74 0 0.574 1 1 0.996

γ BF > 5 14.25 0.309 0.962 0.995 0.691 0.9996

Pr(γ|D) > 0.5 10.86 0.146 0.916 0.998 0.854 0.999

0.5 CI 2.67 0 0.267 1 1 0.993

βγ BF > 5 4.87 0.005 0.484 0.99997 0.995 0.995

β BF > 5 1.71 0 0.171 1 1 0.992

γ BF > 5 6.54 0.044 0.62 0.9997 0.956 0.996

Pr(γ|D) > 0.5 251.89 0.961 0.989 0.756 0.039 0.9999

https://doi.org/10.1371/journal.pone.0300638.t007
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The OGMIFS FCR model variable selection results are shown in Table 9 and Fig 3. For

both balanced and unbalanced simulated data, a large number of features are selected by both

AIC and BIC, which leads to high FDRs. As shown in Fig 3, there is little difference in the vari-

able selection metrics across the two simulated data settings. These models perform well in

terms of TPR, NPV, and NPV. However, the PPVs are pretty low, generally below 0.3. For

Fig 2. Unbalanced data simulation results. Variable selection performance for Bayesian LASSO FCR model fit to

simulated unbalanced data containing 10 truly related features among 1000 covariates from GSE37642 dataset.

https://doi.org/10.1371/journal.pone.0300638.g002

Table 8. Lack of convergence for BLASSO-FCR model fit to GSE37642 simulated balanced and unbalanced data

with θ = 0.01, 0.1, 0.5 in terms of PSRF> 1.1. The third column corresponds to the number of datasets out of 100

simulated datasets in which at least one parameter failed to converge. The fourth column corresponds to the average

number of parameters out of 3016 monitored parameters that had PSRF> 1.1.

Setting θ Number of Datasets Mean Number of Parameters

Balanced 0.01 100 153.87

0.1 91 1.95

0.5 48 0.56

Unbalanced 0.01 100 129.36

0.1 81 1.54

0.5 35 0.39

https://doi.org/10.1371/journal.pone.0300638.t008
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TNR, PPV, and FDR the BIC selection method performs better than the AIC selection method.

However, the AIC method has higher TPR and NPV compared to the BIC method.

We also compared the variable selection performance of the BLASSO-FCR model with γ
BF selection to the OGMIFS methods across values of θ and censoring scenarios. These results

are shown in Fig 4 and similar patterns are seen for the balanced and unbalanced simulated

datasets across the variable selection metrics. For TPR and NPV, all methods perform very

well, except for the Bayesian model with θ = 0.5. The OGMIFS model with BIC selection also

has slightly lower TPR and NPV rates but not as low as the BLASSO-FCR model with θ = 0.5.

For TNR and PPV, the Bayesian models have much higher values than the OGMIFS models.

Table 9. Variable Selection performance from OGMIFS FCR model with optimal step selected with AIC or BIC, fit to simulated balanced and unbalanced data con-

taining 10 truly related features among 1000 covariates from GSE37642 dataset.

Setting Method Discoveries FDR TPR TNR PPV NPV

Balanced AIC 54.87 0.735 0.984 0.957 0.176 0.9998

BIC 36.38 0.629 0.917 0.975 0.239 0.999

Unbalanced AIC 58.46 0.747 0.981 0.953 0.168 0.9998

BIC 36.1 0.628 0.911 0.975 0.239 0.999

https://doi.org/10.1371/journal.pone.0300638.t009

Fig 3. OGMIFS simulation results. Variable selection performance for OGMIFS FCR models fit to 100 balanced and

100 unbalanced simulated datasets containing 10 truly related features among 1000 covariates from GSE37642 dataset.

https://doi.org/10.1371/journal.pone.0300638.g003
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The Bayesian methods have lower FDR compared to the OGMIFS methods for censoring sce-

narios both simulation data settings. Finally, the OGMIFS models made more discoveries than

the Bayesian models for all censoring scenarios.

These simulation results show that in general, the Bayesian methods outperform the

OGMIFS methods. Among the Bayesian methods, the variable selection performance is very

similar across the simulated data settings. Among the variable selection methods, βγ and γ BF

methods performed best. Due to its straightforward implementation, we recommend using γ
BF for variable selection in practice. Based on convergence results, it seems that a choice of θ =

0.1 for prior inclusion probability performed well and might be useful in practice. However,

this is data-dependent and should be explored for each application.

We performed additional simulations to explore the performance of the proposed BLAS-

SO-FCR model when the generated data had smaller sample sizes, a larger number of truly

important features, and a higher censoring rate. These results can be found in S1 Appendix.

These results show that variable selection performance generally improves as the sample size

increases, that there is little difference between the original censoring level (26%) and the

increased censoring level (40%), and that the selection performance is sensitive to the choice of

θ as well as the selection method. When applying the BLASSO-FCR model to real data, care

must be taken when setting θ and in choosing the BF threshold. One could also decide to focus

on the features with the largest BF, for example, ordering the genomic features by BF and

selecting the top 100 or 500 features. It is also important to evaluate convergence and increase

the number of MCMC iterations until all parameters converge.

Fig 4. Simulation comparison of BLASSO-FCR and OGMIFS FCR models. Comparison of variable selection

performance for BLASSO-FCR models with features selected using γ BF> 5 and the OGMIFS FCR model with optimal

step selected using AIC or BIC, fit to 100 balanced and 100 unbalanced simulated datasets with 10 significant features and

covariates from the GSE37642 dataset.

https://doi.org/10.1371/journal.pone.0300638.g004

PLOS ONE Penalized Bayesian discrete survival model for high-dimensional data

PLOS ONE | https://doi.org/10.1371/journal.pone.0300638 March 28, 2024 16 / 21

https://doi.org/10.1371/journal.pone.0300638.g004
https://doi.org/10.1371/journal.pone.0300638


Application results

We first assessed the convergence of our proposed models under the different θ values,

reported in Table 10. As in our simulations, convergence was generally quite good for these

models. There was only a small number of monitored parameters with PSRF > 1.1 for θ = 0.01

and no evidence of lack of convergence for θ = 0.1 and θ = 0.5.

The number of selected features across the values of θ are reported in Table 11 for the two

selection methods. The BF methods selected similar numbers of features in all cases, and

selected fewer features as θ increased.

Since the BFγ selection method had good performance in our simulation studies for models

fit with θ = 0.1, we further explored the selected genomic features. The nine identified probe-

sets and associated genes from the BLASSO-FCR model with θ = 0.1 are reported in Table 12.

Among these genes, five have been previously associated with leukemia in the literature:

CD109 [48], GGT5 [49], PAX8-AS1 [50], P2RY13 [51], and UBASH3B [52].

Table 10. Lack of convergence (PSRF> 1.1) for BLASSO-FCR model fit with θ = 0.01, 0.1, 0.5 to the GSE6891

application dataset. The number of parameters with PSRF> 1.1 is reported. For each model fit, 3016 parameters were

monitored.

θ Number of Parameters

0.01 24

0.1 0

0.5 0

https://doi.org/10.1371/journal.pone.0300638.t010

Table 11. Number of selected features for BLASSO-FCR model fit with θ = 0.01, 0.1, 0.5 to the GSE6891 applica-

tion dataset. The features were selected using two selection method: βγ Bayes factor (BF) greater than 5 or γ Bayes fac-

tor (BF) greater than 5.

θ βγ BF > 5 γ BF > 5

0.01 41 41

0.1 7 9

0.5 0 0

https://doi.org/10.1371/journal.pone.0300638.t011

Table 12. Nine probesets identified by BLASSO-FCR models fit with θ = 0.1 to the GSE6891 application dataset

under censoring (ii). The features were selected using γ Bayes factor greater than 5. Genes marked with an asterisk (*)
have been previously associated with leukemia.

ID Gene Symbol

205582_s_at GGT5*
216950_s_at FCGR1A, FCGR1B, FCGR1C
220005_at P2RY13*
226545_at CD109*
227099_s_at C11orf96
227474_at PAX8-AS1*
228170_at OLIG1
238587_at UBASH3B*
239451_at

https://doi.org/10.1371/journal.pone.0300638.t012
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Conclusions

Here we proposed a Bayesian hierarchical FCR model that incorporates the Bayesian LASSO

and variable inclusion indicators to identify genomic features that are associated with discrete

survival outcomes. These features are candidates for further study that might enhance our

understanding of disease and could be potential diagnostic biomarkers and even novel targets

for new treatments.

In our simulation study we evaluated the performance of our proposed BLASSO-FCR

model using simulated outcomes with five discrete ordinal levels, that used 1000 genomic

covariates from the GSE37642 dataset. Thus, the simulated dataset recapitulated the complex

relationships among genes in real gene expression data. We evaluated different prior probabili-

ties of inclusion through changing the value of θ, different selection methods, and two data set-

tings. We also compared the performance of our BLASSO-FCR model to that of the OGMIFS

FCR model.

Generally, our proposed BLASSO-FCR model performed quite well and tended to have

higher TPR, TNR, PPV, and NPV and lower FDR compared to the OGMIFS FCR models

across the data settings. When using the γ BF selection method, the Bayesian models tended to

select fewer features compared to the OGMIFS models. We also found there was little differ-

ence in the variable selection performance of the Bayesian methods across the data settings.

Despite the good performance, our proposed model has some limitations. In our simula-

tions studies, we limited the number of genomic features to 1000 due to computation time.

Further work is needed to speed up this method. We also only used the Bayesian LASSO with

variable inclusion indicators in our models, but other regularization priors like the horseshoe

could be investigated further [53].

We also applied our proposed BLASSO-FCR model to the GSE6891 gene expression dataset

of AML patients less than 60 years old. The models fit with θ = 0.1 had no evidence of lack of

convergence and selected nine probesets that mapped to ten unique genes. Five of these genes

have been previously associated with leukemia.

In conclusion, we proposed a flexible Bayesian FCR model appropriate for discrete survival

outcomes. This method allows variable selection and inference to be performed simulta-

neously and is easy to implement in R. R code demonstrating the usage of the BLASSO-FCR

model is available at https://github.com/annaSeffernick/BayesianLassoFCR.

Supporting information

S1 Appendix. Abbreviations, proofs, additional simulation results, and R code. A table of

abbreviations used in the manuscript, mathematical proof that the posterior distribution of β
in the proposed hierarchical model is unimodal, derivation of Bayes Factors, additional simu-

lation design and results, and R code to implement the model.

(PDF)
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42. Herold T, Metzeler KH, Vosberg S, Hartmann L, Röllig C, Stölzel F, et al. Isolated trisomy 13 defines a

homogeneous AML subgroup with high frequency of mutations in spliceosome genes and poor progno-

sis. Blood, The Journal of the American Society of Hematology. 2014; 124(8):1304–1311. PMID:

24923295

43. Kuett A, Rieger C, Perathoner D, Herold T, Wagner M, Sironi S, et al. IL-8 as mediator in the microenvi-

ronment-leukaemia network in acute myeloid leukaemia. Scientific Reports. 2015; 5(1):1–11. https://

doi.org/10.1038/srep18411 PMID: 26674118

44. Herold T, Jurinovic V, Batcha AM, Bamopoulos SA, Rothenberg-Thurley M, Ksienzyk B, et al. A 29-

gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leu-

kemia. Haematologica. 2018; 103(3):456. https://doi.org/10.3324/haematol.2017.178442 PMID:

29242298

45. Kuhn M. caret: Classification and Regression Training; 2020. Available from: https://CRAN.R-project.

org/package=caret.

46. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Statistical Science.

1992; 7(4):457–472. https://doi.org/10.1214/ss/1177011136

47. Davis S, Meltzer P. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioCon-

ductor. Bioinformatics. 2007; 14:1846–1847. https://doi.org/10.1093/bioinformatics/btm254 PMID:

17496320

48. Tanabe M, Hosokawa K, Nguyen MAT, Nakagawa N, Maruyama K, Tsuji N, et al. The GPI-anchored

protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced

by TGF-β. Leukemia. 2022; 36(3):847–855. https://doi.org/10.1038/s41375-021-01463-3 PMID:

34743190

49. Tian Y, Huang Z, Wang Z, Yin C, Zhou L, Zhang L, et al. Identification of novel molecular markers for

prognosis estimation of acute myeloid leukemia: over-expression of PDCD7, FIS1 and Ang2 may indi-

cate poor prognosis in pretreatment patients with acute myeloid leukemia PLoS One. 2014; 9(1):

e84150. https://doi.org/10.1371/journal.pone.0084150 PMID: 24416201

50. Bahari G, Hashemi M, Naderi M, Sadeghi-Bojd S, Taheri M. Long non-coding RNA PAX8-AS1 polymor-

phisms increase the risk of childhood acute lymphoblastic leukemia. Biomedical Reports. 2018; 8

(2):184–190. https://doi.org/10.3892/br.2017.1028 PMID: 29435279

51. Maiga A, Lemieux S, Pabst C, Lavallée V-P, Mouvier M, Sauvageau G, Hébert J. Transcriptome analy-
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