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Abstract

In this paper, we examine a family of recursively defined polynomials with four-variables on a fourth order
recurrence relation and build their generating function. These generating functions enable us to derive several
properties of the four-variable polynomials. Finally, we deduce new identities for the new class of polynomials
with four-variables and also, we define the Q-matrix.

Keywords: Fibonacci polynomials; recurrence relation; recursive polynomials; generating functions.

Mathematics Subject Classification 2010: 11B39, 11B37, 05A15, 05A19.

1 Introduction

Polynomials are ubiquitous. Polynomials are used in every branch of mathematics. There are many well-
known polynomials like Bernstein-Sato polynomials, Lagrange polynomials, Hermite polynomials, characteristic
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polynomials, minimal polynomials, and invariant polynomials play a vital role in the field of mathematics and
engineering. The Fibonacci, Lucas, and Pell polynomials contribute significantly to the study of combinatorial
structures. In particular various types of tiling problems [1, 2] can be analyzed using properties of Fibonaci-like
polynomials.

Several authors [3]-[15] focus on generalizations of Fibonacci polynomials, their generating functions, Binet
formula, roots, and related identities. In [16], the authors defined Gaussian Fibonacci polynomials and obtained
the relation with Fibonacci polynomials. The extension of Fibonacci and Lucas polynomials with two variables
was defined by Catalani [17]. Ozdemir and Simsek [18] gave the family of two-variable polynomials and
investigated the relationship between Fibonacci, Jacobsthal and Chebyshev polynomials. Kizilates [19] discussed
the properties of the family of three-variable Fibonacci polynomials.

In this paper, motivated by the work of Kizilates , Ozdemir and Soykan we construct four-variable polynomials
using (r, s, t, u)-numbers [20, 21] and three different types of generating functions. In Section 2, we discuss a
generating function G(g) of the four-variable recurrence equation which is related to Fibonacci polynomials. In
Section 3, we construct other two generating functions of the new generalized polynomials, and some properties
have been investigated. In Sections 4 and 5, we discuss new identities of the four-variable polynomials.

2 Generating Function of Four-variable Recursive Polynomials

The recurrence relation of Fibonacci polynomial, two variables, three variables polynomials and the first five
terms are presented in the following table.

Table 1. Recurrence relation of Fibonacci-like polynomials

Recurrence Relation Initial values

Fn(x1) = x1Fn−1(x1) + Fn−2(x1) F0(x1) = 0,F1(x1) = 1

Fn(x1, x2) =
∑2
i=1 xiFn−i(x1, x2), n ≥ 2 F0(x1, x2) = 0,F1(x1, x2) = 1

Fn(X) =
∑3
i=1 xiFn−i(X), n ≥ 3 F0(X) = 0, F1(X) = 1,F2(X) = x1

where X = (x1, x2, x3)

Table 2. First five terms of Fibonacci-like polynomials

n One Variable Two variables Three Variables

0 0 0 0
1 1 1 1
2 x1 x1 x1
3 x21 + 1 x21 + x2 x21 + x2
4 x31 + 2x1 x31 + 2x1x2 x31 + 2x1x2 + x3
5 x41 + 3x21 + 1 x41 + 3x21x2 + x22 x41 + 3x21x2 + 2x1x3 + x22

Based on suitable xi and initial values [21], we can generate many well known polynomials like Lucas polynomials,
Pell polynomials, Padovan polynomials.

Now, we define a four-variable recurrence polynomial. Let x1, x2, x3 and x4 be the positive integer variables.
Then

Fn(X) =

4∑
i=1

xiFn−i(X); n ≥ 4 (2.1)
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where X = (x1, x2, x3, x4) with initial conditions

F0(X) = 0 F1(X) = 1 F2(X) = x1 F3(X) = x21 + x2

From the equation (2.1), we generate Fibonacci-like polynomials in four variables and presented in table 3.

Table 3. The sequence of Fibonacci like polynomials in four-variables

n Fn(x1, x2, x3, x4)

0 0
1 1
2 x1
3 x21 + x2
4 x31 + 2x1x2 + x3
5 x41 + 3x21x2 + 2x1x3 + x22 + x4
6 x51 + 4x31x2 + 3x21x3 + 3x1x

2
2 + 2x2x3 + 2x1x4

...
...

We observe that, if the Fibonacci-like polynomial terms are arranged in dictionary order, then the degree of
Fn(X) = n− 1.

Also, we can obtain many standard well-known sequences listed in OEIS [22] for the particular cases of xi and
by giving suitable initial values. Lan Qi [23] discussed the identities and state the generating functions of fourth
order linear recurence sequence. On the basis of that, we present the following theorem.

Theorem 2.1. Let X = (x1, x2, x3, x4). The generating function of Fibonacci-like polynomial is given by

G(g) =
g

1−
∑4
i=1 xig

i
(2.2)

Proof.

G(g) =

∞∑
n=0

Fn(X)gn

= g + x1g
2 + (x21 + x2)g3 +

∞∑
n=4

Fn(X)gn

Now, we consider

∞∑
n=4

Fn(X)gn =

∞∑
n=4

(x1Fn−1(X) + x2Fn−2(X) + x3Fn−3(X) + x4Fn−4(X))gn

∞∑
n=4

Fn(X)gn = x1g[G(g)− g − x1g2] + x2g
2[G(g)− g] + x3g

3G(g) + x4g
4G(g)

Hence, we obtain

G(g) = g + x1g
2 + (x21 + x2)g3 + x1g[G(g)− g − x1g2] + x2g

2[G(g)− g] + x3g
3G(g) + x4g

4G(g)

From this, we get the desired result.
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3 Generating Functions of New Family of Four-variable
Polynomials

In this section, we construct two different ordinary generating functions of the four-variable recursive polynomials
and investigate some results of these functions.

Now we consider family of four variable polynomials Sj(Θ; Λ) where the variables are denoted by Θ = (x1, x2, x3, x4)
and Λ = (α, β, γ, δ, ζ) ∈ N0 = {0, 1, 2, . . .} Then we define the generating function Sj(Θ; Λ)

U(g; Θ; Λ) =

∞∑
j=0

Sj(Θ; Λ)gj =
1

1− xα1 g − x
β
2 g
β+γ − xδ3gβ+γ+δ − x

ζ
4g
β+γ+δ+ζ

(3.1)

and | xα1 g + xβ2 g
β+γ + xδ3g

β+γ+δ + xζ4g
β+γ+δ+ζ |< 1.

Now, Using Taylor’s series expansion we derive the explicit representation of polynomials Sj(Θ; Λ)

Theorem 3.1.

Sj(Θ; Λ) =

λ∑
s=0

µ∑
u=0

ξ∑
v=0

(
A

s+ u+ v

)(
s+ u+ v

u+ v

)(
u+ v

v

)
(x1)B(x2)βs(x3)δu(x4)ζv (3.2)

where

λ =
⌊

j
(β+γ)

⌋
, µ =

⌊
j−(β+γ)s
β+γ+δ

⌋
, ξ =

⌊
j−(β+γ+δ)u
(β+γ+δ+ζ)

⌋
A = j − (β + γ − 1)s− (β + γ + δ − 1)u− (β + γ + δ + ζ − 1)v

B = j − (β + γ)s− (β + γ + δ)(u+ v)− ζv

Proof. Using Taylor’s series and binomial expansion, we expand the generating function, equation (3.1) becomes

U(g; Θ; Λ) =

∞∑
j=0

Sjg
j =

∞∑
J=0

(xα1 g + xβ2 g
β+γ + xδ3g

β+γ+δ + xζ4g
β+γ+δ+ζ)j

U(g; Θ; Λ) =

∞∑
j=0

∞∑
s=0

(
j

s

)
(xα1 g)j−s(xβ2 g

β+γ + xδ3g
β+γ+δ + xζ4g

β+γ+δ+ζ)s

Replace j by j + s, we get

U(g; Θ; Λ) =

∞∑
j=0

∞∑
s=0

(
j + s

s

)
(xα1 g)j(xβ2 g

β+γ + xδ3g
β+γ+δ + xζ4g

β+γ+δ+ζ)s

Now, we expand (xβ2 g
β+γ + xδ3g

β+γ+δ + xζ4g
β+γ+δ+ζ)s

U(g; Θ; Λ) =

∞∑
j=0

∞∑
s=0

∞∑
u=0

(
j + s

s

)(
s

u

)
(xα1 g)j(xβ2 g

β+γ)s−u(xδ3g
β+γ+δ + xζ4g

β+γ+δ+ζ)u

Replace s by s+ u, the above expression will become,

U(g; Θ; Λ) =

∞∑
j=0

∞∑
s=0

∞∑
u=0

(
j + s+ u

s+ u

)(
s+ u

u

)
(xα1 g)j(xβ2 g

β+γ)s(xδ3g
β+γ+δ + xζ4g

β+γ+δ+ζ)u
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Finally, we expand (xδ3g
β+γ+δ + xζ4g

β+γ+δ+ζ)u

U(g; Θ; Λ) =

∞∑
j=0

∞∑
s=0

∞∑
u=0

∞∑
v=0

(
j + s+ u

s+ u

)(
s+ u

u

)(
u

v

)
(xα1 g)j(xβ2 g

β+γ)s(xδ3g
β+γ+δ)u−v(xζ4g

β+γ+δ+ζ)v

taking u as u+ v , we get

U(g; Θ; Λ) =

∞∑
j=0

∞∑
s=0

∞∑
u=0

∞∑
v=0

(
j + s+ u+ v

s+ u+ v

)(
s+ u+ v

u+ v

)(
u+ v

v

)
(xα1 g)j(xβ2 g

β+γ)s

(xδ3g
β+γ+δ)u(xζ4g

β+γ+δ+ζ)v

In the last expression taking j−(β+γ+δ+ζ)v instead of j, taking j−(β+γ+δ)u instead of j, taking j−(β+γ)s
instead of j respectively, and using the following notation,
λ = b j

(β+γ)
c, µ = b j−(β+γ)s

β+γ+δ
c, ξ = b j−(β+γ+δ)u

(β+γ+δ+ζ)
c

A = j − (β + γ − 1)s− (β + γ + δ − 1)u− (β + γ + δ + ζ − 1)v
B = j − (β + γ)s− (β + γ + δ)(u+ v)− ζv and apply the lemma [24], we have the desired result.

Note that the suitable values of Θ = (x1, x2, x3, x4) and Λ = (α, β, γ, δ, ζ) gives the relation between Sj(Θ; Λ)
and standard polynomials like Legendre polynomials, Humbert polynomials. The Legendre polynomials have
the generating function given by

∞∑
n=0

Pn(x)gn =
1√

1− 2xg + g2

If Θ = (2x,−1, 0, 0) and Λ = (1, 1, 1, 1, 1), then equation (3.1) becomes

U(g; Θ; Λ) =

∞∑
j=0

Sj(Θ; Λ)gj =
1

1− 2xg + g2

Hence the relation between the polynomials Sj(Θ,Λ) and the Legendre polynomials Pj(x) is

Sj(2x,−1, 0, 0; 1, 1, 1, 1, 1) =
∑j
r=0 Pj−r(x)Pr(x)

where Pr(x) are the Legendre polynomials.

The Generalized Humbert polynomials[25] are defined by

∞∑
n=0

Pn(m,x, y, p, c)gn = (c−mxg + ygm)p

If c = 1,m = 1, p = −1, then the generalized Humbert polynomials becomes

∞∑
n=0

Pn(1, x, y,−1, 1)gn = (1− xg + yg)−1

If Θ = (x,−y, 0, 0) and Λ = (1, 1, 0, 1, 1), then equation (3.1) becomes

U(g; Θ; Λ) =

∞∑
j=0

Sj(Θ; Λ)gj =
1

1− xg + yg
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From the above relation easily we can derive the relation between the polynomials Sj(Θ,Λ) and the Humbert
polynomials Pj(1, x, y,−1, 1).

Now, we consider another family of polynomials Wj := Wj(Θ,Λ) and define generating function in this manner

R := R(g; Θ,Λ) = U(g; Θ,Λ)gn =
gn

1− xα1 g − x
β
2 g
β+γ − xδ3gβ+γ+δ − x

ζ
4g
β+γ+δ+ζ

=

∞∑
j=0

Wjg
j (3.3)

where α, β, γ, δ, ζ ∈ N and | xα1 g + xβ2 g
β+γ + xδ3g

β+γ+δ + xζ4g
β+γ+δ+ζ | < 1.

Taking α = β = γ = δ = ζ = 1 then,

∞∑
j=0

Wjg
j =

g

1− x1g − x2g2 − x3g3 − x4g4

In particular, when x4 = 0,

∞∑
j=0

Wjg
j =

g

1− x1g − x2g2 − x3g3

which is generating function of three variables Fibonacci-like polynomials.
In particular, α = β = γ = δ = ζ = 1 and x1 → x2, x2 → x, x3 → 1, x4 = 0, then we obtain the generating
function of Tribonacci polynomials.
that is,

∞∑
j=0

Wjg
j =

g

1− x2g − xg2 − g3

In the following, we introduce another family of polynomials denoted by
Kj := Kj(Θ,Λ) via the generating function

∞∑
j=0

Kjg
j =

A(g : x1, x2, x3)−B(g : x1, x2, x3)

1− xα1 g − x
β
2 g
β+γ − xδ3gβ+γ+δ − x

ζ
4g
β+γ+δ+ζ

(3.4)

where α, β, γ, δ, ζ ∈ N ,
A(g : x1, x2, x3), B(g : x1, x2, x3) are arbitrary polynomials depending on g, x1, x2, x3 and

| xα1 g + xβ2 g
β+γ + xδ3g

β+γ+δ + xζ4g
β+γ+δ+ζ |< 1.

Suppose Λ = (1, 1, 1, 1, 1), Then

3U(g; Θ,Λ)− 2x1R(g; Θ,Λ)− x2gR(g; Θ,Λ)− x3g2 = 3−2x1g−x2g2−x3g3
1−x1g−x2g2−x3g3−x4g4

In particular, x4 = 0, and

3U(g; Θ,Λ)− 2x1R(g; Θ,Λ)− x2gR(g; Θ,Λ) =
3− 2x1g − x2g2

1− x1g − x2g2 − x3g3

=

∞∑
j=0

Kj(x1, x2, x3, 0)gj

where Kj(x1, x2, x3, 0) are trivariate Lucas polynomials.
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4 Partial Derivatives For the Generating Functions

In this section, using partial derivatives [26] we derive new relations for polynomials.
Taking the derivative with regard to x1, x2, x3, x4, g of the generating function (3.1), they hold

∂U

∂x1
= αxα−1

1 gU2 (4.1)

∂U

∂x2
= βxβ−1

2 gβ+γU2 (4.2)

∂U

∂x3
= δxδ−1

3 gβ+γ+δU2 (4.3)

∂U

∂x4
= ζxζ−1

4 gβ+γ+δ+ζU2 (4.4)

∂U

∂g
= (xα1 + xβ2 (β + γ)gβ+γ−1 + xδ3(β + γ + δ)gβ+γ+δ−1

+ xζ4(β + γ + δ + ζ)gβ+γ+δ+ζ−1)U2 (4.5)

From equation (3.1),

U2 = S2
0 + (S0S1 + S1S0)g + (S0S2 + S1S1 + S2S0)g2+

(S0S3 + S1S2 + S2S1 + S3S0)g3 + · · · (4.6)

Theorem 4.1. For positive integer j,

∂Sj
∂x1

= αxα−1
1

j−1∑
i=0

SiSj−1−i

Proof. Using equations (4.1) and (3.1),

∞∑
j=1

∂Sj
∂x1

gj = αxα−1
1 gU2

Using equation (4.6), in the above equation and comparing the coefficients of gj , we get the result.

Theorem 4.2. Let j ≥ β + γ. Then we have

∂Sj
∂x2

= βxβ−1
2

j−(β+γ)∑
i=0

SiSj−(β+γ)−i

Proof. Using equations (4.2) and (3.1) ,

∞∑
j=1

∂Sj
∂x2

gj = βxβ−1
2 gβ+γU2

Using equation (4.6) in the above expression and comparing the coefficients of gj we get the result.
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Theorem 4.3. Let j ≥ β + γ + δ. Then we have

∂Sj
∂x3

= δxδ−1
3

j−(β+γ+δ)∑
i=0

SiSj−(β+γ+δ)−i

Proof. Using equations (4.3) and (3.1),

∞∑
j=1

∂Sj
∂x3

gj = δxδ−1
3 gβ+γ+δU2

Using equation (4.6), comparing the coefficients of gj we get the result.

Theorem 4.4. Let j ≥ β + γ + δ + ζ. Then we have

∂Sj
∂x4

= ζxζ−1
4

j−(β+γ+δ+ζ)∑
i=0

SiSj−(β+γ+δ+ζ)−i

Proof. Using equations (4.4) and (3.1),

∞∑
j=1

∂Sj
∂x4

gj = ζxζ−1
4 gβ+γ+δ+ζU2+

Using equation (4.6), comparing the coefficients of gj we get the result.

Theorem 4.5. If U =
∑∞
j=0 Sjg

j, then

1. Forj ≤ α+ β − 1,

(j + 1)Sj+1 = xk1

j∑
i=0

SiSj−i

2. For α+ β − 1 ≤ j ≤ α+ β + γ − 1,

(j + 1)Sj+1 = xα1

j∑
i=0

SiSj−i + (β + γ)xβ2

j−(β+γ)−1∑
i=0

SiSj−(β+γ)−1−i

3. For α+ β + γ − 1 ≤ j ≤ α+ β + γ + δ − 1,

(j + 1)Sj+1 = xα1

j∑
i=0

SiSj−i + (β + γ)xβ2

j−(β+γ)−1)∑
i=0

SiSj−(β+γ)−1−i+

(β + γ + δ)xγ3

j−(β+γ+δ)−1∑
i=0

SiSj−(β+γ+δ)−1−i

4. For j ≥ (α+ β + γ + δ)− 1,

(j + 1)Sj+1 = xα1

j∑
i=0

SiSj−1 + (β + γ)xβ2

j−(β+γ)−1)∑
i=0

SiSj−(β+γ)−1−i+

(β + γ + δ)xγ3

j−(β+γ+δ)−1∑
i=0

SiSj−(β+γ+δ)−1−i+

(β + γ + δ + ζ)xζ4

j−(β+γ+δ+ζ)−1∑
i=0

SiSj−(β+γ+δ+ζ)−1−i
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Proof. By definition of U ,
U =

∑∞
i=0 Sig

i differentiate partially with respect to g,

∂U

∂g
=

∞∑
i=1

iSig
i−1

Take i− 1 = j, then the above expression will become, ∂U
∂g

=
∑∞
j=0(j + 1)Sj+1g

j

Using equation (4.5) and (4.6), and comparing the coefficient of gj , we get the required result.

Theorem 4.6. Forj ≥ 0, we have

jSj =
x1
α

∂Sj
∂x1

+

(
β + γ

β

)
x2
∂Sj
∂x2

+

(
β + γ + δ

δ

)
x3
∂Sj
∂x3

+

(
β + γ + δ + ζ

ζ

)
x4
∂Sj
∂x4

Proof. Using equations (4.1),(4.2),(4.3),(4.4) and (4.5), we obtain

x1
α

∂U

∂x1
= xα1 gU

2 (4.7)

x2
β

∂U

∂x2
= xβ2 g

β+γU2 (4.8)

x3
δ

∂U

∂x3
= xδ3g

β+γ+δU2 (4.9)

x4
ζ

∂U

∂x4
= xζ4g

β+γ+δ+ζU2 (4.10)

combining the above equations and using (4.6), we get the desired result.

5 New Identities

In this section, we derive some identities connected with these polynomials.
Taking g = 1

a
for a > 1 in equation (3.3),

∞∑
j=0

Wj

aj
=

aβ+γ+ζ

aβ+γ+δ+ζ − xαaβ+γ+δ+ζ−1 − yβaδ+ζ − znaζ − tζ (5.1)

Identity 1:
Setting a = 2, x→ x2, y → x, z → 1, t→ 0, α = β = γ = δ = ζ = 1

∞∑
j=0

Wj

2j
=

4

7− 4x2 − 2x

In particular x = 1,
∞∑
j=0

Wj

2j
= 4

Identity 2:
Setting a = 2, x→ x2, y → x, z → 0, t→ 0, α = β = γ = δ = ζ = 1

∞∑
j=0

Wj

2j
=

2

4− 2x2 − x

In particular x = 1,
∞∑
j=0

Wj

2j
= 2
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Identity 3:
Let k be the odd positive integer and k ≥ 5. Let Fn be the Fibonacci Four-Variate polynomials.Then

k∑
i=4

FiFi+1 =

k−1∑
i=4,6,8

Fi+1{x1[Fi−1 + Fi+1] + x2[Fi−2 + Fi] + x3[Fi−3 + Fi−1]

+ x4[Fi−4 + Fi−2]}

Proof. Consider the sum F4F5 + F5F6

F4F5 = [x1F3 + x2F2 + x3F1 + x4F0]F5

F5F6 = [x1F5 + x2F4 + x3F3 + x4F2]F5

Therefore,

[F4 + F6]F5 = [x1{F3 + F5}+ x2{F2 + F4}+ x3{F1 + F3}+ x4{F0 + F2}]F5

In general,

[Fi + Fi+2]Fi+1 = [x1{Fi−1 + Fi+1}+ x2{Fi−2 + Fi}+ x3{Fi−3 + Fi−1}
+ x4{Fi−4 + Fi−2}]Fi+1 (5.2)

Now,

k∑
i=4

FiFi+1 = F4F5 + F5F6 + · · ·+ FkFk+1 = [F4 + F6]F5 + [F6 + F8]F7 + · · ·+ [FK−1 + FK+1]Fk

Using (4.6), we get the desired result.

Identity 4:
For n ≥ 4,

1. If n is odd,

1

2

n∑
i=0

FiFn−i = x1

n−1
2∑
i=0

FiFn−1−i + x2

n−1
2∑
i=0

FiFn−2−i

+ x3

n−1
2∑
i=0

FiFn−3−i + x4

n−1
2∑
i=0

FiFn−4−i

2. If n is even,

1

2

n∑
i=0

FiFn−i = x1

n
2
−1∑
i=0

FiFn−1−i + x2

n
2
−1∑
i=0

FiFn−2−i

+x3

n
2
−1∑
i=0

FiFn−3−i + x4

n
2
−1∑
i=0

FiFn−4−i + F 2
n
2
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Proof. Case (i): If n is odd,

n∑
i=0

FiFn−i = F0Fn + F1Fn−1 + · · ·+ FnF0

= 2[F0Fn + F1Fn−1 + · · ·+ Fn−1
2
Fn+1

2
]

Using (2.1),Fn, Fn−1, . . . Fn+1
2

we get the desired result.

Case(ii): If n is even,

n∑
i=0

FiFn−i = F0Fn + F1Fn−1 + · · ·+ FnF0

= 2[F0Fn + F1Fn−1 + · · ·+ Fn
2
−1Fn

2
+1] + F 2

n
2

Using the definition in (2.1) on the polynomial Fn(X) we get the desired result.

6 The Q-matrix and its Properties

Hoggat [5] introduced the concept of generating matrix of the Tribonacci polynomial. Kocer [7] studied the
generating matrix of trivariate Fibonacci polynomials. Based on that we define the matrix Q, which generates
a fibonacci-like polynomial with Four-Variable.
The matrix Q is defined as 

x1 1 0 0
x2 0 1 0
x3 0 0 1
x4 0 0 0


Let Fn = Fn(X) be the nth four-variable fibonacci like polynomial.
By taking positive powers of the matrix Q and n ≥ 5, we get

Qn =


Fn+1 Fn Fn−1 Fn−2

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44


where
Q21 = x2Fn + x3Fn−1 + x4Fn−2

Q22 = x2Fn−1 + x3Fn−2 + x4Fn−3

Q23 = x2Fn−2 + x3Fn−3 + x4Fn−4

Q24 = x2Fn−3 + x3Fn−4 + x4Fn−5

Q31 = x3Fn + x4Fn−1

Q32 = x3Fn−1 + x4Fn−2

Q33 = x3Fn−2 + x4Fn−3

Q34 = x3Fn−3 + x4Fn−4

Q41 = x4Fn
Q42 = x4Fn−1
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Q43 = x4Fn−2

Q44 = x4Fn−3

Since determinant of Q is −x4 the determinant of Qn is (−x4)n. Clearly, the determinant of Qn is non-zero, so
the matrix is invertible. If we consider suitable xi and n, Q will play a vital role in the concept of encrypting
and decrypting the cipher text.

Using this fact and we apply mathematical induction, we can obtain the following result.

Theorem 6.1. Let Fn = Fn(X) be the nth four-variable fibonacci like polynomial, then∣∣∣∣∣∣∣∣
Fn+3 Fn+2 Fn+1 Fn
Fn+2 Fn+1 Fn Fn−1

Fn+1 Fn Fn−1 Fn−2

Fn Fn−1 Fn−2 Fn−3

∣∣∣∣∣∣∣∣ = (−1)n−1xn−1
4

7 Conclusions

The fields of encryption and decryption employ multi-variable polynomials. We have defined four-variable
polynomials using the four-term recurrence relation, as opposed to utilizing some random polynomials here. We
have constructed their generating function. The generator matrix of the sequence is derived. Crypto-systems can
be developed by employing matrices associated with these polynomials. Finally we conclude that the Q-matrix
is invertible matrix.
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