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Abstract: To address the lightweight and real-time issues of coal sorting detection, an intelligent
detection method for coal and gangue, Our-v8, was proposed based on improved YOLOv8. Images
of coal and gangue with different densities under two diverse lighting environments were collected.
Then the Laplacian image enhancement algorithm was proposed to improve the training data quality,
sharpening contours and boosting feature extraction; the CBAM attention mechanism was introduced
to prioritize crucial features, enhancing more accurate feature extraction ability; and the EIOU loss
function was added to refine box regression, further improving detection accuracy. The experimental
results showed that Our-v8 for detecting coal and gangue in a halogen lamp lighting environment
achieved excellent performance with a mean average precision (mAP) of 99.5%, was lightweight with
FLOPs of 29.7, Param of 12.8, and a size of only 22.1 MB. Additionally, Our-v8 can provide accurate
location information for coal and gangue, making it ideal for real-time coal sorting applications.

Keywords: coal; gangue; identification; YOLOv8; lightweight

1. Introduction

Coal is one of the most important energy sources in the world. However, its mining
and processing generate gangue, a waste material that poses significant challenges to the
environment. The mixed coal–gangue not only reduces combustion efficiency but also
generates harmful gases, severely polluting the environment. Therefore, accurate gangue
detection and separation are of great importance.

Traditional methods include manual picking, wet selection, and dry selection. Manual
picking relies on the worker’s experience and involves a poor working environment, low
efficiency, and low accuracy. The wet separation method can pick out gangue and coal
with different calorific values by the density difference, but with the disadvantage of
water waste and environmental pollution. Dry separation methods like spectroscopy and
X-ray diffraction, while promising, raise concerns about radiation exposure. Machine
vision offers a promising alternative. And with advancements in artificial intelligence,
deep learning algorithms are increasingly employed for coal and gangue identification.
Zhang et al. [1] compared the YOLOv4, SSD, and Faster R-CNN algorithms to detect coal
gangue and drew the conclusion that the YOLOv4 detection algorithm performed better
with an mAP value of 97.52%. Junpeng Zhou et al. [2] presented an improved BASA-
LS-FSVM classification algorithm to separate gangue from coal, with separation accuracy
reaching 98%. Hu feng et al. [3] constructed a principal component analysis network
(PCANet) model on multispectral images to identify coal and gangue. Xue et al. [4] studied
a lightweight Yolo coal gangue detection algorithm based on the resnet18 backbone feature
network, with a speed of 45.5 ms/piece and a model size of only 65.34 MB with an mAP of
96.27%. Hengxuan Luan et al. [5] proposed an image window pixel information interaction
method that synergizes the strengths of convolutional neural networks (CNNs) and Swin
Transformer and optimized the model, achieving 95% precision. Yan Pengcheng et al. [6]
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presented an improved YOLOv5 algorithm to detect coal and gangue with a detection
average accuracy of 98.34%. Wang Xi et al. [7] proposed a semantic segmentation network
of coal and gangue images (SSNet_CG) based on the pyramid scene parsing network
(PSPNet), with MPA, mIoU, and F1_scores of 97.3, 95.4, and 0.98, respectively, and a
single-image test time of 0.027 s. Ziqi Lv et al. [8] presented a synchronous detection–
segmentation method for oversized gangue in a coal preparation plant based on multi-task
learning. Wenhao Lai et al. [9] proposed an improved Mask R-CNN algorithm based on
multispectral images to segment coal gangue and predict its location and shape. Feng
Hu et al. [10] combined multispectral imaging technology with the convolutional neural
network (CNN) to classify coal and gangue, in which the hyperparameters of the CNN
model were optimized by the Bayesian algorithm. Ziqi Lv et al. [11] used the convolutional
neural network (CNN) for online detection of coal and gangue, with a detection accuracy
of 91.375. Ziqi Lv et al. [12] proposed a single-shot fine-grained object detector using the
attention mechanism and applied it to coal–gangue images in a coal preparation plant
with APiou = 0.5. Pu et al. [13] used convolutional neural networks and transfer learning
to realize the image recognition of coal gangue. Furthermore, Li et al. [14] established
a hierarchical deep learning framework to realize the detection of coal gangue through
image recognition.

These studies have achieved good detection accuracy; however, most of them solely
focus on object detection, neglecting the crucial location information of coal gangue, which
is also vital for subsequent separation operations involving manipulators, air blowing
mechanisms, etc. Furthermore, to apply to the actual coal sorting production line, both
the detection model size and the detection speed also need to be carefully considered.
Additionally, most studies only identify gangue from one type of coal. The images are
inherently sensitive to light conditions, adding to the complexity of the detection task.
Taking these factors into account, a novel, intelligent coal and gangue detection method
needs to be proposed. YOLO (you only look once) has a simple principle and a low
requirement for hardware performance. As a major update, YOLOv8 was launched by
Ultratics on 10 January 2023, with higher speed and accuracy, which allows it to detect
objects in real-time with a high level of precision. In this paper, we present a dataset of
images capturing two types of coal (density less than 1.4 g/cm3, density greater than 1.4 but
less than 1.6 g/cm3) and gangue on conveyor belts under two varying light environments.
Then we improved the YOLOv8 algorithm to make the detection model lightweight.

2. Materials and Methods
2.1. Image Acquisition

The coal and gangue blocks used in this experiment were obtained from Shandong
Energy Group Co., Ltd., Taian, China, Xinwen mine, and the samples of similar size were
divided into three types, a, b, and c, according to their density, as shown in Figure 1. Coal
and gangue images were captured, respectively, in the Agricultural Equipment Intelligent
Engineering Laboratory of Shandong Agricultural University in Tai’an City, Shandong
Province, China, in June 2022. During image collection, 4 to 8 pieces of the samples were
randomly placed horizontally on a black conveyor belt, and a Canon EOS 90D camera
(Canon, Tokyo, Japan) was used to take images vertical to the conveyor belt. The camera
height was set to 60 cm, and the image resolution was set to 3840 × 2160 pixels. As shown
in Figure 1, two types of image collection environments were set. The light source was a
halogen lamp (HSIA-LS-T-200W, Jiangsu Dualix Spectral Imaging Technology Co., Ltd.,
Wuxi, Jiangsu, China) for Type 1 images and an indoor fluorescent lamp (36 W) for Type 2
images. Images of the three types of samples were collected, respectively, in each of the
two light environments mentioned above. The original images of the Type 1 and Type 2
datasets were 424 and 459 and were expanded to 1274 and 1377 images, respectively, by
means of rotation, blurring, noise addition, and brightness change randomly. To adapt
to the model input, the sizes of all images were cropped to 640 × 640 pixels. Finally, the
dataset was divided into training, validation, and test sets in a ratio of 7:1:2, as shown
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in Table 1. LableImg 1.8.1, an open-source software, was used to annotate the type and
location information of the sample in the image.

Figure 1. Dataset images: (a) coal with density < 1.4 g/cm3; (b) coal with 1.4 < density < 1.6;
(c) gangue.

Table 1. Coal and gangue image dataset division.

Training Set Validation Set Test Set

Type 1

total 891 127 256
a 260 37 75
b 373 53 107
c 258 37 74

Type 2

total 962 138 277
a 339 49 102
b 296 43 83
c 327 46 92

2.2. Laplacian Image Enhancement Module

In the process of collecting and storing images, images often have noise and blur
problems, which will directly affect the performance of the model in recognizing coal types
and gangue. Therefore, the Laplacian image enhancement module is used to improve the
quality of images before they are input to the CNN model for classification. The Laplacian
algorithm is a spatial domain enhancement algorithm that uses second-order differentiation
to enhance images. In this study, the detected image was first enhanced by the Laplacian
algorithm using a 3 × 3 template and then input to the improved Yolov8 model. The image
enhancement process expression is given in Formula (1).

g(x, y) = f(x, y) + c
[
∇2f(x, y)

]
(1)

where g(x,y) is the output, f(x,y) is the original image, and c is the coefficient.
The comparison of the image before and after Laplacian enhancement is shown in

Figure 2. Comparing the upper image with the lower image, it can be seen that regardless
of Type 1 or Type 2 images, after Laplacian enhancement, the existence of the target in
the image is more prominent, the contour of coal and gangue is clearer, the target main
pixel area is strengthened, and the color anisotropy is more obvious, which helps the
convolutional neural network to extract the features of different types of targets from
the image.
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Figure 2. Comparison of images before and after Laplacian enhancement: (a) original image; (b) pro-
cessed image.

2.3. YOLOv8 Network Model

In order to achieve further lightweight, YOLOv8 replaces the C3 module of YOLOv5
with the C2f module. As shown in Figure 3, YOLOv8 retains the SPPF (spatial pyramid
pooling-fast) module used in YOLOv5 and other architectures to achieve multi-scale feature
fusion. YOLOv8 also retains the FPN + PAN structure in YOLOv5 and removes the
convolution structure in the upsampling stage to reduce the computational complexity. To
detect coal and gangue of different sizes, the YOLOv8 network endpoint uses the decoupled
head to separate the classification and detection heads to improve detection accuracy and
also changes from anchor-based to anchor-free. At the same time, the DFL (distribution
focal loss) idea is used to extract more detailed information about the coals and gangues,
and the number of channels in the regression head is also changed to 4*reg_max to improve
the regression accuracy.

Figure 3. YOLOv8 Network Structure.

2.4. Improvement of YOLOv8
2.4.1. C2f Feature Extraction Module

As shown in Figure 4, the C2f module is designed based on the ideas of the C3 module
and the ELANs (efficient layer aggregation networks), the idea of feature extraction from
parallel streams in CSPNet (cross-stage partial networks), and the idea of residual structure,
allowing YOLOv8 to obtain richer gradient flow information while ensuring lightweight.
Here, the C2f module is used to extract coal and gangues features from the input data,
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which is a lightweight and efficient module that can help to improve the performance of
the network.

Figure 4. C2f feature extraction module.

2.4.2. Convolutional Block Attention Module

The convolutional block attention module (CBAM) is a lightweight and generic mech-
anism that does not add any additional computational cost to the model (Figure 5). CBAM
combines the spatial attention mechanism (SAM) and the channel attention mechanism
(CAM). It can select key features for the current task, improving the representation ability
of CNN. Spatial attention is used to highlight important spatial locations in the feature
maps and channel attention to the specific content [14]. In this study, the CBAM attention
mechanism is embedded before the SPPF module, further enhancing the feature extrac-
tion ability of the backbone network, which can lead to improved accuracy in coal and
gangue detection.

Figure 5. CBAM attention mechanism.

2.4.3. Box Regression Loss Function

The original box regression loss function of YOLOv8 is in the form of CIOU loss + DFL.
CIOU loss, which stands for complete intersection over union loss, aims to provide a more
accurate and comprehensive measure of the similarity between the predicted bounding box
and the ground truth box. To effectively improve the detection accuracy of YOLOv8, the
loss function is improved from CIOU to EIOU in this study. EIOU loss [1] is based on the
factor of CIOU affecting the aspect ratio and separately calculates the difference between
the width and height of the real box and the predicted box. The loss function consists of
three parts: IoU loss (LIOU), center distance loss (Ldis), and aspect ratio loss (Lasp). EIoU
retains the advantages of CIOU and minimizes the difference between the width and height
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of the real box and the predicted box, thereby accelerating the convergence speed and
improving the regression accuracy. The calculation formula for EIOU loss is as follows:

LEloU = LIOU + Ldis + Lasp = 1 − IoU +
ρ2(b,bgt)

c2 +
ρ2(w,wgt)

c2
w

+
ρ2(h,hgt)

c2
h

(2)

where ρ is the Euclidean distance between the predicted box and the real box; b, w, and h
are the center point, width, and height of the predicted box, respectively; bgt, wgt, hgt

represent the center point, width, and height of the real box, respectively; c, cw, ch represent
the diagonal length, width, and height of the smallest bounding rectangle containing the
predicted box and the real box, respectively.

The prediction process of CIOU and EIOU loss functions at different iterations is
shown in Figure 6. In Figure 6, the blue box is the real box, the black box is the preset
anchor box, and the red box and green box are the regression processes of the predicted
boxes of CIOU and EIOU, respectively. It can be seen from the figure that the width and
height of CIOU cannot be increased or decreased at the same time, while EIOU can.

Figure 6. The prediction process of CIOU and EIOU.

DFL (distribution focal loss) mainly aims to model the position of the target box as a
general distribution, allowing the network to focus more quickly on the values near the
target box position, increasing their probability. In this study, DFL is used to optimize the
probability of the two positions closest to label y in the form of cross entropy (Figure 7), so
that the network can focus more quickly on the distribution of adjacent regions of the target
position, which can reduce the complexity of the model and improve the convergence
speed. That is to say, the learned distribution theory is located near the real floating-point
coordinates, and the weight of the distance between the left and right integer coordinates is
obtained through linear interpolation.

Figure 7. The distribution focal loss process.

2.5. Model Experimental Environment and Evaluation Indicators

The computer hardware included an Intel Core i5-8300H CPU @ 2.30 GHz and an
NVIDIA GeForce GTX 1080 Ti GPU. The model was trained on a single GPU using Python
3.8 and CUDA 10.2, with an initial learning rate of 0.01. The maximum number of training
iterations was set to 50, with a momentum of 0.937. The batch size was set to 48. The
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performance of the model was evaluated using precision (P), recall (R), average precision
(AP), and mean average precision (mAP). The definitions of these metrics are as follows:

P =
TP

TP + FP
× 100% (3)

R =
TP

TP + FN
× 100% (4)

AP =
∫ 1

0
P(R)dR × 100% (5)

mAP =
∑2

n=1 APn

2
× 100% (6)

where TP, FP, and FN represent true positive, false positive, and false negative, respectively,
with n representing the nth sample. In addition, to evaluate the computational capability
and inference speed of the model, the number of parameters (Params), floating-point opera-
tions per second (FLOPs), and frames per second (FPS) were used as evaluation indicators.

3. Results and Discussion
3.1. Model Training

The improved YOLOv8 model is named Our-v8. Our-v8 is trained on the original and
augmented datasets by the Laplacian algorithm, respectively. The training process is shown
in Figure 8. As shown in Figure 8a, compared to Our-v8 trained on the original Type 1 and
Type 2 datasets (named as Type 1 and Type 2), the mAP curve of Our-v8 trained on the
Type 1 and Type 2 datasets processed by the Laplacian algorithm (named as L-Type 1 and
L-Type 2) continues to rise with slight fluctuations, and at the end of the model training,
Our-v8 trained on the processed data has a higher mAP than Our-v8 trained on original
data, and the mAP is all above 0.99. As shown in Figure 8b, the loss curves of L-Type 1
and L-Type 2 decrease rapidly at the beginning of training and show a downward trend
with obvious fluctuations. At the end of training, L-Type 1 and L-Type 2 have a lower loss
value than Type 1 and Type 2, and the loss value is all below 0.79. The results show that the
model trained on the processed dataset has a higher mAP and a lower loss than the model
trained on the original dataset. This indicates that the proposed Laplacian augmentation
algorithm can effectively improve the accuracy and reduce the loss of the YOLOv8 model.

Figure 8. Model training process: (a) mAP curve; (b) loss curve.

3.2. Comparison of Our-v8 and YOLOv8

In order to compare the performance of the proposed Our-v8 model with the original
model, coal and gangue images of the test dataset are used as input to the model, and the
performance based on the visualization results of the model feature maps and the detection
results are evaluated in this study. A gradient-weighted class activation map (Grad-CAM)
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is used to visualize the last C2f layer of YOLOv8 and Our-v8 to demonstrate the feature
extraction capabilities of the models, respectively. The visualization results are shown in
Figure 9, with the left part for dataset Type 1 and the right part for Type 2. The dark blue
value is 0, and the red value is 1. The redder the color, the greater the weight of the region
in making specific category decisions for the model.

Figure 9. Feature maps of the C2f layer of YOLOv8 and Our-v8: (a) coal with density less than
1.4 g/cm3; (b) coal with density greater than 1.4 but less than 1.6 g/cm3; (c) gangue.

As can be seen from Figure 9, compared to YOLOv8, Our-v8 pays more attention to
the coal and gangue areas and is less affected by background factors in Type 1 and Type 2
images. This indicates that Our-v8 has better feature extraction capabilities for coal blocks
than YOLOv8.

The detection results are shown in Figure 10. As can be seen, under the illumination of
a halogen light source, the color of the sample varies from black to grayish from left to right.
The type-a sample has a clear luster and a distinct black color because the coalification
degree of high-quality coal is high and the organic carbon content is high. The color of the
type-c sample is grayish white because the coalification degree of gangue is low, resulting
in low organic carbon content. While under the illumination of a fluorescent light source,
the color differences between coal and gangue are not obvious. So, the coal of type-b is
mistakenly identified as type-a by YOLOv8, as shown in the red-circle-marked area in
Figure 10b, which means that YOLOv8 has difficulty distinguishing coal of type-a and
type-b because of their extremely high similarity.

In addition, from the yellow-circle-marked areas in Figure 10a,c, it can be seen that the
positioning performance of the Our-v8 prediction box is better than that of YOLOv8. This
means that Our-v8 can provide more accurate location information for coal and gangue. In
conclusion, based on the visualization results of the feature maps and the detection results,
it can be seen that Our-v8, by introducing the CBAM attention mechanism and EIOU loss
function, has better recognition and positioning capabilities than YOLOv8.

For example, the confidence and recognition frame position information of coal and
gangue in the second row of Figure 10 are shown in Table 2, where (xt, yt) is the top-left
coordinate of the recognition frame, (xb, yb) is the bottom-right coordinate of the recognition
frame, and Label is the type of the identified target. By using the two coordinate values, we
can obtain the relative position of the entire coal or gangue relative to the image, which is
beneficial to the subsequent coal quality grading.
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Figure 10. Detection results of YOLOv8 and Our-v8: (a) coal with density less than 1.4 g/cm3; (b) coal
with density greater than 1.4 but less than 1.6 g/cm3; (c) gangue.

Table 2. Confidence and recognition frame position information of coal and gangue.

Detection Result

Serial Number Label Score (xt, yt)/Pixel (xb, yb)/Pixel

1 a 0.73 415, 202 548, 328
2 a 0.78 269, 454 340, 541
3 a 0.79 210, 200 258, 283
4 a 0.84 279, 298 370, 382
5 a 0.89 377, 398 464, 476
6 a 0.71 320, 172 445, 213
7 b 0.60 133, 179 217, 236
8 b 0.62 187, 262 294, 352
9 b 0.62 240, 118 309, 197
10 b 0.67 454, 254 566, 320
11 b 0.68 364, 266 437, 343
12 b 0.69 292, 363 394, 436
13 b 0.74 424, 151 514, 225
14 b 0.76 274, 209 361, 279
15 c 0.58 269, 454 340, 541
16 c 0.71 210, 200 258, 283
17 c 0.65 279, 298 370, 382
18 c 0.62 377, 398 464, 476

3.3. Model Test

The test results on the test dataset are shown in Table 3, and the sample number is the
number of coal-a, coal-b, and gangue, respectively, in the images of the test dataset (shown
in Table 1). It can be seen that the accuracy P and recall R of Our-v8 for the coal and gangue
of Type 1 are all above 99.1%, and the average precision AP is also above 99.4%.
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Table 3. Results of Our-v8 on the test dataset.

Sample Sample
Number P/% R/% AP/%

Type 1
a 458 99.3 99.1 99.4
b 492 99.1 99.6 99.5
c 330 99.4 99.2 99.5

Type 2
a 510 93.5 94 93.5
b 415 93.9 90.3 91.6
c 464 95.3 98.1 98.5

The confusion matrix (Figure 11) shows that only a few samples are misclassified. The
average precision AP of Our-v8 for gangue of Type 2 is 98.5%, while the average precision
AP for coal of type-a and type-b is only 93.5% and 91.6%, respectively. At the same time,
it can also be seen in Figure 11b that 20 samples of type-a are misclassified as type-b,
and 30 samples of type-b are misclassified as type-a. This means that Our-v8 is prone to
confusing type-a and type-b in fluorescent light environments. In conclusion, Our-v8 can
achieve a better identification effect under the illumination of a halogen light source than
in a fluorescent light source environment.

Figure 11. The confusion matrix of test results: (a) Type 1; (b) Type 2.

3.4. Comparison with Other Advanced Models

To apply the model to the coal sorting conveyer in practice, the model must meet
the requirements of high accuracy, fast detection speed, and lightweight. So, Our-v8 was
compared with previous YOLO series models on the test dataset, as shown in Table 4. On
the Type 1 test dataset, Our-v8’s mAP reached 99.5%, which is 14.9%, 10.2%, 7.4%, 3.6%,
and 2% higher than YOLOv3, YOLOv4, YOLOv5, YOLOv7, and YOLOv8, respectively.
Moreover, Our-v8 has lower FLOPs and Param than YOLOv3, YOLOv4, and YOLOv7. And
on the Type 2 test dataset, Our-v8’s mAP is 12.7%, 8.3%, 6.3%, 3.6%, and 1.5% higher than
YOLOv3, YOLOv4, YOLOv5, YOLOv7, and YOLOv8, respectively. There is no significant
change in FLOPs and Param for the model.

In general, Our-v8 has obvious advantages over YOLO series models in accuracy and
parameters. In addition, Our-v8 has a size of only 22.1 MB, and it takes only 8 ms to detect
each image, with a detection speed of 125 FPS. This suggests that it has broad application
potential in coal quality detection and sorting.

Table 4. Model comparison results.

Data Set Model mAP/% FLOPs/G Param/M Volume/MB FPS

Type 1

YOLOv3 84.6 154.9 61.3 117 39
YOLOv4 89.3 30.5 67.4 245.5 42
YOLOv5 92.1 22.4 4.3 14.4 138
YOLOv7 95.9 104.3 37.1 284 96
YOLOv8 97.5 28.5 11.1 21.4 128
Our-v8 99.5 29.7 12.8 22.1 125
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Table 4. Cont.

Data Set Model mAP/% FLOPs/G Param/M Volume/MB FPS

Type 2

YOLOv3 82.1 154.9 61.3 117 39
YOLOv4 86.5 30.5 67.4 245.5 42
YOLOv5 88.5 22.4 4.3 14.4 138
YOLOv7 91.2 104.3 37.1 284 96
YOLOv8 93.3 28.5 11.1 21.4 128
Our-v8 94.8 29.7 12.8 22.1 125

3.5. Comparison with Existing Research

Many studies have previously developed methods for sorting coal based on images.
This study investigated and summarized these studies and compared them with our
proposed method, as shown in Table 5.

Table 5. Performance comparison with other previous detection models.

Researcher Model P/% R/% mAP/% FPS

Luan et al. (2023) [5] CNN 95.4 94.6 × ×
Yan et al. (2022) [6] Improved YOLOv5 × × 98.3 30.3

Zhang et al. (2022) [1] YOLOv4 × × 97.5 10.2
Wen et al. (2023) [15] YOLOv5-Swin 95.39 98.09 98.6 147

This Study Our-v8 99.3 98.3 99.5 125

As shown in Table 5, Luan et al. [5] proposed a coal and gangue classification method
based on CNN. Compared with this model, the P and R of Our-v8 increased by 3.9% and
3.7%, respectively. Yan et al. [6] proposed an improved YOLOv5 model to detect coal and
gangue. However, they used multispectral data as input to the model instead of RGB
images, which means the detection workflow was more complex. Moreover, the mAP and
detection speed of Our-v8 were 1.2% and 94.7 FPS higher than their model, respectively.
Zhang et al. [1] used YOLOv4 to detect coal and gangue; the mAP and detection speed of
Our-v8 were 2% and 114.8 FPS higher than theirs, respectively. Wen et al. [15] proposed a
YOLOv5-Swin to detect coal and gangue, with an mAP of 98.6% and a detection speed of
147 FPS. However, the detection accuracy is still slightly lower than Our-v8. In addition, it
is worth noting that the current methods basically only detect and classify coal and gangue.
The proposed Our-v8 in this study can not only detect coal and gangue but also detect
coal blocks of different densities. This means that the method proposed in this study can
perform more refined coal sorting work. Moreover, Our-v8 has a high detection frame rate,
which can meet the real-time requirements of mobile terminal detection.

4. Conclusions

This study aims to develop a lightweight coal and gangue detection model. To achieve
this, a dataset is created by collecting samples from two coals of different densities and
gangue under halogen lamp and fluorescent lamp lighting environments, and an improved
deep learning model, Our-v8, is proposed. The results show that Our-v8 can detect coal and
gangue in a halogen lamp lighting environment accurately with an mAP of 99.5%, FLOPs
of 29.7, Param of 12.8, and a model size of only 22.1 MB. Additionally, Our-v8 can provide
accurate location information for coal and gangue, making it ideal for real-time coal sorting
applications. Overall, the Our-v8 proposed in this study has higher detection accuracy
and speed, and the model has lightweight characteristics, making it highly promising for
real-time coal sorting work.
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