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Abstract: The research and innovation related to fifth-generation (5G) networks that has been carried
out in recent years has decided on the fundamentals of the smart slice in radio access networks
(RANs), as well as the autonomous fixed network operation. One of the most challenging objectives
of beyond 5G (B5G) and sixth-generation (6G) networks is the deployment of mechanisms that enable
smart end-to-end (e2e) network operation, which is required for the achievement of the stringent
service requirements of the envisioned use cases to be supported in the short term. Therefore, smart
actions, such as dynamic capacity allocation, flexible functional split, and dynamic slice management
need to be performed in tight coordination with the autonomous capacity management of the fixed
transport network infrastructure. Otherwise, the benefits of smart slice operation (i.e., cost and energy
savings while ensuring per-slice service requirements) might be cancelled due to uncoordinated
autonomous fixed network operation. Notably, the transport network in charge of supporting slices
from the user equipment (UE) to the core expands across access and metro fixed networks. The
required coordination needs to be performed while keeping the privacy of the radio and fixed
network domains, which is important in multi-tenant scenarios where both network segments are
managed by different operators. In this paper, we propose a novel approach that explores the
concept of context-aware network operation, where the slice control anticipates the aggregated and
anonymized information of the expected slice operation that is sent to the fixed network orchestrator
in an asynchronous way. The context is then used as the input for the artificial intelligence (AI)-
based models used by the fixed network control for the predictive capacity management of optical
connections in support of RAN slices. This context-aware network operation aims at enabling accurate
and reliable autonomous fixed network operation under extremely dynamic traffic originated by
smart RAN operation. The exhaustive numerical results show that slice context availability improves
the benchmarking fixed network predictive methods (90% reduction in prediction maximum error)
remarkably in the foreseen B5G scenarios, for both access and metro segments and in heterogeneous
service demand scenarios. Moreover, context-aware network operation enables robust and efficient
operation of optical networks in support of dense RAN cells (>32 base stations per cell), while the
benchmarking methods fail to guarantee different operational objectives.

Keywords: beyond 5G networks; autonomous operation; context sharing; traffic prediction

1. Introduction

Future radio access networks (RANs) will extend the current fifth-generation (5G)
technologies and will operate with massive and heterogeneous small-cell deployments in
support of diverse beyond 5G (B5G) and sixth-generation (6G) use cases, demanding high
bandwidth and stringent latency requirements [1]. In order to cope with such demand,
RAN cells need to be planned with a high number of base stations (BSs) per cell; which
leads to overprovisioning and high energy consumption. To reduce both, the operational
mode (active–sleep) of BSs can be dynamically managed as a function of the current user
equipment (UE) traffic requirements [2].

Thanks to RAN and 5G core virtualization, functional splits [3] can be used to distribute
the signal processing chain between a distributed unit (DU) and a centralized unit (CU) in
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the RAN and the user plane function (UPF) in the core, which can be deployed at different
sites of the network [4]. The adoption of flexible function split is a promising solution
that allows the dynamic adaptation to different quality of service (QoS) requirements,
which substantially improves RAN efficiency [5]. Recently, open radio initiatives, such
as O-RAN [6], have allowed the deployment and management of slices to exploit the
aforementioned dynamicity and adaptability capabilities, as well as the achievement of a
virtualized, interoperable RAN among multiple vendors [7]. Hence, smart slice operation can
be achieved by combining dynamic RAN resource allocation and slice management with
flexible functional split management [8], which in turn can be extended with advanced
artificial intelligence (AI) capabilities for the QoS assurance of stringent services [9].

The deployment of multilayer optical networks in access and metro segments plays a
fundamental role in meeting the end-to-end (e2e) requirements of slices [10]. Several recent
works have focused on the 5G and B5G RAN provisioning that is supported by the resources
(computation and connectivity) provided by the underlying access and metro networks.
For instance, the authors in [11] tackled the problem of DU/CU placement in the access
and metro networks for power consumption minimization that are subject to functional
split, latency, and capacity requirements. Targeting more advanced B5G scenarios, the
authors in [12] considered functional split, traffic split, different placement options for
virtual functions, and network slice-specific requirements in a joint provisioning problem.
Moreover, the problem of combining DU/CU placement with connection provisioning in
underlying optical networks was presented in [13] and solved for different types of services.
Although those contributions present valid performance evaluation studies, they do not
focus on the practical integration of smart RAN and fixed transport networks, which is a
major challenge to be tackled to guarantee reliable and efficient communication networks
in support of B5G and 6G services [14].

As with smart slice operation, autonomous network operation is required to allow fixed
(optical) networks to operate efficiently. Such an operational paradigm is typically based
on autonomous control loops, where monitoring data are continuously gathered and
analyzed by means of AI models and algorithms that trigger the actions to be performed
in the network, e.g., the adaptation of optical capacity to the current and expected traffic
demand. This is particularly interesting when the digital sub-carrier multiplexing (DSCM)
technology is used, as sub-carriers can be activated and deactivated in near real time,
which leads to operational benefits, including energy savings [15]. Note that this AI-based
operation can be built on top of a distributed architecture that enables local control loops
and efficient resource management without saturating the centralized systems in charge of,
e.g., e2e service provisioning [16].

Dealing with highly variable traffic is the main challenge for autonomous transport
network operation; this traffic also becomes unpredictable as a consequence of smart
slice operation. In a classical 4G scenario, the traffic injected by RAN cells into the fixed
network typically fluctuates with smooth patterns that are highly correlated with UE
demand [17]. However, depending on the functional split and DU/CU virtual function
placement, B5G slices carry a mix of front-haul (F-H), mid-haul (M-H), and back-haul (B-H)
traffic that depends not only on UE demand, but also on slice operation. Thus, actions
such as activating a new BS and changing the functional split or the placement of virtual
functions introduce large and sudden changes in the traffic of slices and, consequently, in
the underlying optical connections supporting them [18].

In view of the above, it is clear that smart slice operation and autonomous fixed net-
work operation must be coordinated to achieve the required e2e performance. It is worth
noting that per-slice coordination has recently been proposed, e.g., to guarantee QoS target
performance by exchanging service-related parameters [19]. This approach is valid only
for restricted scenarios where the RAN operation is fixed and both the RAN and the fixed
network domains belong to one single operator; thus, detailed information from UE activity
can be shared from one domain to the other. However, when autonomous fixed network op-
eration deals with a mix of several slices from different tenants, as well as other fixed access
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flows, information sharing among the domains deserves dedicated consideration to avoid
the revealing of internal domain details. Indeed, sharing aggregated data and/or models
allows the preservation of privacy while keeping the value of transferred knowledge [20].

Recently, some initiatives have explored the use of contextual information to improve
the use of RAN resources in B5G scenarios by sharing data from the UE to the RAN control
in an asynchronous and private way [21]. Inspired by that concept, in this paper we extend
the coordination between RAN and fixed networks in [19] and the knowledge management
in [20] and present context-aware autonomous network operation that enables e2e smart
operation by combining the operation of slices and the fixed network in an effective and
privacy-preserving way. The main objective of the proposed context-aware operation is
to improve the current autonomous fixed network operation approaches [15] that fail to
guarantee acceptable QoS assurance under extremely dynamic traffic originated by smart
RAN operation. The key concept is the definition of context variables that are passed from
the slice manager to the software-defined networking (SDN) control performing dynamic
capacity resource allocation in the fixed transport network. Context variables contain
relevant information about the configuration of the slices in an aggregated way so as to
preserve the privacy of individual services and the UE. Moreover, the context is updated
asynchronously, e.g., before a significant slice reconfiguration is performed. In this way,
the volume of data exchanged between domains is minimized, as is the frequency of the
exchange. Specifically, the contributions of this paper are presented and organized in the
following sections:

• Section 2 provides an overview of the e2e B5G/6G reference high-level architecture
and topology, including RAN, 5G core, and fixed transport segments, as well as the
architecture considered in this work. This extends the topology and architecture in [22]
for B5G fixed networks with the inclusion of the B5G/6G RAN and core segment.

• Section 3 introduces the main concepts and actions of smart slice operation, high-
lighting the impact of slice management actions on the fixed transport operation and
setting up the main challenges and requirements of contextual information sharing.

• Section 4 presents the context-aware autonomous network operation procedure. To
the best of our knowledge, this is the first work using contextual information shar-
ing between slice management and fixed transport domains for an autonomous e2e
network operation that coordinates and encompasses both the RAN and fixed net-
work operation. The section presents the main algorithms and models involved,
which include asynchronous context updates and context-aware AI-based capacity
reconfiguration modules.

Section 5 presents numerical results to illustrate the benefits of the proposed context-
aware autonomous network operation compared to benchmarking approaches, where slice
management and the fixed network operate independently. Finally, Section 6 concludes the
paper. Table 1 summarizes the basic topics of our contribution and compares them with the
contributions of the already mentioned works in the literature. As can be observed, our
contribution is the one that covers all the highlighted topics.

Table 1. Literature review and relevant contributions.

Reference Smart RAN
Operation

Autonomous Optical
Network Operation

5G/B5G RAN +
Fixed Networks

Coordination
RAN + Fixed Network

Context/Knowledge
Sharing

[4,5,7,9] X
[11–13] X

[10] X X
[15] X
[19] X X
[20] X X
[21] X X

Our work X X X X X
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2. B5G Reference Scenario

In the RAN, we assume that a cell consists of a single macro BS (MBS) and a number of
micro BSs (µBSs). MBSs provide full coverage within their cells and provide the minimum
capacity to absorb users’ traffic, whereas µBSs complement the capacity of the MBS within
a limited area of the cell. We assume that µBSs provide two operational modes: (i) active,
where the µBS is switched on and fully operational, and (ii) sleep, where the µBS is switched
off. Without loss of generality, we assume that the radio units (RUs) on both the MBS and the
µBSs provide support for e2e traffic flows. RAN cells provide radio connectivity to the UE
and require one of the following main service classes [23]: (i) enhanced mobile broadband
(eMBB), (ii) ultra-reliable low-latency communications (URLLC), or (iii) massive Internet
of Things (mIoT). It is worth mentioning that eMBB typically requires a large capacity
(~150 Mb/s per UE and service) with relaxed e2e latency requirements (~4 ms from the
UE to the core). Conversely, the URLLC service has very stringent latency requirements
(~1 ms) and reduced capacity. Finally, mIoT is typically highly distributed, which entails
the management of a large amount of UE injecting moderated bandwidth (in the order of
tens of Mb/s) with intermediate target e2e latency assurance (~2 ms).

Figure 1a illustrates the 5G high-level reference architecture considered in this work,
where the traffic generated by the UE in a cell sequentially traverses a number of functions,
namely RU, DU, and CU, until reaching the UPF that serves as a breakout point of the
5G core [24]. Thus, the resultant graph can be split into four different slice links, character-
ized by the RAN segment, i.e., radio (between UE and RU), F-H (between RU and DU),
M-H (between DU and CU), and B-H (between CU and UPF). All these functions can be
virtualized and run on the computing resources (servers, virtual machines, or containers)
that are available at the different sites of the network. The B5G architecture is supported
by resources in the fixed network infrastructure, for both connectivity, i.e., capacity and
ensured latency, and computing. The e2e B5G reference topology considered in this work
is depicted in Figure 1b, where the main network segments connecting the sites and the
central offices (COs) are sketched. This topology is based on the reference high-level topol-
ogy from the major European network operators presented in [22]. Therefore, the traffic of
a cell enters the fixed network. Specifically, an access optical network connects the cell sites
with their reference access CO (ACO). Typically, the distances between the RAN cells and
their ACO site are short, i.e., from a few to tens of km. In addition to their optical transport
and switching capabilities, ACO sites have small datacenters equipped with computing
and storage resources that enable the deployment of virtualized DU/CU functions, as well
as other UPF functions. Typically, ACOs aggregate traffic from various RAN cells in the
nearby area, as well as from other access technologies, such as residential gateways or
customer edge premises. ACOs are interconnected with each other and with regional COs
(RCO) by metro aggregation networks. RCOs are further from the UE (around hundreds
of km) and larger and more complex than ACOs; hence, they can host more virtualized
functions and achieve higher efficiency. Finally, RCOs are interconnected with national COs
(NCO) by means of a meshed metro core network, which provides large computational
capabilities and serves as a gateway to other networks.

Figure 2 illustrates the overall architecture considered in this work, including the
control and orchestration planes; this architecture is an adapted version of the O-RAN
architecture [6]. The main entity responsible for RAN domain management is the RAN
intelligent controller (RIC) that is in charge of a wide set of actions, such as QoS-based
resource optimization, traffic steering, and RAN energy efficiency, just to mention a few.
The RIC is divided into the near real-time RIC and non-real-time RIC. The near real-time
RIC controls the RAN elements and their resources by means of local control loops that
typically run in the range of 10 ms to 1 s; it receives policies from the non-real-time RIC that
runs in the service management and orchestration system, which enables wide control loops
that require an execution time of more than 1 s. For the sake of simplicity, we hereafter refer
to the unified RAN control entity that combines near real-time and non-real-time operation
as simply the RIC. Specifically, we assume that the RIC deals with cell configuration, e.g.,
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BS on/off switching, and that it manages the DU/CU placement for each slice [7]. The core
network orchestrator is responsible for the core functions; specifically, we assume that it
manages the UPF placement for each slice. A slice manager is in charge of making decisions
related to the configuration of each slice for service level agreement assurance. Finally, in
the transport network domain, the orchestrator coordinates actions with the SDN control
plane. It is worth noting that the orchestrator layer provides O-Cloud functionality [6],
i.e., it manages the computing nodes running in each site, as well as the connectivity
between sites [25].
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Without loss of generality and in line with [22], the sites are equipped with optical
transponders (TP) that allow their connection to remote sites by establishing an optical
connection. In addition, in this paper we consider DSCM TPs, which can allocate a variable
number of sub-carriers to adapt the capacity to the traffic needs.

The mapping of the slice links connecting functions onto optical connections depends
on the slice configuration (capacity and placement of virtual functions) managed by the



Sensors 2024, 24, 1625 6 of 23

slice manager, which, in turn, consumes resources (computing and connectivity). Note
that the placement of the functions cannot be conducted in any potential location site
due to the constraints of each RAN segment, such as distance between sites and latency
requirements [26]. Table 2 summarizes the mapping of the virtual functions and site types,
based on a typical network operator configuration [22]. In the case of DU and assuming
split 7.2 for F-H, only MBS and ACOs are suitable for its deployment. However, M-H
latency can be relaxed by means of split 2, which allows the extension of its placement
to RCO if suitable, i.e., for eMBB services. Regarding UPFs, without loss of generality,
we assume that they consist of processes that require more intensive computation and
centralization than those of DU/CU. Therefore, due to the very limited availability of
resources at the MBS, the placement of such functions is avoided at the very edge of the
network. In addition, although function placement is allowed in ACOs, their computational
resources are reserved for URLLC and mIoT services due to their limited capacity.

Table 2. Virtualized function placement constraints.

Function MBS ACO RCO NCO

DU Yes Yes Yes (eMBB) No
CU Yes Yes Yes No
UPF No Yes (URLLC, mIoT) Yes Yes

3. B5G RAN and Slice Operation

As introduced in Section 1, smart slice operation is built upon three main pillars:
(i) dynamic µBSs management, by switching the µBSs on and off, with the objective of reduc-
ing energy consumption in the RAN, while ensuring the minimum capacity needed to
support UE traffic; (ii) dynamic RAN capacity slicing, with the aim of managing physical
radio blocks (PRBs) to assign resources to each of the different slices in order to provide
the required QoS; and (iii) flexible functional split operation, where the placement of virtual
functions (DU/CU) is adapted to match the requirements of the UE served by each BS in a
cell. In this section, we aim to illustrate how that smart slice operation dramatically affects
the traffic supported by the underlying transport network in each of the segments of the
reference topology.

Figure 3a shows the RAN state at a given time ta of an example consisting of one cell
with one active MBS that provides connectivity to a mix of UE from different services. For
the sake of simplicity, we assume that one slice per service type is deployed. Let us assume
that the core network orchestrator decides, at the slice provisioning time, the placement
of UPF according to slice type and QoS requirements. This UPF placement remains fixed
during the slice’s lifetime. Moreover, each slice has its own placement of DU/CU along
the different CO sites (see Figure 1b). In this case, DU/CU placement can be dynamically
reconfigured by the slice manager according to current and expected UE traffic conditions
in order to guarantee that e2e latency (i.e., from UE to UPF) meets the requirements of the
slice service type. The figure also shows a simplified view of the PRBs used by each of the
slices. Table 3 shows the RAN segment per service class that is transported in each of the
network segments. Note that the traffic in each segment is a heterogeneous mix of F-H,
M-H, and B-H traffic, depending on the slice configuration. The selected time instant ta
illustrates a scenario in which the radio resources are reaching a point of saturation that is
negatively affecting the e2e service QoS (represented by colored gauges). In particular, the
URLLC service is strongly affected by such saturation, even when the DU/CU functions are
currently placed as close as possible to the UE to reduce e2e latency. In view of this, let us
imagine that such QoS degradation is detected by the slice manager and that, after analysis,
some slice reconfigurations have been identified; consequently, there are several actions to be
performed. First, the slice manager triggers the activation of an available µBS (in light grey
in Figure 3a). Due to the physical location of the antenna and its proximity to the majority
of the URLLC UE, the activation of this new antenna relieves the MBS from having to serve
most of the URLLC traffic. Figure 3b shows the RAN state after the activation of such a
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µBS at time instant tb. As the activated µBS (now in green) captures most of the URLLC
traffic, the overall RAN load is reduced and, consequently, the delay introduced by the
RAN segment [17], which in turn makes the e2e QoS of all the services reach the desired
target performance.
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Table 3. Network traffic before reconfiguration (time ta).

Service Class MBS <-> ACO
[Optical Access]

ACO <-> RCO
[Metro Aggregation]

RCO <-> NCO
[Metro Core]

URLLC B-H B-H -
eMBB F-H (7.2) F-H (7.2) B-H
mIoT M-H (2/4) B-H -

Nonetheless, smart slice operation goes beyond µBS activation. For instance, in order
to reduce the cost associated with virtual function placement, URLLC and mIoT functions
can be now located far from the edge (where the available resources are typically cheaper)
without major impact on the QoS of those services. This action might require the reallocation
of some of the functions of the other slices, for the sake of global optimization (as illustrated
with the reallocation of the eMBB functions). Therefore, as a consequence of this smart
slice reconfiguration (of both µBS activation and virtual function reallocation), the traffic
supported in the fixed network segments sharply changes. Table 4 updates Table 3 after
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slice reconfiguration, where we observe segments that are greatly affected, e.g., the traffic
in the optical access sharply increases due to the addition of large F-H traffic volumes.

Table 4. Network traffic after reconfiguration (time tb). Changes w.r.t Table 3 are in boldface.

Service Class MBS <-> ACO
[Optical Access]

ACO <-> RCO
[Metro Aggregation]

RCO <-> NCO
[Metro Core]

URLLC F-H (7.2) B-H -
eMBB F-H (7.2) M-H (2/4) B-H
mIoT F-H (7.2) B-H -

It is worth noting that the change in the transport network traffic between time ta
and tb cannot be predicted by typical monitoring and data analytics control loops in the
fixed network [15], since the reason for that change is uncorrelated with the previously
observed traffic. To better illustrate this problem, Figure 3c sketches the autonomous
operation of an access optical connection between the MBS site and the ACO following
a typical control loop, such as the one proposed in [15], and in the event of the smart
RAN operation exemplified in Figure 3a,b. Based on traffic prediction, optical capacity
(in the granularity of optical subcarrier units) can be smoothly adapted to traffic changes
so that the service is guaranteed and the capacity (and transponder energy consumption)
is minimized. However, due to the lack of coordination between network domains, once
the RAN reconfiguration is performed (at time tb), the traffic suddenly increases in the
optical access, which can lead to traffic loss until the optical capacity is reactively extended.
Hence, in order to overcome this problem, some contextual information about the slice
operation needs to be provided to the transport network orchestrator before it actually
happens (at time ta) so that the latter can prepare the fixed transport network accordingly.
This is illustrated in Figure 3d, where the anticipation of the RAN reconfiguration can be
added to the process of predictive optical capacity allocation. Note that, according to this
assumption, the optical capacity can be increased before the optical access traffic actually
changes. Although this action might produce some overprovisioning of the optical capacity
between times ta and tb, the benefits in terms of traffic loss mitigation outweigh the need
for coordination.

In view of the above, the next section proposes a context-aware autonomous network
operation solution based on the sharing of contextual information between the slice manager
and the fixed transport network orchestrator in order to allow AI-based autonomous
operation to efficiently control the optical capacity allocated to the optical connections
supporting e2e slice connectivity.

4. Context-Aware Autonomous Network Operation

Figure 4 sketches the architecture and workflows of the proposed context-aware au-
tonomous network operation. By means of this procedure, the RIC shares with the fixed
network orchestrator the relevant information about the slice reconfigurations that come
before the slices changes are actually performed. With this relevant input, the transport
network orchestrator can generate a context for the different agents running autonomous
network control loops. In particular, those agents are in charge of dynamically allocating
capacity to the optical connection according to the current and predicted traffic [15]. Al-
though the procedure is focused on the reconfiguration of existing slices, note that it can be
easily extended to the provisioning of new e2e slices, i.e., a first reconfiguration notification
can be the provisioning of the slice. Table 5 introduces the notation consistently used in
this section.
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Table 5. Notation.

N Set of MBS sites and COs
E Set of optical connections
V Set of computing nodes
S Set of e2e slices
F(s) Set of virtual functions, i.e., DU, CU, UPF, of slice s
L(s) Set of slice links of slice s
C Set of service classes, i.e., eMBB, URLLC, mIoT
M Set of RAN segments, i.e., radio, F-H, M-H, B-H
δne 1, if MBS site/CO n is adjacent with optical connection e
δvn 1, if computing node v is located in MBS site/CO n
δsc 1, if slice s belongs to service class c
δlm 1, if slice link l belongs to segment m
δlf 1, if slice link l is adjacent to function f
δle 1, if slice link l is supported by optical connection e
κs Capacity (in normalized PRBs) assigned to slice s

ρs = [<f,v>] Node-based graph of slice s, consisting of an ordered vector of tuples. Each tuple
contains the function f and the computing node v where the function is placed.

πs = [<l,e>] Link-based graph of slice s, consisting of an ordered vector of tuples. Each tuple
contains the slice link l and connection e that supports the link.

ye(t) Traffic monitored in optical connection e at time t

xecm(t + 1) Capacity (in normalized PRBs) supported by optical connection e and belonging to
segment m of class c expected at time t + 1

ze(t + 1) Capacity (in optical capacity units) to be allocated to connection e at time t + 1

The proposed procedure can be divided into two main processes. Figure 4a illustrates
the asynchronous context update workflow that is executed when the slice manager decides to
perform a reconfiguration, which is assumed to happen at time ta (labeled as 1 in Figure 4a).
Let us assume that that reconfiguration decision is computed by an AI-based operation
module (e.g., one that is similar to that of [2]) that analyzes the slice monitoring data and
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predicts a new (better) configuration for one or several e2e slices. Without loss of generality,
we assume that such a reconfiguration is performed at a given time tb > ta. For instance,
the AI-based module can predict an increase in UE activity and decide, at time ta, that a
new µBS in a given cell is needed 5 min later. Consequently, the capacity of some slices
increases accordingly once the µBS is active, i.e., at time tb = ta + 5 min. Note that, in the
case of a reactive RAN reconfiguration due to some unexpected and unpredictable event,
it might happen that tb = ta limits the performance of the context-aware operation in the
short period of time between the performance of the reconfiguration and the convenient
updating of the context.

As soon as the decision is taken, a slice reconfiguration notification is sent to the context
manager at the fixed network orchestrator for each of the slices that are to suffer some
modification (2). This notification for slice s contains the time where the reconfiguration
is expected to happen (tb) and the new characteristics of the slice, namely the capacity κs
(in capacity units like the number of PRBs) allocated to the radio segment and the graph
ρs with the placement of each virtual function f ∈ F(s) in the set of computing nodes V.
Although both characteristics are related to RAN configuration, they are also indicative
of the actual UE activity and, consequently, correlated with the actual slice traffic. Hence,
this notification procedure enables the passing of relevant information from the RAN to
the fixed network in an asynchronous and efficient way, without the need of continuous
monitoring data exchange between domains.

Once the context manager receives a slice reconfiguration notification, it executes
the context computation process (3). This process aims at computing the changes in the
context due to the new reconfiguration. In a timely manner, those changes are updated
in each of the agents managing optical connections (4), in order to guarantee that they
can use up-to-date contextual information when running autonomous operation actions.
Recall that the slice manager triggers the needed reconfiguration workflows with sufficient
anticipation to ensure that they are active at time tb.

More formally, we denote X as the context variable set at a given reconfiguration
time tb. This variable contains, for each optical connection e ∈ E, the expected capacity (in
normalized capacity units) that such a connection will support for each service class c ∈ C
and segment m ∈M. More formally, each xecm ∈ X can be expressed as follows:

xecm = ∑
s∈S

δsc ∑
l∈L(s)

δlm·δle·κs (1)

Note that this context omits particular details of the individual slices since it aggregates
all the slice capacity per class and segment. Thus, the privacy of individual slices (clients)
is guaranteed when operating optical connections. Moreover, in order to compute the
context variables, static information about the mapping of slices to classes (δsc) and links
to segments (δlm) is needed from the slice definition, which can be easily obtained at
slice provisioning time. However, the mapping of slice links to optical connections (δle)
is dynamic and depends not only on the slice graph ρs but also on the placement of the
computing nodes in the COs (δvn), which can change in time depending on the fixed
network reconfiguration actions.

Algorithm 1 details the context computation process, which is required for every single
slice reconfiguration notification. Thus, the algorithm receives all the data of one slice
reconfiguration notification at a given time tb, computes the new context for that time, and
updates the context of those already planned reconfigurations that will happen at time tb
(and after it). Moreover, the process has access to the internal DB that stores the static slice
characteristics, context status, and transport network configuration and is conveniently
kept up to date by the fixed network controller.

Note that the DB can store multiple context variable sets and fixed network config-
urations if several reconfigurations are planned to happen at different times. Then, for
convenience, the slice reconfiguration and context data are stored and indexed by time; so,
they can be easily retrieved and modified every time a new reconfiguration notification is
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processed. For those slice static parameters, we assume that they follow a non-temporal
indexing by slice id.

Algorithm 1: Context computation (Context Manager)

INPUT: s, tb, ρs, κs
OUTPUT: -

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

if DB[tb] == ∅ then
t′ ← getPreviousTime(DB, tb)
DB[tb]← DB[t′]
t′′ ← getHighestTime(DB)
T← getTimeRange(tb, t′′)
c← DB[s][“c”]
for each ti ∈ T do
X={xecm}← DB[ti][“X”]
κ0 ← DB[ti][“κs”]
πs

0 ← DB[ti][“πs”]
πs ← computeMapping(ρs) (Algorithm 2)
for each <l, e> ∈ πs

0 do
m← DB[s][l][“m”]
xecm ← xecm − κ0

for each <l, e> ∈ πs do
m← DB[s][l][“m”]
xecm ← xecm + κs
DB[ti][“πs”]← πs
DB[ti][“κs”]← κs
DB[ti][“X”]← X
return -

The algorithm starts by generating a new entry in the DB for time tb (if it does not
exist yet), copying the same data in the entry indexed in the immediately previous time to
tb (lines 1–3 in Algorithm 1). Then, the vector of times T is obtained; this vector contains
the list of available times in the DB between tb and the highest available time (lines 4–5).
In other words, this identifies all the different contexts that need to be updated due to
the new reconfiguration. Next, after retrieving the class of the slice, a loop is executed to
update all the contexts (lines 6–7). Thus, for each ti ∈ T, the stored context X, capacity κ0,
and mapping πs

0 of the slice links to the optical connections are retrieved from the DB
(lines 8–10). Then, the new mapping πs is computed from graph ρs (line 11). After this
computation, the stored slice capacity is subtracted from all the xecm variables belonging to
the stored mapping (lines 12–14), whereas the new capacity is added to the xecm variables
of the new mapping (lines 15–17). Finally, the slice capacity, mapping, and context are
updated (lines 18–20).

Algorithm 2 details the process of computing a mapping πs from a new slice graph
ρs, i.e., line 11 of Algorithm 1. After some initialization, the process iterates in the graph
in order to obtain the pair of tuples <f,v> and <f’,v’> that identify each graph adjacency
(lines 1–4 of Algorithm 2). Then, queries to the DB are performed to retrieve the slice link l
that supports that graph adjacency (line 5), as well as the optical connection e that connects
the sites where the computing nodes are running (lines 6–8). Afterwards, the tuple <l,e> is
added to πs, which is eventually returned (lines 9–10).

As already mentioned, in addition to the asynchronous context update workflow, the
context-aware AI-based capacity reconfiguration workflow (Figure 4b) is executed periodically
at every time t, i.e., when a new traffic monitoring sample y(t) is collected (labeled as
I in Figure 4b). To support this workflow, the following elements are deployed in the
agent: (a) the traffic monitoring DB storing the last w traffic values; (b) the context DB with
the current and future contexts affecting the optical connection; (c) the traffic prediction
model that estimates the expected traffic y(t + 1); and (d) the capacity allocation module
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that decides the amount of optical capacity units z(t + 1) (e.g., digital sub-carriers) to be
configured in the optical transponder according to traffic prediction y(t + 1) to stay below a
desired (target) maximum load.

Algorithm 2 Compute Mapping

INPUT: ρs
OUTPUT: Π

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

πs = []
for i =1..|ρs| − 1 do
<f, v>← ρs[i]
<f’, v′>← ρs[i + 1]
l← DB[s].query(“l” | δlf == 1 & δlf’ == 1)
n← DB[s].query(“n” | δvn == 1)
n′ ← DB[s].query(“n” | δv ′n == 1)
e← DB.query(“e” | δne == 1 & δn ′ e == 1)
πs.add(<l,e>)
return Π

Once the new measurement is collected, the traffic monitoring DB is updated (II) and
the expected context at the prediction time, i.e., t + 1, is retrieved from the context DB (III).
For convenience, since the connection context DB contains only context variables for the
specific connection, we removed the sub-index e from the X variables. Then, the traffic
prediction model g can be formally expressed as follows:

y′(t + 1) = g([y(t− i), ∀i = 0..w− 1], [xcm(t + 1), ∀c ∈ C, m ∈ M ]) (2)

which results in w + |C| × |M| inputs and provides one single output (IV). The training
model g can be autonomously conducted by the agent as soon as it receives context
variables and can learn from them. Without loss of generality, we assume that the agent, at
its provisioning time, receives an initial model that has been trained offline with generic
traffic data and null context inputs. Then, the model is re-trained online, combining the
contextual variables and monitored traffic and improving the accuracy of the initial one.

The traffic prediction y′(t + 1) is then processed by the capacity allocation module (V),
jointly with the current traffic y(t). Thus, with λmax as the target maximum load, u as the
traffic supported by each optical capacity unit, and zmax as the maximum number of optical
capacity units supported by a transponder, z(t + 1) can be formally defined as follows:

z(t + 1) = max
(

zmax,
max(y(t), y′(t + 1))

λmax·u

)
(3)

Without loss of generality, we assume that the transponder internally implements
an agent that allocates the target number of capacity units detailed in z(t + 1) [15]. Note
that, while model g is being retrained online and the y′(t + 1) predictions have not reached
a target accuracy performance, a more conservative policy can be temporarily used for
capacity allocation, e.g., z(t + 1) = zmax.

As a final remark, it is worth mentioning that the proposed context-aware approach
does not increase execution time with respect to the existing optical capacity management
approaches based on optical connection monitoring and local decision making [15]. Note
that the connection context is stored and available at the local agent and is simply added
as another input to the prediction model. Moreover, this connection context is updated
asynchronously, e.g., every time a slice reconfiguration update is processed by the context
manager. Thus, context management and AI-based optical capacity reconfiguration are
completely independent processes; therefore, the former does not increase the computing
time of the latter.
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5. Illustrative Results

In this section, we first describe the details of the simulation environment and net-
work configuration used for the performance evaluation purposes. Then, the smart slice
operation implemented in the simulator is described in detail. Afterwards, the context-
aware autonomous network operation in Section 4 is evaluated by means of two numerical
studies. On the one hand, the performance of the connection traffic prediction using
contextual information is analyzed and compared against a benchmarking approach. On
the other hand, the proposed capacity reconfiguration method is validated for different
operational objectives.

5.1. Simulation Setup

A Python-based simulator was implemented based on the one presented in [17],
where a flow-based network simulator was proposed as an accurate and efficient tool for
reproducing network scenarios that mix RAN and fixed network technologies. In a nutshell,
the simulator generates flow traffic by means of statistics-based generators that emulate
RAN cells and fixed access points and propagate them through a system of fluid-flow
continuous queues that model the different network elements (packet and optical interfaces
and connections) and segments (RAN cell, optical access, etc.).

Figure 5 shows the main blocks and components implemented in the simulator. It
contains a data plane manager (Figure 5a) that simulates a topology consisting of a number of
RAN cells, all of them individually connected to a reference ACO by means of access optical
connections (i.e., each optical connection transports traffic from a single RAN cell). Then, the
traffic received at the ACO (that aggregates several RAN cells and the fixed access traffic)
is propagated to the reference RCO by means of a metro optical connection. Without loss of
generality, we assumed point-to-point optical connections, each supported by a number of
sub-carriers of 25 Gb/s each [15]. In conjunction with this topology, a set of slices is served,
each identified by the graph ρs, which allows the mapping of each slice function with a
computing node (we assume one single computing node per MBS and CO).
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The available RAN traffic models in [17] are based on 4G technology and do not
consider either functional splitting or slicing, i.e., the traffic injected by the RAN cells
is always B-H. As these models are not valid for the considered smart RAN operation,
we developed a novel RAN slice traffic generator (Figure 5b) that, given a specific RAN
cell configuration, generates synthetic slice traffic flows for each of the considered service
classes (eMBB, URRLC, and mIoT) and each slice link (radio, F-H, M-H, and B-H). Note
that this traffic can be easily mapped to each of the network segments according to the
placement of the DU and CU functions maintained in the data plane manager. The source
code of the generator is openly available in [27], where instructions to generate the main
data used in this section are provided, as well as indications about how to reproduce other
configurations and policies. Finally, the control plane manager (Figure 5c) implements the
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different modules depicted in Figure 4 that are related to context-aware operation, namely:
(i) the slice manager containing the AI-based operation module; (ii) the context manager
and related DBs at the fixed network orchestrator; and (iii) a connection agent for each
access and metro optical connection.

Figure 6 shows the simulator workflow that is periodically executed after every minute
of simulated time; it shows the blocks and components in Figure 5 as well as the simulator
manager that controls the execution of the workflow at every time step. At a given time
step ta, the simulator manager first asks the slice manager to perform the programmed
RAN slice reconfiguration decided in a previous time step, if one exists (labelled as 1 in
Figure 6). In the depicted case, no changes need to be applied, and the reply is sent back to
the simulator manager. Then, the simulator manager triggers slice traffic generation for the
current time step ta (2), which is propagated through the topology that is assumed in the
current graph ρs (3). The result of this propagation generates relevant data for performance
evaluation purposes (which, for simplicity, are not depicted), as well monitoring data
that are collected by the slice manager in charge of the AI-based operation actions (4).
These actions, which are explained in detail in Section 5.2 below, can generate slice context
updates that need to be announced to the context manager in a timely manner (5). Upon
the reception of a context update, the context manager computes per-connection context
updates that are distributed to the agents controlling the optical connections in the data
plane (6). After receiving confirmation from all the agents, a context update reply is sent
back to the simulator manager (7).
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The last phase to reproduce at every time step involves the reconfiguration of the opti-
cal capacity of the connections with the prediction expected for next time step t + 1, which
now can be performed with an updated context (8). Thus, the agents of the connections
perform context-aware AI-based capacity reconfiguration, as explained in Section 4, and
then notify the manager when finished (9). This concludes the execution of a time step.
Note that, at time step tb, the request of the BS and slice reconfiguration produces changes
in the network, which need to be executed (10) before continuing with the traffic generation
and propagation phases.
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5.2. RAN Configuration and AI-Based Operation

Regarding RAN configuration, we considered RAN cells consisting of 1 MBS working
at the sub-6 GHz band (2 × 2 MIMO, 20 MHz bandwidth, 30 KHz subcarrier spacing, and
55 PRBs), and a variable number of µBSs configured in the mmWave band (8 × 8 MIMO,
100 MHz bandwidth, 30 KHz subcarrier spacing, and 275 PRBs). Without loss of gen-
erality, we assumed that every active BS has one slice per service class. Moreover, the
F-H and B-H traffic were computed according to the formulation and references in [18].
Figure 7 illustrates the UE traffic demand per service class (normalized to maximum) in a
typical day as a function of time; this was obtained according to the assumptions in [22]
and [28] for a medium-term scenario. As can be seen, eMBB presents a clear peak in the
afternoon/evening time, whereas URLLC inversely increases in the morning/noon period.
Regarding mIoT, it fluctuates with peaks and valleys distributed throughout the whole
day. Overall, the percentages of the traffic of each type are 45%, 15%, and 40% for eMBB,
URLLC, and mIoT, respectively.
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Two different RAN cell scenarios were configured according to the distribution of UE
within the cell areas. For the sake of a fair comparative analysis, the total demand and the
demand per service class are the same in both scenarios. Then, in the clustered scenario, the
UEs types of the same class are grouped in a given region within the area and separated
from the other classes. This means that a given µBSs will typically provide service to
(mainly) the UE of one single class. Therefore, the clustered scenario tends towards µBSs
with a predominant slice and a more variable load (depending on the predominant class)
during the day. On the other hand, the distributed scenario assumes that the UEs types are
randomly placed in the cell area and, therefore, that there are no clusters of UE of the same
class. Consequently, all the µBSs have a similar load (which fluctuates with the overall
traffic) with a mix of slices from all the service classes.

As described in Section 3, the main objective of the smart slice operation is to minimize
capacity utilization by adjusting the number of active µBSs and the slice capacity (which
leads to energy savings) while ensuring the minimum capacity needed to support UE traffic
and guarantee a committed QoS of the different slices. Thus, we implemented a policy to
run in the slice manager that consisted of rules oriented towards reconfiguring the RAN
capacity resources and slices by means of the computation of traffic loads (defined as UE
traffic over RAN capacity), and we compared them with thresholds in order to determine
the actions to perform. Whenever an action is detected at time ta, slice reconfiguration
notification (if needed) is created with time tb = ta + 1, thus giving time for a context update
and the proper use of contextual information for AI-based optical connection operation.
Note that the slice reconfiguration actions detected and notified at time ta are actually
performed at time tb.

We conducted an exhaustive set of simulations in order to find the configuration of
rules and thresholds that produces a remarkable energy consumption reduction (measured
in terms of active µBS) that guarantees robust QoS (no traffic loss). Specifically, the rules



Sensors 2024, 24, 1625 16 of 23

and actions that have been configured for each of the three pillars identified in Section 3
are the following:

• Dynamic µBSs management: when one µBS exceeds a total load of 75%, the closest
inactive µBS (if any) is switched on. Otherwise, if the load drops below 15% and the
neighbor µBSs are active, then the µBS is switched off and its current demand is then
served by its active neighbor µBS.

• Dynamic slice capacity: the PRBs assigned to each slice are assigned and released in
order to keep (or approach) a slice load between 60% and 70%.

• Flexible functional split operation: depending on the number and utilization of the µBSs,
we define both low-load and high-load regimes, in which different splits and virtual
function placements are considered. Table 6 details the different regimes for each
service class. For instance, the URLLC slices follow a semi-centralized approach (DU
at ACO and CU at RCO) when the RAN cell load is below 30%. When the load exceeds
that threshold, the functions approach to the UEs to reduce the risk of a potential delay
degradation due to high load (DU at MBS and CU at ACO).

Table 6. Flexible functional split configuration.

eMBB URLLC mIoT

Load threshold (low -> high) 60% 30% 50%

Low-Load Regime
Split F-H/M-H 7.2 7.2/2 7.2

Placement DU/CU RCO/RCO ACO/RCO RCO/RCO

High-Load Regime
Split F-H/M-H 7.2/2 7.2/2 7.2/2

Placement DU/CU ACO/RCO MBS/ACO ACO/RCO

Figure 8 shows the total allocated RAN capacity (as a result of the number of active
µBSs and the PRBs allocated to each slice) of a cell with 1 MBS and 16 µBSs serving the mix
of UE traffic in Figure 7. Note that no traffic loss is experienced by the UE (the total traffic is
always below capacity), which validates the proposed RAN operation. Moreover, the RAN
capacity resources are smoothly adapted to demand, which results in energy savings [18].
To demonstrate a direct consequence of such a smart slice operation, Figure 9 shows an
example of traffic injected into an access connection for both clustered and distributed
scenarios. As can be seen, sudden changes are observed which are much sharper than that
of the UE traffic in Figure 7.

Hereafter, we assume that the RAN operates according to this policy and proceed to
evaluate the context-aware autonomous network operation in Section 4.
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5.3. Optical Connection Traffic Prediction

As previously stated, this section is devoted to showing the accuracy of the optical
connection traffic prediction model that uses RAN slice context data; this model is com-
pared with a benchmarking approach where the optical network autonomous operation is
performed in the absence of RAN-fixed network coordination. This study is conducted for
both access and metro optical connections and for both distributed and clustered scenarios.

Let us start by focusing on the traffic prediction carried out in the agent of an access
optical connection connecting the MBS of a RAN cell with 1 MBS and 16 µBSs with its
associated ACO site. In particular, we aim to evaluate the accuracy of predicting y(t + 1)
using the model in Equation (2) (named as context) and to compare it with the model
used in [20] (named as the benchmark) that showed high accuracy in predicting traffic in
fixed networks supporting 4G and residential services. Note that the benchmark model
predicts y(t + 1) only as a function of the last w traffic values stored in the monitoring DB.
Both models have been implemented as deep neural networks with 2 hidden layers with
24 and 12 neurons, respectively, and hyperbolic tangent activation functions. Thus, the
comparison between both models enables a fair way to evaluate the use of contextual data
in B5G scenarios.

Our first numerical evaluation concentrates on the training of the context-based model
at the provisioning time of a given optical connection, i.e., when the connectivity between a
RAN cell and the ACO is established for the first time. At this provisioning time, as already
mentioned in Section 4, an initial model trained with generic traffic data and null contextual
variables is loaded into the connection agent. Then, as soon as the real traffic measurements
and connection context variables are received, the prediction model is retrained online until
the prediction error reaches a stable value. Figure 10 shows the normalized prediction error
(normalized to zero-day error) as a function of the elapsed operation time (in days) from the
provisioning time instant. As can be seen, for both the distributed and clustered scenarios,
convergence to a stable error (one order of magnitude lower than that of the initial model)
is reached after few days of operation (3 to 5). As the connectivity between RAN cells
and ACOs typically lasts for very long time periods (weeks to months), the duration of
this initial tuning phase is negligible with respect to optical connectivity lifetime. Thus,
context-based prediction models can be practically deployed since they are easily trained
and remarkably improved with the data available in the optical connection agent.
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Figure 10. Online training performance of context traffic prediction model. 
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Figure 10. Online training performance of context traffic prediction model.

Next, regarding the error convergence performance obtained in Figure 10, where a
stable prediction error for both the benchmark and context models is reached, Figures 11
and 12 show a detail of the performance of the traffic prediction for one of the sudden
traffic changes introduced by smart slice operation in clustered and distributed scenarios,
respectively. The figures show real traffic and predicted traffic using both benchmark and
context methods, as well as the relative error. Note that benchmark prediction presents
large inaccuracies (errors around 50%) in the presence of those sudden changes. Conversely,
the context model provides accurate and smooth prediction since it anticipates sudden
changes thanks to context information.

Table 7 summarizes the average and maximum error during the whole day, for both
models, using mean square error (MSE) and relative error as accuracy metrics. Moreover,
the reduction in error (in %) that the context model provides with respect to the benchmark
one is detailed. In view of these results, we can conclude that the context model clearly
improves the benchmarking one by remarkably reducing both average and maximum
error. Especially interesting is the case of the maximum relative error: the context model
reduced 93% and 89% of the error of the benchmark model for the clustered and distributed
scenarios, respectively.
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Figure 12. Traffic prediction detail in access optical connection for distributed scenario, in terms of 
absolute (a) and relative (b) error. 

Table 7. Summary of access optical connection traffic prediction. 

 Benchmark Context Reduction [%] 
MSE avg max avg max avg max 

Clustered 0.19 5.03 0.14 0.38 26% 92% 
Distributed 0.26 5.43 0.17 0.84 35% 85% 
Rel. Error avg max avg max avg max 
Clustered 0.018 0.913 0.008 0.063 55% 93% 

Distributed 0.019 0.551 0.012 0.059 37% 89% 

Figure 11. Traffic prediction detail in access optical connection for clustered scenario in terms of
absolute (a) and relative (b) error.
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Table 7. Summary of access optical connection traffic prediction.

Benchmark Context Reduction [%]

MSE avg max avg max avg max

Clustered 0.19 5.03 0.14 0.38 26% 92%

Distributed 0.26 5.43 0.17 0.84 35% 85%

Rel. Error avg max avg max avg max

Clustered 0.018 0.913 0.008 0.063 55% 93%

Distributed 0.019 0.551 0.012 0.059 37% 89%

Let us now focus on evaluating the accuracy of the traffic prediction for a metro
optical connection connecting an ACO with its reference RCO. Recall that this type of
connection supports traffic from a number of RAN cells, as well as traffic from fixed AP
sites (which typically show smoother daily patterns when mixing residential and business
traffic). Figure 13 shows the average and maximum error of a metro optical connection
that supports 10 RAN cells (mixing clustered and distributed scenarios) and a variable
number of fixed APs. In particular, we defined several configurations with different ratios
of fixed/RAN (1 means that the fixed and RAN traffic volumes are equal; 2 means that the
fixed traffic is double than that of the RAN). It is worth noting that the improved prediction
by the context model persists even for large ratios (i.e., when the overall traffic becomes
more predictable). In other words, the sharp fluctuations induced by the RAN operation
have a large impact on the aggregated flows, which validates the extension of the context
update to the metro optical connections (and not only access ones). Figure 14 depicts the
evolution of the maximum relative error as a function of the number of RAN cells for ratios
0.5 and 2. In line with the previous results, the error reduction achieved by the context
model is outstanding. Indeed, the benchmark model produces relative maximum errors of
30% in optical connections supporting large traffic volumes, which can have a large impact
in terms of absolute errors (dozens to hundreds of Gb/s).



Sensors 2024, 24, 1625 20 of 23

Sensors 2024, 24, x FOR PEER REVIEW 21 of 25 
 

 

Let us now focus on evaluating the accuracy of the traffic prediction for a metro op-
tical connection connecting an ACO with its reference RCO. Recall that this type of con-
nection supports traffic from a number of RAN cells, as well as traffic from fixed AP sites 
(which typically show smoother daily patterns when mixing residential and business traf-
fic). Figure 13 shows the average and maximum error of a metro optical connection that 
supports 10 RAN cells (mixing clustered and distributed scenarios) and a variable number 
of fixed APs. In particular, we defined several configurations with different ratios of 
fixed/RAN (1 means that the fixed and RAN traffic volumes are equal; 2 means that the 
fixed traffic is double than that of the RAN). It is worth noting that the improved predic-
tion by the context model persists even for large ratios (i.e., when the overall traffic be-
comes more predictable). In other words, the sharp fluctuations induced by the RAN op-
eration have a large impact on the aggregated flows, which validates the extension of the 
context update to the metro optical connections (and not only access ones). Figure 14 de-
picts the evolution of the maximum relative error as a function of the number of RAN cells 
for ratios 0.5 and 2. In line with the previous results, the error reduction achieved by the 
context model is outstanding. Indeed, the benchmark model produces relative maximum 
errors of 30% in optical connections supporting large traffic volumes, which can have a 
large impact in terms of absolute errors (dozens to hundreds of Gb/s). 

0%

1%

10%

100%

0.0 0.5 1.0 1.5 2.0

Avg error [Benchmark] Max error [Benchmark]
Avg error [Context] Max error [Context]

Ratio Fixed / RAN

Re
la

tiv
e 

Er
ro

r [
%

]

 
Figure 13. Traffic prediction in metro optical connection. 

M
ax

im
um

 R
el

at
iv

e 
Er

ro
r [

%
]

# of RAN cells

0%

10%

20%

30%

40%

50%

60%

70%

5 10 15 20 25 30

Benchmark
Context

5 10 15 20 25 30

Benchmark
Context

# of RAN cells

(a) Ratio = 0.5 (b) Ratio = 2

 
Figure 14. Maximum error for ratio 0.5 (a) and 2 (b). 

In view of these results, we can conclude that using the RAN slice context signifi-
cantly increases the accuracy of the models predicting the traffic supported by optical con-
nections. In terms of the reduction in maximum error, the context model reduces the error 
of the benchmarking model by between 85% and 93% when predicting traffic from access 
connections. Regarding metro connections, where the RAN and fixed access traffic is 
mixed, the benchmarking model provides a much larger prediction error (~30%) than the 
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Figure 14. Maximum error for ratio 0.5 (a) and 2 (b). 
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In view of these results, we can conclude that using the RAN slice context significantly
increases the accuracy of the models predicting the traffic supported by optical connections.
In terms of the reduction in maximum error, the context model reduces the error of the
benchmarking model by between 85% and 93% when predicting traffic from access connec-
tions. Regarding metro connections, where the RAN and fixed access traffic is mixed, the
benchmarking model provides a much larger prediction error (~30%) than the context one
(~2%), even when the fixed access traffic doubles that of the RAN traffic.

5.4. Optical Connection Capacity Reconfiguration

Now that the accuracy of the context model has been validated and its improvement
with respect to benchmark one has been shown in terms of the prediction error, let us
finally focus on evaluating the impact of such predictions to dynamically allocate optical
connection capacity. For the sake of simplicity, we focus on access connections and evaluate
the size of the RAN cells for the distributed scenario, i.e., with the number of µBSs ranging
between 16 and 128, to consider the different cell densities [29]. Moreover, we consider two
different operational objectives to be configured in the capacity allocation module in the
connection agent. On the one hand, the capacity minimization objective aims at adjusting
the allocated optical capacity so that it is as close as possible to the actual traffic. Thus,
the load of optical connections can grow up to 95% in order to exploit the optical capacity
resources. On the other hand, the delay reduction objective allocates an excess of capacity to
avoid congestion in the fixed segment, which could introduce additional delay to the RAN
slices. Therefore, the maximum load is kept below 80%.

Figures 15a–c and 15d–f show the obtained results for the capacity minimization and
delay reduction operational objectives, respectively. The results include the average and
maximum values of the capacity allocated, the load, and the traffic loss as functions of the
RAN cell density. One initial observation is that both models allocate similar overall optical
capacity (with small differences in the averages that are hard to observe). Moreover, the
(large) relative errors in model prediction shown in the previous section for the low-density
RAN cells (16 µBS) do not produce an effect on the decisions made by the connection
capacity allocation module. This is because the absolute fluctuations stay between the size
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of the optical capacity units (recall that we consider 25 Gb/s sub-carriers); consequently,
the benchmark model is still a valid traffic predictor.
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Figure 15. Performance of optical connection capacity reconfiguration for capacity minimization (a–
c) and delay reduction (d–f) objectives. 
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However, as soon as the density of the cells increases (which is the expected trend [29]),
the real magnitude of the prediction inaccuracies exceeds the sub-carrier capacity. Thus,
the benchmark model (sometimes) underestimates the required capacity to support the
target load, which leads to unacceptable performance (traffic loss) for the RAN cells that
are denser than 32 µBS. Conversely, the optical connection capacity allocation based on
the context model prediction provides accurate operation, which is always below the
desired target load and eliminates traffic loss, for a wide range of RAN cell densities. In
light of these results, we can finally validate the proposed context-aware autonomous
network operation procedure, which guarantees smooth and smart fixed transport network
operation in the presence and during the activity of the smart B5G slice operation.

6. Conclusions

In this work, we focused on the impact of B5G slice operation on the underlying
transport network infrastructure in charge of providing computing and connectivity re-
sources. In particular, we analyzed how smart slice operation based on pillars, such as
dynamic capacity reconfiguration, adaptive µBS management, and flexible functional split
configuration, injects highly variable and hard-to-predict traffic into access and metro fixed
networks. Thus, effective autonomous fixed network operation cannot be achieved without
coordination between the slice manager and the fixed networks. In order to maximize
the autonomous fixed network performance while hiding the sensitive information of
the individual slices, we explored the concept of context sharing, which allows the slice
manager to asynchronously provide information about the slice reconfigurations to be
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performed in an aggregated and private way with enough anticipation to synchronize with
an autonomous fixed network operation. This slice context is then incorporated into the
AI-based prediction models that are used for dynamic capacity allocation in optical access
and metro networks.

The proposed architecture and algorithms for context update and usage for prediction
purposes in optical connections were validated by means of exhaustive simulations that
considered a realistic network operator infrastructure. The results showed that adding the
slice context to traffic prediction greatly enhanced prediction accuracy. In particular, the
maximum prediction error was remarkably reduced compared with the benchmarking
approaches for traffic prediction. This prediction accuracy gain is observed under different
RAN demand scenarios with heterogeneous services, as well as for optical access networks
carrying only RAN traffic and for metro networks transporting a mix of RAN and fixed
(residential and business) traffic.

The value of this prediction accuracy improvement was eventually evaluated for the
dynamic allocation of capacity to the optical connections supporting slice links, under two
different network operational objectives: capacity minimization and delay reduction. In
both cases, the benefits of the proposed context-based operation increased with the size
and density of the RAN cells. Therefore, we can conclude that, with the increase in RAN
traffic and the density of RAN cells that is foreseen for B5G scenarios, there is a need for
context-based coordination to achieve actual e2e smart operation.
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