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Abstract: Salinity stress can trigger a series of physiological changes. However, the mechanism
underlying the response to acute salinity stress in Macrobrachium rosenbergii remains poorly under-
stood. In this study, osmoregulation, physiological metabolism, antioxidant capacity, and apoptosis
were examined over 96 h of acute salinity stress. Hemolymph osmolality increased with increasing
salinity. After 48 h of salinity exposure, the glucose, triglycerides, total protein, and total cholesterol
contents in two salinity stress groups (13 and 26‰ salinity) were significantly lower than those
in the 0‰ salinity group. The highest levels of these parameters were detected at 6 h; however,
superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) were
the lowest at 96 h in the 13‰ salinity group. The activity of immunity-related enzyme alkaline
phosphatase (AKP) showed a decreasing trend with increasing salinity and remained at a low level
in the 26‰ salinity group throughout the experiment. No significant differences were observed in
aspartate aminotransferase (AST), alanine aminotransferase (ALT), or lysozyme (LZM) among the
three treatments at 96 h. After 96 h of salinity treatments, the gill filament diameter significantly
decreased, and a more pronounced terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL)-positive signal was detected in the 13‰ and 26‰ groups compared to that in the 0‰ group.
Expression levels of apoptosis-related genes, including Cysteine-aspartic acid protease 3 (Caspase
3), Cysteine-aspartic acid protease 8 (Caspase 8), Cytochrome c (Cyt-c), tumor suppressor gene (P53),
Nuclear factor kappa-B (NF-κB), and B cell lymphoma 2 ovarian killer (Bok) were significantly higher
in the 26‰ salinity group than in the other groups at 24 h, but lower than those in the 0‰ salinity
group at 96 h. Cyt-c and P53 levels exhibited a significantly positive relationship with MDA, AST,
and LZM activity during salinity stress. In the 13‰ salinity group, Bok expression was significantly
correlated with SOD, T-AOC, AKP, acid phosphatase, and LZM activity, whereas in the 26‰ group,
the AST content was positively correlated with Caspase 8, Cyt-c, and P53 expression. A significant
negative relationship was observed between Caspase 3 expression and catalase (CAT) activity. These
findings provide insight into the mechanisms underlying the response to acute salinity stress and
will contribute to improving M. rosenbergii aquaculture and management practices.

Keywords: giant freshwater prawn; euryhalinity; reactive oxygen species; qPCR; TUNEL assay

1. Introduction

Salinity is regarded as a crucial environmental factor that influences various aspects
of aquatic animal life, including reproduction, growth, development, and survival [1–3].
Some crustacean species, such as decapods, migrate from freshwater to brackish estuaries
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before attaining sexual maturity for mating, spawning, and hatching [2,4–6]. Crustaceans
frequently encounter considerable salinity variations throughout their migration and adjust
the hemolymph ion concentration, osmotic pressure, and enzyme activity associated with
metabolism to maintain ion balance within their cells and adapt to the changing salinity of
their environment, ensuring the maintenance of a stable internal environment and normal
physiological metabolism [3]. Therefore, the mechanism of hemolymph osmoregulation
has become a hotspot for studying the response of crustaceans to salinity stress [7–9].

Hemolymph and blood osmolality are commonly measured to assess the osmoregula-
tory capacity of aquatic animals. At salinities below and above the isosmotic concentration,
the hemolymph becomes hyperosmotic and hypo-osmotic, respectively, in the surrounding
medium [10]. Na+-K+-ATPase (NKA) is typically an essential enzyme that plays a crucial
role in regulating ions and maintaining osmotic pressure balance within intra- and extracel-
lular fluids [11]. Numerous studies have indicated that NKA activity and mRNA expression
levels are significantly upregulated in salt-transporting tissues, such as hemolymph and
gills, when exposed to salinity challenges [12,13].

The hepatopancreas is an important digestive gland in crustaceans that plays a critical
role in physiological metabolism and antioxidant defense in response to environmental
stress [14]. Under stressful conditions, such as salinity challenges, the metabolic rate
increases to compensate for physiological changes. Therefore, acclimatization to salinity
stress requires substantial energy consumption through catabolism of sugars and fats [15].
Blood glucose (GLU) and energy reactions modulate osmotic pressure balance, and lipid
metabolism differs under varying salinity conditions [16]. Additionally, free amino acids
in the hemolymph increase during salinity stress [17,18]. Thus, the metabolism of GLU,
lipids, and proteins thus plays vital roles in responding to salinity challenges.

Furthermore, these stress-induced challenges often lead to an increase in reactive
oxygen species (ROS), ultimately inducing oxidative stress, which adversely affects crus-
taceans [19,20]. Many crustacean species typically develop an immune response, such as
salinity fluctuations, to adapt to changing environments. However, if environmental stress
exceeds an organism’s tolerance, free radical production and removal in the body become
imbalanced, triggering tissue cell apoptosis, and this can be detected through histological
and molecular biological methods. Previous studies have found that low or high salinity
typically results in varying degrees of apoptosis [21,22].

The giant freshwater prawn (Macrobrachium rosenbergii) is an economically important
cultured species worldwide. It grows and develops in freshwater and migrates to estuaries
for reproduction, where water of a specific salinity level is necessary for larval metamor-
phosis and hatching. During migration, this species develops high tolerance to a wide
salinity range [23]. The ability to adapt to metabolic and physiological conditions and
cope with environmental salinity changes is crucial for growth and survival. Multiple
studies have reported that salinity changes can lead to delayed metamorphosis, decreased
activity, and disease occurrence, potentially affect feeding, survival, and growth during the
breeding period or larval stage [24–30]. However, there is limited knowledge regarding the
physiological, histological, and molecular changes that occur in subadult M. rosenbergii as it
transitions from freshwater to brackish water. Therefore, further investigations are needed
to explore the mechanisms underlying the response to acute salinity stress.

Consequently, this study aimed to explore the response of individual M. rosenbergii
to acute salinity stress by examining their histological features, physiological metabolism,
antioxidant defense, immunity, and apoptosis. The results will contribute to advancing the
current understanding of the salt tolerance mechanisms in this species, potentially leading
to improved survival rates when cultivated in high-salinity water. Moreover, these findings
will provide valuable guidance for the production of M. rosenbergii.
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2. Materials and Methods
2.1. Experimental Materials and Design

The experiment was conducted in glass aquaria (60 × 50 × 50 cm) at the Pearl River
Fisheries Research Institute, CAFS. A total of 360 healthy cultured prawns with an aver-
age body weight of 12.49 ± 3.08 g were obtained from Liantang Town, Zhaoqing City,
Guangdong Province. Prior to the experiment, the prawns were acclimatized in an indoor
aquarium for 5 days during which the water temperature was maintained at 30 ± 0.5 ◦C,
dissolved oxygen levels were maintained at 6 mg/L, and the pH ranged from 7.0 to 8.0.
The prawns were fed a commercial artificial compound diet twice daily at 8:00 a.m. and
5:00 p.m., and residues and excreta were removed through regular water changes. Before
the start of the experiment, the prawns were fasted for 24 h.

Following acclimation, the prawns were randomly assigned to three treatment groups:
0, 13, or 26‰ salinity. The salinity was measured by using a salinometer (Thermo Eutech,
Carlsbad, CA, USA). There were 3 treatments and a total of 9 tanks, with 40 individuals per
tank. The control group was maintained in freshwater (0‰ salinity), and the higher-salinity
groups (13‰ and 26‰) were achieved by diluting the seawater stock solution with fully
aerated dechlorinated tap water.

2.2. Sample Collection

When the experiment commenced, six prawns (two per tank; sample sizes also apply
to the sections that follow) from each treatment group were randomly selected and anes-
thetized within an ice bath for tissue collection at five time-points (6, 12, 24, 48, and 96 h
after the treatment started).

The hemolymph samples were taken from the base of the prawn’s fifth walking limb
using a 1 mL syringe washed with heparin sodium salt, placed on ice, transported to the
laboratory, and maintained for 1–2 h.

The hepatopancreas tissues were frozen in liquid nitrogen and then stored at −80 ◦C
for physiological assays and RNA extraction. Part of the hepatopancreas tissues were
thawed and homogenized at 12,000 rpm for 10 min at 4 ◦C with 1:9 (w/v) physiological
saline. After centrifugation, the supernatant was diluted and stored in centrifuge tubes for
subsequent analysis.

At the 96 h time-point, gills were fixed in 4% paraformaldehyde for 24 h at 4 ◦C for
histological analysis.

2.3. Detection of Hemolymph Osmolality

After centrifugation at 10,000× g for 20 min at 4 ◦C, the supernatant of hemolymph
samples at each point for three treatment groups was analyzed with a single-channel
micro-osmolarity meter (OsmoTECH XT, ADVANCED, Norwood, MA, USA).

2.4. Assessment of Physiological Metabolism

The levels of GLU, triglycerides (TG), total protein (TP), and total cholesterol (T-CHO)
in the hepatopancreas after 6, 12, 24, 48, and 96 h of salinity stress were determined via
commercially available kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

2.5. Estimation of Anti-Oxidative Parameter and Immunity Index

The contents of anti-oxidative parameters including total superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), total
antioxidant capacity (T-AOC), and malondialdehyde (MDA) content, and the immunity in-
dex containing aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline
phosphatase (AKP), acid phosphatase (ACP), and lysozyme (LZM) in hepatopancreas were
determined to evaluate the antioxidant activity under salinity stress using commercially
available kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).
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2.6. Histological Analysis

After dehydration, the samples were transparented in xylene, embedded in paraffin,
and sectioned (5–6 µm) using a Leica RM2016 Microtomes paraffin slicer (Leica, Weztlar,
Germany). Paraffin sections were deparaffinized and rehydrated before staining with
hematoxylin–eosin (HE) solution (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China). The stained sections were sealed with neutral resin and then visualized under
light microscopy (Nikon, Tokyo, Japan). At least six gill filaments were randomly selected
for measurement in each visual field, and each gill filament was measured three times.
The gill filament diameter was measured by using CaseViewer 2.4 software (3DHISTECH,
Budapest, Hungary).

2.7. TUNEL Assays

Tissue cell apoptosis was assessed using the terminal-deoxynucleotidyl-transferase-
mediated dUTP-biotin nick end labeling (TUNEL) assay following the protocol of the
apoptosis detection kit (Wuhan servicebio technology Co., Ltd., Wuhan, China) [31]. Briefly,
the sections were deparaffinized and rehydrated, followed by exposure to a protease K
working solution. Subsequently, they were incubated with the TUNEL solution and further
incubated with 4′,6-diamidino-2-phenylindole (DAPI) to stain the cell nuclei. The sections
were then sealed with neutral gum, dried using graded ethanol, and analyzed under a
fluorescence microscope (Nikon Eclipse C1, Tokyo, Japan). The live cell nuclei stained
with DAPI emitted a blue color upon excitation by ultraviolet light, whereas the positively
apoptotic cell nuclei appeared red.

2.8. RNA Extraction and cDNA Synthesis

Total RNA was isolated from the hepatopancreases using TRIzol™ reagent (Invitrogen,
Waltham, MA, USA). RNA integrity was assessed using 1% agarose gel electrophoresis.
Total RNA (1 µg) from different tissues were digested with DNase I (New England Biolabs,
Ipswich, MA, USA). First-strand cDNA was synthesized from 1 µg of total RNA using
an M-MLV Reverse Transcriptase Kit (Invitrogen, Waltham, MA, USA) following the
manufacturer’s instructions.

2.9. Real-Time Quantitative PCR (qPCR)

The primers for apoptosis-related genes and reference genes used in this study are
listed in Table S1 [32–34]. Real-Time qPCR was performed using a StepOnePlus Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA) to assess the expression levels of
apoptosis-related genes under acute salinity stress. Samples for each qPCR assay contained
1 µL (50 ng/µL) of cDNA, 5 µL of iTaq™ Universal SYBR ® Green Supermix, 0.5 µL of each
primer (10 pmol/µL), and 3 µL of double-distilled water to a final volume of 10 µL. The
reaction protocol was as follows: 95 ◦C for 3 min; 35 cycles of 95 ◦C for 40 s, 60 ◦C for 45 s,
and 72 ◦C for 30 s; and 72 ◦C for 10 min for data acquisition, and then 95 ◦C for 5 s, 60 ◦C
for 30 s, and 95 ◦C for 15 s to obtain the melt curve. β-actin was selected as the internal
reference because of its stable expression.

2.10. Correlation Analysis

Pearson’s correlation analysis was performed to explore the correlations between
antioxidant parameters and expression levels of key genes in salinity-stressed groups.
The heatmap was created in R 4.2.3 with the pheatmap package, and p-values less than
0.05 referred to significant differences (*), while values less than 0.01 referred to highly
significant differences (**) between two variables.

2.11. Statistical Analysis

Differential analysis of hemolymph osmolality, anti-oxidative, and physiological
metabolism parameters under different salinity challenges was performed using anal-
ysis of variance (ANOVA). Data are presented as the means ± standard error (SE) of three
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replicates, and the statistical significance is represented by a p-value < 0.05. The mRNA
abundances of genes were calculated using the 2−∆∆Ct method [35]. All statistical analyses
were performed using SPSS v19.0 (SPSS Corp., Armonk, NY, USA).

3. Results
3.1. Hemolymph Osmolality

The hemolymph osmolality displayed an increasing trend with water salinity (Figure 1).
A significant difference was detected in hemolymph osmotic pressure between the 26‰
group and the 0‰ and 13‰ groups at all the time points (p < 0.05). However, there was no
difference between the 0‰ and 13‰ salinity groups.
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Figure 1. Hemolymph osmolality under different salinity treatments. Different letters indicate
significant differences between salinity groups within a given time point (p < 0.05). Data are presented
as the mean ± standard error (SE) (n = 6).

3.2. Physiological Metabolism Parameters in Hepatopancreas

Several physiological metabolic parameters of the hepatopancreas were driven by the
salinity challenge with significant differentiation at some time points (Figure 2). Significant
differences were observed in the GLU contents among the three treatments at 6, 24, and
48 h (p < 0.05). At 6 h, the GLU content was significantly lower in the 0‰ group compared
to the other groups. Similarly, at 24 h, the 13‰ group displayed a significantly lower GLU
level than the other groups (p < 0.05). After 96 h, both salinity stress groups exhibited
significantly lower GLU levels than the 0‰ group (p < 0.05). Furthermore, significant
differences in TG contents were detected at 48 h, with significantly higher levels than those
in the other two groups (p < 0.05). Significant differences in the TP content were found
among the three groups at all time-points except 12 h (p < 0.05). Specifically, the 13‰ group
displayed significantly lower TP levels at 6 h, and the 26‰ group exhibited significantly
lower TP levels at 24 h compared to that of the other groups (p < 0.05). However, no
significant difference was observed between the 0‰ and 26‰ groups at 48–96 h (p > 0.05).
Following 12–24 h of salinity stress, the 13‰ group showed significantly lower T-CHO
contents than the 0‰ group (p < 0.05), and the T-CHO content in the 0‰ group was
significantly higher than those in the other groups (p < 0.05).
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3.3. Antioxidant Enzyme Activities of Hepatopancreas

The antioxidant enzyme activities in the hepatopancreas after salinity stress varied at
different time points (Figure 3). The SOD activities of the 13‰ group were significantly
higher than those of the 26‰ group at 6 h and 12 h but significantly lower than those of
the 26‰ group at 24 and 48 h (p < 0.05). At 6, 12, and 24 h, no significant difference was
observed between the 0‰ group and the other groups (p > 0.05). Significant differences
in CAT activities were observed among the three groups at 6, 12, and 24 h (p < 0.05). The
highest CAT activities were observed in the 13‰ group at 12 and 24 h (p < 0.05), but no
significant differences were found thereafter (p > 0.05). There were no significant differences
in GSH-Px activities at 6 or 12 h among the three groups (p > 0.05). GSH-Px activities in the
26‰ group increased over time and were significantly higher at 96 h in both the 26‰ and
0‰ groups compared to those in the 13‰ group. Compared to the 0‰ group, GST activity
in the 13‰ group and 26‰ group was significantly lower at 24, 48, and 96 h (p < 0.05).
Significant differences in T-AOC activity were observed among the three groups except
at 24 and 48 h. T-AOC activity in the 13‰ group was significantly higher than those in
the 26‰ group at 6 and 12 h (p < 0.05). However, at 96 h, the T-AOC activity in the 13‰
group was significantly lower than those in the 0‰ and 26‰ groups (p < 0.05). Following
24–96 h of salinity stress, the MDA content in the 0‰ group was significantly higher than
that in the 13‰ group (p < 0.05). The MDA content showed a decreasing trend in the 26‰
group, with no significant difference compared to the 0‰ group (p > 0.05).
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3.4. Immunocompetent Response to Salinity Stress

The immunocompetent response of the hepatopancreas to salinity stress exhibited
different trends at different time points (Figure 4). After 24 h of salinity stress, AST activity
in the 26‰ group was significantly higher than that in the 0‰ group (p < 0.05). However,
there was no significant difference between the 26‰ and 13‰ groups (p > 0.05). At 0‰
salinity, ALT activity was significantly higher after 24 h of exposure compared to that in
the 13‰ group (p < 0.05). However, after 48 h of exposure, the ALT activity in the 0‰
and 13‰ groups was significantly lower than that in the 26‰ group (p < 0.05). Significant
differences in AKP activity were observed among the three groups at all time points, with
higher activity in the 0‰ group compared to those in the 13‰ and 26‰ groups after
24–96 h of salinity stress (p < 0.05). The ACP activity showed a decreasing trend in the
13‰ group, and the opposite trend was observed in the 26‰ group. Significant differences
in ACP activity were detected among the three groups at other time points except 24 h
(p < 0.05). At 12 h, ACP activity was significantly lower in the 26‰ group than in the other
groups, and there was no significant difference between the 26‰ and 0‰ groups at 48 and
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96 h. The LZM activity in the 13‰ group displayed a decreasing trend, and significant
differences were observed among the three groups at 6, 24, and 48 h (p < 0.05). At 48 h, the
LZM activity was significantly lower in the 13‰ group than in the other groups. However,
there were no significant differences between the 0‰ and 26‰ groups at 24–48 h (p > 0.05).
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3.5. Histological Characteristics of Gills

Significant histological differences were observed in the gills among the different
salinity treatments (Figure 5). After 96 h of treatment, the gill filament diameter was
significantly smaller in both the 13‰ and 26‰ groups than in the 0‰ group. Overall,
salinity stress led to a significant decrease in the gill filament diameter (p < 0.05).
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3.6. Tissue Apoptosis Analysis

To further investigate the effects of acute salinity stress on gill tissues, we examined
the apoptosis signals using fluorescence microscopy (Figure 6). After 96 h of treatment, no
obvious TUNEL signal was observed in the 0‰ group. However, in the 13‰ group, the
gill exhibited TUNEL signals in the nuclei, and a more pronounced TUNEL-positive signal
was detected in the 26‰ group.

3.7. mRNA Expression of Apoptosis-Related Genes

The apoptosis-related genes, Cysteine-aspartic acid protease 3 and 8 (Caspase 3 and
Caspase 3), Cytochrome c (Cyt-c), tumor suppressor gene (P53), Nuclear factor kappa-B (NF-
κB), and B cell lymphoma 2 ovarian killer (Bok) exhibited significantly higher expression
levels in the 26‰ salinity group compared to the other groups at 24 h, but showed lower
levels at 96 h (Figure 7). At 6 h, the transcript levels of Caspase 3, Cyt-c, and P53 in 13
and 26‰ groups were significantly higher than those in the control group. However, no
significant difference was observed in NF-κB and Bok expression levels at this time point.
After 12 h of salinity treatment, Caspase 3 and NF-κB were significantly upregulated in the
26‰ group, and Caspase 8 and Cyt-c displayed the opposite expression trends. There were
no significant differences for Bok and P53 between the groups. Caspase 8 in the 26‰ salinity
group remained low, except at 24 h. After 48 h of exposure to 13‰ salinity, all six genes
showed significantly lower expression levels than those in the 0‰ group.
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3.8. Correlation Analysis between Antioxidant Parameters and Apoptosis-Related Genes

There were significant correlations between apoptosis-related genes Caspase 3, Caspase 8,
Cyt-c, P53, NF-kB, Bok, and antioxidant and immune enzymatic activities (Figure 8). A
significant positive correlation was observed between the levels of Cyt-c, Bok, and P53
mRNA and those of MDA, AST, and LZM. Additionally, Caspase 8 expression was positively
correlated with AST activity. In the 13‰ group, the Bok expression level was positively
correlated with SOD, T-AOC, AKP, ACP, and LZM activities. The level of Caspase 3 showed
a significant positive correlation with MDA and AKP. The P53 expression level was only
positively correlated with MDA content. In the 26‰ stress group, Caspase 8, Cyt-c, and
P53 expression levels were positively correlated with AST. However, a significant negative
correlation was observed between Caspase 3 and CAT levels.
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(A) Caspase 3, Cysteine-aspartic acid protease 3; (B) Caspase 8, Cysteine-aspartic acid protease 8;
(C) Cyt-c, Cytochrome c; (D) P53, tumor suppressor gene; (E) NF-κB, Nuclear factor kappa-B; and
(F) Bok, B cell lymphoma 2 ovarian killer. Different lowercase letters denote significant differ-
ences between salinity treatments within a given time point (p < 0.05). Data are presented as the
mean ± standard error (SE) (n = 6).
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4. Discussion

Migratory crustaceans often exhibit high tolerance to salinity stress because of their
enhanced capacity for hemolymph osmoregulation [5]. The hemolymph maintains the
osmotic pressure balance by regulating ion concentration or the expression of Na+/K+-
ATPase genes in gills in response to salinity stress [36]. Our results showed an increase
in osmolality with increasing water salinity. However, the osmoregulatory ability greatly
declines at the highest salinity and, consequently, the animals approach osmoconformation.
The osmoregulation activities under acute salinity stress are in line with earlier studies
on decapods [37–39]. Similarly, a previous study on M. rosenbergii demonstrated that
hemolymph osmolality can be maintained at around 420 mOsmolkg-1 at salinity < 18‰ by
gradually increasing the salinity, but that the osmotic capacity becomes severely challenged
as salinity increases [25]. Our study observed similar changes in hemolymph osmolality,
implying that the osmoregulation capacity contributes to the adaption of M. Rothbergii to
estuarine regions with salinity changes during their early life stages.
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Enhanced physiological metabolism produces more energy and substances to help
organisms cope with salinity challenges [40]. The hepatopancreas, a key site for storing
glycogen, breaks down polysaccharides into monosaccharides such as GLU, releasing
energy sources to meet the demands imposed by environmental stresses [41]. Our results
revealed significantly higher GLU contents at 6 h but significantly lower levels at 48 h
in the 13‰ and 26‰ groups compared to that in the 0‰ group, indicating an extremely
high energy consumption after 6 h of salinity exposure. A previous study suggested that
GLU can provide energy for osmoregulation in an inshore shrimp under unsuitable salinity
conditions [41]. Similarly, both TG and T-CHO contents in the salinity-challenged groups
were significantly lower than those in the control group at 48 h. Lipids are considered
an essential nutrient for crustaceans, and an appropriate cholesterol level can enhance
osmoregulation and salinity stress resistance in the shrimp [42,43]. The decrease in TG and
T-CHO reflects their utilization as the main energy source, indicating that more TG and
T-CHO in the hepatopancreas tissue were catabolized for osmoregulation.

Acute salinity stress increases the concentration of ROS, resulting in oxidative stress
in aquatic animals [19,44,45]. Antioxidant enzymes, such as SOD, CAT, GPx, and T-AOC,
play crucial roles in antioxidant defense. SOD eliminates ROS and reduces lipid peroxi-
dation damage, and CAT catalyzes the breakdown of hydrogen peroxide [46]. GSH-Px is
considered a key component of the cellular antioxidative system that effectively protects
cells against lipid peroxidation damage [47]. MDA levels are commonly used as a marker
of cell membrane damage caused by lipid peroxidation [48]. In this study, we observed
lower SOD and CAT activities following 6–12 h of higher salinity exposure, indicating that
a higher acute salinity stress may inhibit the activity of these enzymes. Similar findings
of reduced SOD and CAT activity were reported in a freshwater crab after salinity treat-
ment [36]. We also observed lower activities in GSH-Px and GST from 24 to 96 h after
salinity stress, suggesting that GSH-Px and GST may have played a more prominent role
in the later phase of acute salinity exposure. T-AOC, an important index for evaluating
comprehensive antioxidant capacity, reflects the ability to resist free radical metabolism in
response to external stimuli [49]. The higher T-AOC content observed in the 13% salinity
group at 6–12 h implies an increased production of free radicals during the early stages
of salinity stress. In contrast, the level of MDA decreased first and then increased with
the increase in salinity after 24–96 h of salinity stress. Higher-salinity stimulation can lead
to decreased MDA levels [50]; therefore, we speculated that the external salinity stress
caused extensive oxidative damage when the salinity exceeded the appropriate range for
osmoregulation [36].

Environmental stress often triggers non-specific immune responses in aquatic ani-
mals [51]. AST, ALT, AKP, and ACP play important roles in immune defense and recog-
nition in crustaceans [52,53]. In our study, we observed higher AST and ALT levels at
24 and 48 h, respectively, in response to 26‰ salinity compared to the 0‰ group. Simi-
larly, higher-salinity treatment was found to increase blood AST and ALT levels in Clarias
gariepinus [54]. Furthermore, AKP activity maintained a lower level in the 26‰ group
than that in 0‰ group throughout the experimental period, which was similar to that
in the Eriocheir sinensis [36]. The ACP activity in response to 13‰ salinity exposure was
significantly lower than that of the 0‰ group near the end of salinity stress (48–96 h),
indicating that acute salinity stress affected the immune system of M. rosenbergii. In contrast
to our results, AKP and ACP activity decreased in response to low salinity stress in the
inshore shrimp [55], suggesting opposite trends in AKP and ACP activity between marine
crustaceans and freshwater species in response to salinity changes. Notably, AKP and ACP
are also important components of the LZM system and function together in the innate
immunity of organisms [56,57]. Our study detected higher LZM activity in the 26‰ group
than in the 13‰ group at 24 h and 48 h, which is consistent with the findings in a coastal
fish, where LZM activity recovered to the same level as that of the control group at 48 h [56].
These results indicate that M. rosenbergii exhibits a stronger tolerance to high salinity than
lower salinity.
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As respiratory and osmoregulatory organs, gills exhibit rapid responses to salinity
stress, primarily through significant morphological changes, such as gill filament shrinking
and deformation, reductions in gill cilia, and cell apoptosis [58]. In our study, we observed
gill filament elongation during exposure to higher-salinity conditions. This finding is
consistent with previous studies on an estuary crab and a congeneric freshwater prawn, in
which the gill filament diameter became thicker and thinner in response to hypo-salinity
and hyper-salinity stress, respectively [59,60]. These results suggest that crustaceans
living in freshwater or saltwater environments exhibit similar patterns in response to
changes in external salinity, such as alterations in gill filament morphology [61]. Excessive
environmental stress can stimulate the overproduction of ROS and subsequently induce cell
apoptosis [51]. In this study, a more pronounced TUNEL-positive signal was detected in
the higher-salinity group (26‰), which may have been attributed to the extensive oxidative
damage caused by acute external salinity changes, leading to cell apoptosis.

The prolonged oxidative stress promotes cell death by activating the apoptotic path-
way [62]. In our study, the expression levels of apoptosis-related genes, including Caspase 3,
Caspase 8, Cyt-c, P53, NF-κB, and Bok, showed an initial increase followed by a decrease
under salinity exposure. Down-regulation of those apoptosis-related genes indicates that
the late stage of the apoptosis process was reached at the end of the high-salinity exposure
experiment. Caspase 3 and Caspase 8 are crucial molecules in apoptosis, with Caspase 8
initiating the caspase cascade and activating downstream Caspase 3 to induce apoptosis [63].
Caspase 3 activity is first detectable early in apoptosis, continues to increase as cells un-
dergo apoptosis, and rapidly declines during the late stages of apoptosis [64]. The lowest
Caspase 3 level in the 26‰ group suggested that apoptosis reached its final stage after 96 h.
Interestingly, we found a significant negative relationship between Caspase 3 transcription
abundance and CAT activity in the 26‰ salinity group. The active Caspase 3 can inhibit
CAT activity and induce proteolysis of the CAT protein [65]. Therefore, we hypothesize that
Caspase 3 and CAT may play antagonistic roles in response to higher-salinity challenges.

The activation of caspases, induced by the release of Cyt-c, is a crucial step in cell
apoptosis. As a transcription factor, the Cyt-c mRNA expression influences apoptosis
activation in the mitochondrial pathway [66]. In our study, we found that Cyt-c and
P53 expression was significantly related to MDA and AST levels under salinity stress,
indicating that high salinity induced apoptosis in gills through the mitochondrial pathway.
P53 has been well established to play a vital role in cell death by regulating the apoptosis
pathway [67]. The significant up-regulation of P53 in a marine crab at low salinity from
3 h to 24 h is opposite yet analogous to our findings, suggesting a conserved role of
P53 in responding to salinity changes among different crustaceans [68]. Furthermore, P53
actively participates in the cell cycle and apoptosis process by promoting the transcriptional
regulation of downstream target genes [69].

NF-κB is a highly conserved transcription factor, and activation of the NF-κB signaling
pathway induced by environmental stressors usually triggers the expression of down-
stream genes involved in various cellular events, including apoptosis [70]. The NF-κB
signaling pathway was enriched, and NF-κB expression was up-regulated under salinity
and temperature stresses in a coral [71].

Bok is a proapoptotic protein that promotes cell death by interacting with specific anti-
apoptotic proteins. Its overexpression has been reported to promote the repair of oxidative
damage caused by hydrogen peroxide [72]. Based on our results, lower Bok expression
levels may inhibit the oxidative damage repair. In the 13‰ group, Bok expression level
was significantly correlated with SOD, T-AOC, ACP, AKP, and LZM, suggesting that the
oxidative damage and inflammation caused by salinity stress may have stimulated damage
repair mechanisms by inducing Bok expression; however, this requires further investigation.
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5. Conclusions

Acute salinity stress induces an increase in hemolymph osmotic pressure, triggers
antioxidant responses, and elicits immune stress, leading to structural damage and apop-
tosis of M. rosenbergii gill tissue (Figure 9). These findings provide valuable insights into
the molecular basis of the response to salinity stress, which will improve aquaculture and
management practices of M. rosenbergii and enhance our understanding of the potential
molecular mechanisms underlying the adaptation to acute salinity stress in crustaceans.
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