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Abstract: Synonymous mutations result from the degeneracy of the genetic code. Most amino acids
are encoded by two or more codons, and mutations that change a codon to another synonymous
codon do not change the amino acid in the gene product. Historically, such mutations have been
considered silent because they were assumed to have no to very little impact. However, research in
the last few decades has produced several examples where synonymous mutations play important
roles. These include optimizing expression by enhancing translation initiation and accelerating or
decelerating translation elongation via codon usage and mRNA secondary structures, stabilizing
mRNA molecules and preventing their breakdown before translation, and faulty protein folding
or increased degradation due to enhanced ubiquitination and suboptimal secretion of proteins into
the appropriate cell compartments. Some consequences of synonymous mutations, such as mRNA
stability, can lead to different outcomes in prokaryotes and eukaryotes. Despite these examples,
the significance of synonymous mutations in evolution and in causing disease in comparison to
nonsynonymous mutations that do change amino acid residues in proteins remains controversial.
Whether the molecular mechanisms described by which synonymous mutations affect organisms can
be generalized remains poorly understood and warrants future research in this area.

Keywords: synonymous mutation; silent mutation; codon usage bias; mRNA secondary structure;
translation efficiency; genetic code; degeneracy

1. Introduction

It has been eight decades since DNA was recognized as the carrier of genetic informa-
tion by Avery and coworkers [1] and seven since the structure of the DNA double helix was
solved by Franklin and Gosling [2], Wilkins and coworkers [3], and Watson and Crick [4,5].
Based on the fact that, according to their model, adenine (A) always pairs with thymine
(T), and guanine (G) always pairs with cytosine (C), Watson and Crick proposed that any
sequence of bases is possible on one strand, but that it determines the sequence of the
bases on the other strand, which runs in the opposite direction [4]. Such variability of a
four-letter code and complementarity of the two strands provided the basis of the genetic
code and a mechanism of precise replication. They hypothesized that in order to replicate
the two DNA strands, they would have to be unwound and separated, and complementary
nucleotides would have to be placed according to what is now called Watson–Crick base
pairing to form a new, complementary DNA strand that would combine with the original
template to form a new DNA double helix [4].

In the following years, several hypotheses were formulated [6]. The Sequence Hy-
pothesis states that the sequence of nucleotides in DNA determines the sequence of amino
acids in proteins. The Central Dogma states that information flows in one direction only,
from genes to proteins. The Adaptor Hypothesis proposes that there are adaptor molecules
(now known as transfer or tRNAs) that base pair with the “template RNA” (now known as
messenger or mRNA) and bring specific amino acids to the “microsomal particles” (now
known as ribosomes) to be incorporated into a growing polypeptide. It was also proposed
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that enzymes would be best suited to attach the different amino acids to the suitable adaptor
molecules. We now know these enzymes as aminoacyl-tRNA synthetases and the resulting
adaptor molecules charged with amino acids as aminoacyl tRNAs.

Crick further introduced the “coding problem” and suggested that code consists
of triplets of nucleotides (codons) that are non-overlapping [6]. Several experiments by
various groups followed and included mutagenesis of bacteriophages [7] and using cell
extracts to translate, e.g., poly-U mRNA, which resulted in proteins consisting entirely of
phenylalanine [8]. The anticodon tRNA part that recognizes the codon in the mRNA needs
to be single-stranded and complementary to the codon [8]. The ribosome requires GTP to
attach phenylalanine to the growing poly-phenylalanine polypeptide [8]. Subsequently,
using mRNAs consisting of other codons, all 20 proteinogenic amino acids were identified.
The findings about the genetic code and translation were summarized in 1966 [9]. The
genetic code is a dictionary in which each codon encodes a unique amino acid among the
twenty proteinogenic amino acids, but most amino acids can be encoded by more than
one codon. This redundancy or degeneracy of the genetic code is the result of the simple
mathematical fact that codons of two nucleotides (4 × 4 = 16 possible combinations) would
not suffice to encode all twenty amino acids plus at least one Stop codon, but codons of
three nucleotides (4 × 4 × 4 = 64 possible combinations) exceed the 21 possibilities needed.
Consequently, amino acids are encoded by between one (tryptophan and methionine) and
six (serine, leucine, and arginine) different codons, and there are three Stop codons. Figure 1
shows the currently accepted genetic code, which applies to most organisms.
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Figure 1. Genetic code redrawn as presented by Crick [9], except that the OCHRE AMBER, and ?
codons were replaced with Stop codons. The Start codon AUG and its encoded amino acid methionine
are colored in green, and the three Stop codons are colored in red. All other codons are shaded in
different gray tones depending on their redundancy: the single tryptophan (Trp) codon in dark gray;
pairs of synonymous codons for phenylalanine (Phe), tyrosine (Tyr), histidine (His), glutamine (Gln),
asparagine (Asn), lysine (Lys), aspartate (Asp), glutamate (Glu), and cysteine (Cys) in slightly lighter
gray; the three isoleucine (Ile) codons in lighter gray; quartets of synonymous codons coding for
glycine (Gly), alanine (Ala), valine (Val), proline (Pro), and threonine (Thr) in the lightest gray; and
sextets of synonymous codons coding for serine (Ser), leucine (Leu), and arginine (Arg) in white.

The goal of this review is to give an overview of the nature and significance of synony-
mous mutations identified in different organisms, as well as some cell-free experiments
with a focus on molecular mechanisms.
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2. Definition of Single-Nucleotide Mutations

Mutations are generally changes in nucleic acids induced by various factors, such
as physical or radiation damage or errors during replication, recombination, meiosis, or
mitosis. They can affect entire chromosomes (omissions or duplications), large or small
portions of DNA (insertions, deletions, or inversions), or they can be limited to just a
single-nucleotide change. In this review, the focus is on single-nucleotide changes. To
differentiate these variations from the typical population, e.g., a human reference genome,
they are often referred to as single-nucleotide polymorphisms (SNPs) if they occur with a
relatively high frequency of at least 1% in the population.

2.1. Single-Nucleotide Mutations Outside Coding Sequences

Coding regions or coding sequences (CDSs) are nucleotide sequences that encode
proteins. Single-nucleotide changes outside coding sequences can have various effects
ranging from none to increasing or decreasing expression levels of genes if they occur in the
promoter or other regulatory regions. Such mutations can affect transcription themselves by
increasing or decreasing the affinity to transcription factors, such as activators, repressors,
or RNA polymerase itself. Alternatively, they can affect modifications to DNA, which in
turn can affect transcription and other DNA processing events. Such modifications are often
referred to as epigenetic modifications. Probably the best understood such modification
is methylation. DNA methyl transferases (or methylases) recognize specific nucleotide
sequences and methylate specific nucleotides in those sequences at specific sites. Single-
nucleotide mutations can either create or remove such sites.

In prokaryotes, for example, methylation of the amino group in position 6 of adenine of
the 5′-GATC-3′ restriction site can protect the own DNA against degradation, while foreign
unmethylated DNA, for example, from phages, can be degraded, providing a protection
mechanism for bacteria [10]. As might be expected, some phages have far fewer 5′-GATC-
3′ sites than would be expected statistically, and some have their own DNA methylase,
seemingly countering the bacterial defense mechanism [11]. Mutation of phage DNA could
also remove 5′-GATC-3′ sites. Methylation of the parent strand, but not the daughter
strand, during replication can indicate which strand needs to be repaired if replication has
introduced an incorrect nucleotide [12]. Finally, varying methylation patterns in promoter
regions can regulate the expression of genes in response to environmental factors [10].

In eukaryotes, methylation of C5 of cytosine in 5′-CG-3′, often referred to as CpG sites
(p indicating the phosphodiester bond connecting the two nucleotides) or CpG islands
when this dinucleotide appears in groups, often in promoter regions, is used to regulate
gene expression. Methylated CpGs are thought to decrease affinity to transcription factors
and RNA polymerase, thereby decreasing expression. In cancer cells, mutations that
decrease the number of CpGs in oncogene promoter regions and mutations that create
CpGs in tumor suppressor gene promoter regions have been observed [13]. In another
study, mutations that lead to the removal or creation of CpGs in promoter regions of various
genes involved in cancer, coronary artery disease, and diabetes mellitus were identified [14].

If single-nucleotide mutations occur at splice sites of eukaryotic genes or in exonic
splicing enhancers or silencers, they can result in alternative splicing [15]. If they occur in
RNA genes, they can cause mutations in rRNAs, tRNAs, etc.

2.2. Single-Nucleotide Mutations in Coding Sequences

If single nucleotides in CDSs are deleted or inserted, the frame of the coding sequence
is shifted, which typically results in truncated or otherwise faulty proteins. This review
focuses on single-nucleotide changes that keep the coding sequence in frame. Among
these, there are four possible outcomes, which have been given different names in the past
(Table 1).



Biomolecules 2024, 14, 132 4 of 13

Table 1. Types of in-frame single-nucleotide changes in CDSs.

Name Used in This Review Outcome Alternative Names

Synonymous mutation (SM) No change in amino acid (AA) or Stop codon Silent
Nonsynonymous mutation (NM) Change from one AA to another AA Missense

Change from an AA to a Stop codon Nonsense, Stop
Change from a Stop codon to an AA Nonstop

Single-nucleotide changes in DNA either change the base in a nucleotide from one
pyrimidine to the other pyrimidine (cytosine, C, to thymine, T, or vice versa) or from one
purine to the other purine (adenine, A, to guanine, G, or vice versa), called a transition, or
from a pyrimidine to a purine or vice versa, called a transversion. The one-letter code is
used for the nitrogenous bases or their 2′-deoxyribose-5′-monophosphate derivatives called
nucleotides. RNA deviates from DNA by having ribose rather than 2′-deoxyribose in the
nucleic acid backbone and by having the pyrimidine thymine (T) replaced by uridine (U).
In nucleotide mutations, nucleotides will be written in lower case to distinguish them from
mutations of amino acids in upper-case one-letter code. If a nucleotide mutation results in
a codon coding for a different amino acid, it is called a nonsynonymous mutation (NM). If
it results in a synonymous codon, often by changing only the third nucleotide or, in some
cases, only the first nucleotide, it is called a synonymous mutation (SM).

The term SM is relative and depends on what gene is used as a reference. In many
cases, this will be a gene or genome that has been deposited in a reference database, such
as the GRCH38p.14 human genome assembly deposited in the Ensembl database (current
release 111 [16]).

It should be appreciated that in-frame single-nucleotide changes outside CDSs can
become SMs if they are part of a functional gene and moved under an active promoter or
if an intron becomes part of an exon by mutations at splice sites. Vice versa, mutations in
CDSs can cease to be SMs or NMs if a gene ceases to be expressed due to the movement of
the gene or its promoter or if an exon is not expressed because of alternative splicing.

3. Impact of Synonymous Mutations at the Molecular Level
3.1. Transcription Efficiency

The effect of SMs on transcription efficiency is not that clear. The DNA double
helix structure is generally quite homogeneous except when modified by methylation or
packaged with histones in eucaryotic cells [17]. The GC content of DNA could affect the
ease with which the two strands of the double helix are separated because GC Watson–Crick
base pairs form three hydrogen bonds versus two AT base pairs. However, a single SM will
have a minimal effect on the energy required to separate the strands. If there are several
SMs, it is likely they will cancel out their effects of increasing or decreasing GC content.

Single-nucleotide mutations outside CDSs can lead to the effects described above in
Section 2.1, which typically occur in promoter regions. However, effects of codon usage in
CDSs on transcription efficiency have also been described [18]. GC-rich DNA seems to be
transcribed more efficiently than AT-rich DNA [19,20]. Such effects could be mediated by
certain DNA methylation patterns, but one study found that rather histone methylation
was related to the suppression of expression of genes with non-optimal codons [21]. Gene
regulatory elements can also be located within CDSs.

Transcription elongation can be interrupted by pauses in both prokaryotes [22] and
eukaryotes [23]. In bacteria, pauses can occur at specific nucleotide sequences called
elemental pause signals (consensus sequence 5′-CATAGTTG-3′) [22]. From here, DNA
polymerase can backtrack and initiate transcription-coupled DNA repair. Pauses can
also be caused by hairpin loops (or other secondary structures) of the nascent mRNA
or the binding or regulator proteins, including ribosomes [22]. In humans, elongation
pauses occur, among other things, at DNA crosslinked by anti-cancer chemotherapeutic
crosslinking or alkylating agents [23]. This is an active field of research where much remains



Biomolecules 2024, 14, 132 5 of 13

unknown. It seems reasonable to assume that many of these processes could be affected
by SMs.

3.2. Translation Efficiency

SMs can affect the molecular processes of translation described in the Introduction
in various ways. One phenomenon often invoked is codon usage bias (CUB) or simply
codon bias [24–26]. There can be several synonymous codons for the same amino acid, but
each codon has its own cognate tRNA. Typically, there is one aminoacyl-tRNA synthetase
per amino acid (except lysine, which has two) that attaches it to the 3′ end of its various
tRNAs [27]. Depending on the abundance of different aminoacyl tRNAs, some synonymous
codons are believed to lead to more efficient translation than others. This idea is supported
by statistical analysis of codon usage between different organisms and even between
different regions of genomes of the same organism. While omnipresent, CUB seems to be
more prevalent in unicellular, fast-growing organisms [26].

Another way in which nucleotide sequence can affect translation efficiency is via the
formation of inter- and intra-RNA secondary structures. A study by Wen et al. measured
the time course of the Escherichia coli ribosome movement along an mRNA at the single-
molecule level [28]. They found that the ribosome moves by about three nucleotides every
80 ms and that most of each step consists of a pause, with only a small portion (~10%)
of the time dedicated to the actual translocation step. In addition, they showed that the
ribosome has RNA helicase activity, and it unwinds the mRNA during translation. Using
sequential GAG codons for glutamate residues resulted in an internal (within the CDS)
Shine–Dalgarno sequence AGGAG [29] in the mRNA that arrested the ribosome at that
site while using synonymous GAA codons removed the Shine–Dalgarno sequence and
the arrest [28]. Consistent with this observation, Li et al. observed a stalling effect of
internal Shine–Dalgarno sequences in E. coli [30]. A related study found that a Shine–
Dalgarno sequence upstream of the gene (outside the CDS) resulted in stronger binding
of the ribosome to that mRNA in the initiation complex but that this strong interaction
disappeared once the ribosome started translation [31]. These results suggest a stalling
effect by strong base pairing between the mRNA and the 3′ end of the 16S rRNA where the
Shine–Dalgarno sequence complement is located. Apart from intermolecular mRNA-rRNA
interaction, base pairing can also occur intramolecularly (within the mRNA), at its extreme,
resulting in long hairpin loops that typically adopt a helical structure. These structures
can be resolved by the ribosome but may require more energy and time to resolve than
single-stranded stretches of mRNA [28].

4. Synonymous Mutations in Prokaryotes

Many studies on the impact of mutations on translation efficiency were carried out
in E. coli [32–35]. The decreased expression of the endogenous lamB-lacZ hybrid gene was
investigated in a series of studies on mutations close to the start codon and attributed to
the formation of a stable hairpin loop that would make the Shine–Dalgarno sequence [29]
inaccessible to the ribosome [34,35]. While in this case neither of the mutations involved
was synonymous (one was outside the CDS, and one was an NM), the way in which they
affected mRNA secondary structure and stability is universal and should also be valid
for SMs.

In agreement with this scenario, a study of the expression of different variants of
the heterologous human interferon (IFN)-γ gene with mutations 3′ (downstream) of the
initiation codon revealed that SMs that resulted in more stable hairpin structures (as
determined by model calculations [36]) led to decreased expression levels and decreased
IFN-γ activity [32]. The authors also determined the ideal spacing between the Shine–
Dalgarno sequence AGGA and the start codon to be between 8 and 11 nucleotides [32],
consistent with another study [37].

Kudla et al. expressed a library of heterologous green fluorescent protein (GFP)
variant genes with random SMs in E. coli to obtain a better understanding of how they
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affect expression [33]. Expression levels between 154 variants varied up to 250-fold. No
correlation was found between CUB and expression levels. However, the stability of
secondary structures near the ribosome binding site (calculated with a web server for
nucleic acid melting prediction [38]) could account for more than half of the variation in
expression levels, consistent with the findings described above [32,34,35]. In contrast, there
was no correlation between the folding energy of the entire transcripts and fluorescence,
which is consistent with the fact that the entire transcript does not have an opportunity to
fold because transcription and translation are coupled in prokaryotes [39–43].

TEM β-lactamases have become popular subjects to study evolution due to their
ease of screening for beneficial mutants. Naturally occurring mutations and their impact
on enzyme activity, sensitivity to inhibitors, and/or stability have been summarized by
Palzkill [44]. Many of these mutations have also been obtained by various directed evolu-
tion approaches [45–48]. Of note, in most of these studies, SMs were identified in addition
to NMs but were not studied in detail.

Zalucki et al. [49] observed that leader sequences of secreted proteins in E. coli, includ-
ing TEM-1, are encoded by non-optimal (also referred to as rare, minor, or non-preferred)
codons. Changing especially the N-terminal ones to optimal (also referred to as frequent,
major, or preferred) synonymous codons decreased the expression level at 37 ◦C but not
at 28 ◦C, indicating that translation of the leader sequence must begin slowly for op-
timal expression. Too rapid expression of proteins in bacteria can result in decreased
secretion, misfolding, degradation of the misfolded protein, or the formation of inclusion
bodies [37,50]. Slow translation ramps have also been described elsewhere and proposed
to prevent traffic jams along the mRNA [51–53].

In a massive synthetic biology approach [54], Firnberg et al. mutated each nucleotide
of the blaTEM-1 gene to the other three nucleotides and changed each codon to the other
63 codons. This resulted in 2583 possible single point mutations and 18,081 possible codon
substitutions that should encode all possible amino acids and stop codons at each position
in the amino acid sequence. They were able to experimentally characterize 98.2% of the
point mutations and 83.9% of the codon substitutions, covering the entire gene (Figure 2).
They found that NMs have a much bigger and mostly deleterious impact on fitness than
SMs. While beneficial SMs are spread throughout the entire gene, deleterious SMs are
mostly found in the 5′-terminal half of the gene, especially in the 5′-terminal portion of
the signal peptide-encoding region, consistent with the previously mentioned report [49].
High-impact mutations (mostly deleterious NMs) exert their effect mostly via decreased
activity rather than decreased protein levels, suggesting that, in this case, protein activity is
the limiting factor rather than protein abundance [54].
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Zwart et al. investigated the effect of ten individual SMs [55] that were previously
obtained by random mutagenesis and screening together with 38 NMs [48], out of which
10 were randomly selected for comparison. They could not find any clear trends of CUB or
mRNA stability determined in a 45-nucleotide sliding window in variant transcripts with
these ten SMs in comparison to ten NMs. The location of these 20 mutations in the blaTEM
gene is illustrated in Figure 2. The authors conclude that most of the SMs exert their effect
via yet poorly understood post-transcriptional mechanisms.

Faheem et al. investigated SMs located throughout natural blaTEM variant genes [56]
(Figure 2). These SMs differentiate the natural genes encoding three enzymes, blaTEM-3,
blaTEM-33, and blaTEM-109, from a reference gene, blaTEM-1a, in addition to one or more NMs.
Interestingly, two of the genes without SMs exhibited lower expression levels and conferred
lower antibiotic resistance levels than their counterparts with SMs. blaTEM-3 with SMs
resulted in a 4.2-fold higher expression level than the same gene without SMs. CUB is an
unlikely factor for the difference in this case because the original codons result in excellent
(actually higher) expression of blaTEM-1a.

Another variant gene, blaTEM-109, is expressed slightly better (about 1.4-fold) when
SMs are included than when they are not. In this case, one of the SMs, c18t, is within
the ribosome binding site. Indeed, when determining the mRNA folding energy of a
42-nucleotide segment, including the Shine–Dalgarno sequence, the mRNA segment with
the SM had a binding free energy of −3.4 kcal/mol versus −6.3 kcal/mol for the mRNA
segment without the SM, suggesting that the transcript with SMs could be more accessible
to the ribosome.

No significant difference in expression levels was observed between blaTEM-33 variants
containing SMs or not. blaTEM-33 with SMs seems to have evolved from a synonymous
variant of blaTEM-1a called blaTEM-1b by only one NM (Figure 2), rendering the enzyme
inhibitor resistant, while the counterpart blaTEM-33 without SMs could have evolved from
blaTEM-1a by the same NM. The latter gene was reported only recently (GenBank accession
code CP069666). This observation raises the possibility that many variant genes already
exist but have not been isolated, yet, or will evolve in the future.

When examining the location of SMs and NMs in Figure 2, one can observe that while
NMs are distributed throughout the gene, SMs are more abundant in the N-terminal portion.
In combination, this evidence indicates that SMs may have a role mostly in translation
initiation and/or early elongation.

5. Synonymous Mutations in Eukaryotes

Protein expression in eukaryotic cells differs from that in procaryotic cells in several
important aspects, apart from the fact that RNA polymerase and ribosomes are different in
sequence, structure, and size:

1. Transcription and translation are decoupled both in space and time. Transcription
occurs in the nucleus and translation in the cytoplasm, either at soluble or endoplasmic
reticulum-bound ribosomes.

2. mRNA must travel from the nucleus to the cytoplasm, and before that journey, it
undergoes several modifications, including 5′-capping, 3′-polyadenylation, splicing,
and binding to proteins and/or ribonucleoproteins.

As a result, the fate of mRNA and the impact of SMs may be different from those in
procaryotes. While in procaryotes, the nascent mRNA needs to be accessible to ribosomes
to be translated while it is still being synthesized, it can be subject to degradation or other
post-transcriptional modifications in eukaryotes.

5.1. Synonymous Mutations in Various Eukaryotic Organisms

Saccharomyces cerevisiae (Baker’s yeast) is one of the simplest and best-studied single-
celled eukaryotes. Shen et al. recently generated several thousands of artificial variants
of a haploid Saccharomyces cerevisiae strain by synthesizing 150 nucleotide fragments of
21 selected nonessential genes with all possible single-nucleotide changes and then replaced
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the native fragments with the artificial fragments using CRISP-Cas9 [58]. The goal was to
investigate what the impact of SMs was in comparison to NMs. The authors observed that
SMs are much more like NMs in exhibiting detrimental effects than no effect at all, hence
non-neutral, and this effect was mostly attributed to lower mRNA levels. They acknowl-
edged that their findings need to be reproduced in other, including diploid, organisms to
be generalized. Once validated, they argue that some evolutionary and dating techniques
using SMs as controls may have to be revised and that SMs may be more important in
causing disease in humans than previously appreciated [58]. A subsequent commentary
argued that there is insufficient evidence to overturn a large body of evidence that SMs
in humans are predominantly neutral [59]. They argue that SMs are under much smaller
purifying selection and that in databases, most mutations associated with human traits are
NMs. Another commentary cited technical issues related to insufficient controls and the
use of technical rather than biological replicates for statistical analyses [60].

Another recent study investigated mRNA stability in yeast mediated by optimal
synonymous codons [61]. A codon stabilizing coefficient (CSC) was defined by correlating
the frequency of a particular codon in mRNAs with the mRNA half-life. High-CSC mRNAs
were significantly more stable than corresponding low-CSC mRNAs encoding the same
protein, but this effect only emerged above an mRNA length of a few hundred nucleotides,
including the 5′ untranslated region. These longer mRNAs also had a higher propensity
to form polysomes (more than one ribosome bound per mRNA), which could explain
this increased mRNA stability [61]. SMs could be responsible for converting more stable
high-CSC mRNAs into less stable low-CSC mRNAs and vice versa.

Some reviews discuss SMs in genomes of various eukaryotic species, including S. cere-
visiae, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabitis elegans, and mammals [62–64].
The selection of optimal synonymous codons in yeast, D. melanogaster, C. elegans, and
humans can be explained by CUB: genes that are highly expressed and essential mostly use
codons that are complementary to abundant tRNAs [62,64]. Major codons may also reduce
the energetic costs of proofreading during protein synthesis [63]. Interestingly, codons in
CDSs have a higher tendency to be optimal synonymous codons than codons in neutrally
evolving introns, and codons in constitutively expressed exons have a higher tendency to
be optimal than those in alternatively spliced (rarely expressed) exons [65].

5.2. Synonymous Mutations Associated with Human Pathophysiology

Many SMs in humans (also called synonymous single-nucleotide polymorphisms or
sSNPs) have been discovered due to their pathological effects in genome-wide association
studies (GWAS) [15,66]. According to these reviews, more than 50 human diseases are asso-
ciated with SMs. In addition, Hunt et al. summarize both computational and experimental
methods that have been employed in the study of SMs [15]. Here, we will focus on a few
examples where the underlying molecular mechanisms are quite well understood.

Duan et al. [67] reported that naturally the human dopamine receptor D2 (DRD2)
gene has a high GC content at the third positions of its codons. One SM, c957t, decreased
protein expression level, while its combination with g1101a restored the original expression
level. In Chinese hamster ovary cells transfected with the wild-type or mutant DRD2 genes
and with transcription arrested by the addition of actinomycin D, the mRNA expressed
from the mutant gene carrying the c957u SM decayed about twice as fast as the wild-type
mRNA and mutants carrying other SMs. The combination of c957u and g1101a stabilized
the mRNA. Using mfold [68], the authors investigated if the synonymous mutations had
an impact on mRNA secondary structure, which could affect stability. They found that
the c957t SM changed the mRNA structure relative to wild-type mRNA, while the g1101a
SM maintained a structure very similar to the wild type. Adding both SMs resulted in
an mRNA structure very similar to the one of the g1101a variant and similar to the wild
type. Contrary to what might have been expected, the two nucleotide pairs (c957 and
g1101; and t957 and a1101) did not form direct base pairs but affected the mRNA secondary
structure in different regions. In line with the observations at the beginning of this section,
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in eukaryotic organisms, instability of mRNA can be detrimental because the mRNA needs
to endure the journey from the nucleus to the site of translation. In contrast, in prokaryotes,
instability of mRNA can be beneficial if it allows the ribosome to bind to the ribosome
binding site more efficiently.

Bartoszewski et al. [69] investigated a three-nucleotide deletion in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene, which is a common cause of cystic
fibrosis. A three-nucleotide (CTT) deletion removes the first two nucleotides of the TTT
F508 codon, resulting in the expression of ∆F508 CFTR, and the third nucleotide from
the ATC I507 codon, resulting in a synonymous ATT codon. By mutating the T in the
ATT I507 codon of the deletion mutant back to C, the authors effectively compared the
impact of an SM. In silico mRNA folding using mfold [68] indicated that the AUC -> AUU
synonymous mutation coding for I507 rather than the deletion of UUU coding for F508
caused a different secondary structure. They compared the wild-type mRNA containing
AUC UUU to the deletion mutant containing AUU and saw some differences in circular
dichroism spectra. They carried out cell-free expression and expression in 293F cell lines. In
both cases, the protein expressed from the gene with the ATC I507 codon was expressed at
higher levels than from the gene with the ATT I507 codon. Transcription levels and mRNA
stability were comparable, pointing to translation as the process determining expression
levels. The authors also observed that the protein expressed from the gene with the ATC
I507 codon was less susceptible to endoplasmic reticulum-associated degradation than
the one expressed from the gene with the ATT I507 codon. They argue that the slower
expression of the protein from the latter gene could cause slower protein folding, more
ubiquitination [70], and more degradation.

In a subsequent review [71], Bartoszewski et al. summarize the effect of SMs in other
human diseases, such as amyotrophic lateral sclerosis (ALS), pain perception, cancer, and
multi-drug resistance. They also demonstrate a method for predicting translation efficiency
based on whether optimal or rare codons are used. Applied to CFTR, this allowed them to
predict which parts of the protein are translated quickly (e.g., cytosolic loops and domains
and extracellular loops) or slowly (e.g., α helices in the two transmembrane domains) [71].
Interestingly, it was also shown that ∆F508 CFTR expressed from a gene with the ATC
I507 codon is a more functional chloride channel than the same protein expressed from a
gene with the ATT I507 codon [72] and that the two proteins had different sensitivity to
drugs [73]. These results suggest that in this case, the SM not only affected the translation
level but also translation-associated protein folding and subsequent protein function.

Silencing via the binding of small noncoding RNAs (also known as microRNAs or
miRNAs) [15] is a post-transcriptional regulation mechanism that can be affected by SMs
in metazoans. Human immunity-related GTPase family M protein (IRGM) expression is
usually silenced by miR-196, but this silencing effect is decreased and leads to overexpres-
sion of IRGM with an SM. Increased IRGM expression leads to deregulated xenophagy
in Crohn’s disease [74]. Another example where miRNA silencing was disrupted by an
SM is decreased silencing of the BCL2L12 gene, typically silenced by hsa-miR-671-5p.
Increased expression of this gene triggers anti-apoptotic signaling in some patients with
melanoma [75].

6. Conclusions

Despite an increasing body of evidence many questions about the causes, molecular
mechanisms, and effects of SMs remain unanswered. There is interest in this field, and
the language in the scientific community has shifted from silent mutations to synonymous
mutations, recognizing the fact that the effect of SMs cannot be discounted (Figure 3).

The number of publications using the search term “silent mutation*” increased from
the 1970s (shortly after the genetic code was cracked), peaked around 2000, and has been
steady since then, probably in part because authors refer to the “historical” term silent
mutations. The first publication obtained using the search term “synonymous mutation*”
appeared in 1987, and the number of these publications has increased significantly since
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2000 to about three times the number of publications using “silent mutation*” today. It is
expected that this number will continue to increase, if not due to increased interest, then
simply because sequence information is increasing exponentially and, with it, annotation
of SMs.
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