
*Corresponding author: E-mail: burak@thinksecure.io;

Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023

Asian Journal of Research in Computer Science

Volume 16, Issue 4, Page 194-210, 2023; Article no.AJRCOS.107654
ISSN: 2581-8260

The Rise of Serverless Architectures:
Security Challenges and Best Practices

Burak Cinar a*

Think Secure Inc., United States of America.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJRCOS/2023/v16i4382

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,
peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/107654

Received: 12/08/2023
Accepted: 17/10/2023
Published: 25/10/2023

ABSTRACT

The field of serverless computing has had significant growth and recognition in the past decade.
This emerging area has garnered attention because to its notable impact on cost reduction, latency
reduction, scalability improvement, and elimination of server-side management, among other
benefits. Nevertheless, there is still a dearth of comprehensive study that would facilitate
developers and academics in gaining a more profound comprehension of the importance of
serverless computing in many scenarios. Therefore, it is imperative to provide scholarly study data
that has been published within this particular field. This study conducted a comprehensive analysis
of 275 scholarly articles retrieved from reputable literature sources, with the aim of extracting
valuable insights pertaining to serverless computing. Subsequently, the acquired data underwent
analysis in order to address many study inquiries pertaining to the contemporary advancements in
serverless computing, encompassing its fundamental principles, available platforms, and patterns
of utilization, among other relevant aspects. In addition, we analyze the current obstacles
confronting serverless computing and explore potential avenues for future research to facilitate its
deployment and utilization.

Keywords: Serverless; computing; serverside management; virtualization; cloud.

Review Article

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

195

1. INTRODUCTION

The utilization of virtualization technology has
been crucial in facilitating the widespread
acceptance and accomplishments of cloud
computing [1, 2]. Cloud providers enabled the
concurrent sharing of resources with multiple
users by encapsulating their monolithic
applications within virtual machines (VMs). This
approach ensured robust isolation assurances
while affording users seemingly limitless
resources that were promptly accessible
whenever their applications required them [3].
The aforementioned characteristics, in
conjunction with a pay-per-use economic model
that has resulted in decreased total cost of
ownership for cloud consumers, have positioned
cloud computing as the most prosperous
computing paradigm of the previous decade [4].
Nevertheless, this achievement was not without
its disadvantages, with the primary downside
being the requirement for users to personally
oversee the virtual machines (VMs) [5, 6].

The aforementioned matter has prompted the
observation of novel programming models that
have significantly altered the methodologies
employed by software developers in the creation
and administration of cloud-based services [7, 8].
A programming approach that is often used
involves the decomposition of an application into
numerous components, referred to as
microservices [9, 10]. These microservices are
autonomous, have limited scope, and are loosely
connected. They are able to communicate with
each other via standard APIs. Regrettably, the
inefficiency of virtual machines (VMs) in terms of
prolonged startup time and substantial resource
consumption has been demonstrated in their
application for executing microservices [11, 12].
Consequently, other container technologies,
such as Docker, were proposed as a more
lightweight alternative [13, 14]. Containers have
several advantages over virtual machines (VMs)
in terms of enhanced portability, reduced start-up
time, and improved resource usage [15, 16].
These benefits contribute to the streamlining of
the development and administration processes
for large-scale applications deployed in cloud
environments. The aforementioned benefits have
prompted cloud providers to embrace container
technologies and integrate them with
orchestration systems such as Kubernetes or
Docker Swarm [17, 18]. This integration enables
the seamless automation of deploying, scaling,
and managing cloud-based applications that are
built on microservices. Nevertheless, akin to the

utilization of virtual machines (VMs), the
microservices paradigm necessitates users to
undertake the configuration and administration of
the underlying containers, encompassing
associated libraries and software dependencies
[19, 20]. Furthermore, it relies on a static billing
model, wherein users are charged a
predetermined amount for the allocated
resources, irrespective of the actual resources
consumed. The aforementioned problems make
microservices inappropriate for some categories
of applications [21].

The concept of serverless computing is gaining
prominence as a novel computing paradigm for
the deployment of applications within cloud
environments [22, 23]. The current iteration
possesses two significant advantages in
comparison to its previous versions. Primarily
cloud computing enables software developers to
delegate infrastructure maintenance and
operational responsibilities to cloud providers so
enabling them to concentrate exclusively on the
core business logic of their programs [24].
Additionally, the platform operates on a pay-per-
use framework, wherein users are solely billed in
accordance with the amount of resources they
utilize [25]. At now, serverless computing is
available in two distinct variations, namely
backend as a service (BaaS) and function as a
service (FaaS) [26]. The fundamental concept
underlying Backend as a Service (BaaS) is to
offer software developers a range of services
and tools, such as databases, APIs, file storage,
and push notifications, with the aim of facilitating
and expediting the process of developing mobile
and online apps [27, 28]. Function-as-a-Service
(FaaS) primarily centers around enabling
software developers to deploy and run their own
functions on cloud infrastructure [29, 30]. It is
important to note that these functions can also
leverage supplementary services, similar to
those provided in Backend-as-a-Service (BaaS)
offerings. Currently, Function as a Service
(FaaS) is widely recognized as the prevailing
serverless paradigm. Throughout the remainder
of this essay, the term "serverless" will be
employed as a reference to Function as a
Service (FaaS) [31, 32].

Serverless computing is becoming increasingly
popular in the business as an appealing
approach for deploying applications and services
in the cloud, mostly due to its simplicity and
economic benefits [33, 34]. Cloud service
providers, such as Amazon, Microsoft, Google,
IBM, and Alibaba, have already been providing

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

196

serverless computing services to its clientele.
Likewise, other corporations, including Netflix, T-
Mobile, and Realtor, are currently experiencing
the advantages of serverless computing [35].
Based on recent industry surveys, it is projected
that the serverless computing market would
experience a compound annual growth rate
(CAGR) of 26% from 2020 to 2029 [36].
Nevertheless, as the frequency and variety of
assaults targeting cloud systems continue to rise,
it becomes evident that ensuring security and
preserving privacy will play a crucial role. Failure
to adequately address these concerns has the
potential to impede the general acceptance and
implementation of serverless computing [37-39].

1.1 What is Serverless Security?

Serverless security refers to a protective layer
that is specifically designed to safeguard code
functionalities. The technology is implemented
directly into the apps, allowing developers to
impose compliance measures in order to
increase the security posture. However, in order
to comprehend its importance, it is necessary to
take a moment to delve into the concept of
serverless architecture [40, 41].

1.2 Serverless Architecture

Serverless architecture refers to a software
development methodology in which the design
and execution of an application are conducted

without the need for concern for the underlying
infrastructure. The responsibilities of your team
will be limited to the tasks of writing and
executing the code, while the cloud provider will
play a facilitating role in managing the
application's servers. During the initial stages of
software development, the deployment of
programs involved the utilization of bare metal
servers, which were overseen by system
administrators. The resource allocation for the
project was limited, resulting in significant costs.
Nevertheless, advancements in cloud computing,
virtual machines, and containerized applications
have facilitated the development of applications
with enhanced flexibility, simplicity, and efficiency
[42, 43]. Serverless computing might be likened
to the subsequent installment within a series of
films. The primary objective of servers is to
enable and enhance the communication and
collaboration between users and various
applications. Despite being necessary, servers
introduce a significant level of complexity, need
more IT operations management, and incur
expenses. In contrast, the implementation of a
serverless architecture allows developers to
prioritize the development of high-quality code
rather than dedicating resources to server
maintenance, backup creation, and security
measures. The cost-effectiveness of this
approach lies in the fact that users are only
charged for the specific services they utilize, and
these services are only utilized during the
operation of the program [44, 45].

Fig. 1. Serverless architecture

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

197

A serverless architecture, such as Function as a
Service (FaaS), enables the development of
code in the form of discrete functions that
execute in response to specific events [46].
However, it should be noted that the transfer of
security responsibilities to the cloud service
provider is advantageous. The utilization of
serverless architecture facilitates the automation
of workflow processes, resulting in several
advantages such as enhanced scalability,
expedited application delivery, and decreased
development expenditures [47, 48].

1.3 What are the Benefits of Serverless

Architecture?

The serverless architecture is a methodology that
operates on events rather than streams, hence
enhancing its resilience to faults. When a failure
occurs in the program, it has a localized effect on
the single event rather than affecting the entire
log [49, 50]. There exist five additional
advantages associated with the utilization of
serverless architecture. By engaging in the
practice of outsourcing server and database
management, organizations can effectively
decrease the financial burden associated with
employing human resources to oversee
infrastructure and computing space [51, 52]. By
entrusting the cloud provider with the security
control of your infrastructure, you effectively
implement measures such as runtime security,
key and secrets management, and automated
patching, in accordance with established best
practices [53, 54]. With the implementation of
security safeguards by providers such as Azure,
AWS, and Google Cloud, the application code is
encompassed by fundamental policies [55].
Application containers are rendered less
vulnerable to attacks due to their termination
upon cessation of active operation [56, 57]. The
absence of a state creates an inherent security
stance. The utilization of serverless
architecture enables the decomposition of
applications into smaller modules, facilitating
efficient tracking and monitoring of serverless
applications. The provision of IAM (Identity and
Access Management) for each individual
function confers enhanced security measures
[58, 59].

2. WHAT ARE THE CHALLENGES OF

SERVERLESS ARCHITECTURE?

It’s not all rosy with serverless computing and it
has some challenges too.

2.1 Security Misconfigurations

Cloud service providers offer a variety of security
measures and settings; nonetheless, it is
imperative to ensure their proper configuration.
Omitting or misconfiguring any element in a
given context can potentially result in a risk [60,
61].

2.2 Improper Permission Privileges

One potential drawback associated with granting
individual access to numerous operations is the
possibility of inadvertently providing a user with
excessive rights beyond what is actually
required. It is imperative to consistently employ
the practice of implementing the least privilege or
zero level permits in order to effectively mitigate
the potential for attacks [62].

2.3 Event-Data Injections

It is possible for untrusted inputs to be injected
into the functions whenever an event is triggered.
As a result, you need to thoroughly evaluate
each event source to check for unauthorized
data injections [63, 64].

2.4 Verbose Error Messages

By ignoring verbose error signals such as "out of
memory," "null pointer," and a multitude of other
failures, as well as improperly handling
exceptions, hackers can find a weakness in the
system that they can exploit and use to launch
an attack [65, 66].

2.5 Third-Party Vulnerabilities

The burden of protecting the application will need
to be shared between the cloud providers and
the developers in order to combat the
vulnerabilities that come with database services,
backend cloud services, configurations that are
related with the application, and so on [67].

2.6 Serverless Best Practices for any
Cloud

The characteristics of a serverless architecture
that contribute to its allure are also the
characteristics that make it less secure. For
instance, while the numerous functionalities of
apps make it possible to implement fine-grained
security policies, this also means that the number
of entry points that might be targeted by
attackers is increased. Implementing the best
practices for serverless security is necessary in

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

198

order to protect your application from being
attacked [68, 69].

Through the use of layered access control and
authentication, you can protect against
unauthorized application access. Your cloud
provider will present you with a variety of options
to choose from in order to mitigate the danger
posed by faulty authentication. OAuth, SAML,
and OpenID Contact are some of the tools that
are available. You can create and implement a
password difficulty system that is tailored to your
organization's development culture in conjunction
with a multi-factor authentication system [70, 71].

It is essential to have effective monitoring and
recording of user access and the runtime of your
functions in order to reduce your vulnerability to
security assaults. Even while the capabilities of
observability and monitoring are provided by your
cloud provider, it is still a good idea to invest in a
third-party solution that provides you with
monitoring-specific features that make the
experience more natural [72].

Implement the principle of "least privileged
access" by establishing a strict permission policy
and delegating one-of-a-kind roles to each
individual function. Developers have a tendency
to over-privilege, which results in a security flaw
that attackers love to take advantage of. This is
because the chore of giving authorization access
to every function is a challenging one. Your
development and security teams should meet
face to face and have a conversation about the
goals of each function and the precautions they
need to take to ensure its safety. This is the best
practice [73-76].

Implementing the appropriate policies for code
analysis will allow you to maintain control over
your functions and ensure that you will not
deploy any code that has bugs. Because hostile
actors are more likely to target personnel than
application code, it is vital to build security
controls that check that every function that is
pushed through to the continuous integration and
continuous delivery pipeline is clean and does
not contain any dangerous elements [77, 78].

Set a ticking clock for each of your functions so
that they are stopped as soon as the
corresponding task is complete. This will ensure
that your functions have sufficient runtime. You
may eliminate the possibility of malicious code
being injected into your application by using
serverless function timeouts to remove any

window of vulnerability that may exist. You
should also pay attention to the runtime that you
assign. Developers have a tendency to go with
the maximum duration available, which means
that attackers get more time to do something
malicious. Paying attention to the runtime that
you assign is important[79, 80].

In order to avoid being dependent on a third
party, you should implement a rigorous process
to check the originality and dependability of your
sources. In addition, if you want the safest code
possible at that time, you should make sure that
you are using the most recent version of each
component that comes from an open-source
code. When employing open-source
components, one of the most important best
practices is to ensure that they are always kept
up to date [81-83].

When it comes to managing secrets effectively,
you need to pay careful attention to sensitive
credentials like API keys. It is a best practice to
include period evaluation in configuration files or
to make use of a secrets scanning tool such as
Spectral to automate this procedure for you.
Either option is acceptable [84, 85].

Implement security not only during the testing
phase of the SDLC but throughout the entire
process. You will be able to cut down on
operational costs and minimize delays if you
include security at every level of the development
process. In addition, the ongoing examination will
point out any security flaws and areas that
require the implementation of stringent protection
procedures [86, 87].

2.7 What Is Serverless Computing?

Serverless computing is a novel paradigm in
which application developers do not need to
maintain servers. Instead, they deploy code as
functions, and servers are assigned based on
demand. This frees application developers from
the burden of managing servers. It makes use of
the Function-as-a-Service (FaaS) architecture,
which is a sort of cloud computing that
enables programmers to easily package and
distribute their code without having to deal with
the necessary server infrastructure. An event-
driven computing execution architecture is what
FaaS is. In this architecture, developers
design logic that is then deployed in
containers that are fully controlled by a
platform, and the logic is then done on demand
[88, 89].

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

199

Fig. 2. A journey towards Serverless computing

The servers are abstracted away from the
application development process in serverless
computing, and the duty for provisioning,
maintaining, and scaling the server infrastructure
is taken on by the cloud provider in response to
the code events that are deployed. Once they
have been launched, serverless programs
automatically adjust to demand and scale up and
down in response to changing requirements.
Serverless products offered by public cloud
providers are frequently subjected to event-
driven execution and on-demand metered pricing
models. Because of this, the use of a serverless
function does not incur any expenses when it is
not being utilized. A database, user
authentication, a web server, a security token
service (STS), and Lambda functions are some
of the components that might make up an
example of a serverless system solution. The
most well-known instances of Functions as a
Service are provided by Google Cloud Functions,
Microsoft Azure Functions, and Amazon Lambda
respectively [90, 91].

The capacity of serverless technology to speed
up the process of software development is one of
the primary reasons why its implementation has
become more widespread in recent years. It
makes it possible for developers to delegate the
maintenance of server infrastructure to a Cloud
Service Provider (CSP), who is then responsible

for taking care of the application functionality.
However, the fact that the cloud service provider
(CSP) is only responsible for the security of the
cloud and not the security in the cloud is the
most significant challenge for serverless
architectures. This indicates that the serverless
application is not only remains vulnerable to the
dangers and flaws that are experienced by
traditional programs, but it is also subject to the
security difficulties that are specific to the design
of serverless applications. Developers of
serverless applications need to take
responsibility for their apps by implementing
identity and access management (IAM), resource
configuration, and the protection of code
functions and libraries [92, 93].

3. SERVERLESS SECURITY RISKS

3.1 Increased Attack Surfaces

The input data that serverless functions use
comes from a wide number of event sources.
These sources include HTTP APIs, cloud
storage, IoT device connections, and queues.
This considerably expands the surface area that
might be exploited by attackers, as some of
these components may contain untrusted
communication formats that the typical
application layer protection would not be able to
thoroughly examine. If the separate

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

200

vulnerabilities of the connection links that are
utilized to fetch input data (such as protocols,
vectors, and functions), can be exploited, then
those connection linkages could be used as
points of attack [94, 95].

3.2 Security Misconfiguration

Serverless apps are vulnerable to cyber assaults
because cloud service providers often give
insecure setups in the settings and functionalities
they provide for their customers. For instance,
denial-of-service assaults, also known as DoS
attacks, frequently take place in serverless
applications due to incorrectly specified timeout
settings between the functions and the host. In
these attacks, the low concurrent limitations are
used as entry points into the program to carry out
the attack. Attackers are also able to take
advantage of the function linkages by interjecting
the function calls, which causes the function
events to take far longer to complete than
anticipated. This opens the door for Denial-of-
Wallet (DoW) attacks and drives up the cost of
the serverless function. DoW attacks are also
caused by the leakage of sensitive data, which
can occur when unprotected functionalities from
public repositories (such as GitHub and S3
buckets) are used. This is due to the fact that
attackers take use of functions that are available
to the public that include unprotected secrets and
keys that are hardcoded in the code [96-98].

3.3 Broken Authentication

Serverless apps do not store state information,
and the use of microservices in their architecture
leaves the various movable pieces of the
independent processes vulnerable to
authentication failure. For instance, in an
application that contains hundreds of serverless
functions, if the authentication for just one of
those functions is handled incorrectly, it will have
repercussions for the remainder of the program.
Attackers could zero in on a single function to get
access to the system using a variety of ways,
including automated brute force attacks and
dictionary attacks [99-101].

3.4 The Threat of Over-Privileged
Functions

The serverless ecosystem is dependent on a
large number of autonomous services, and each
of these tasks has its own set of responsibilities
and permissions. The significant amount of
interaction that takes place between functions
might occasionally result in functions being

overprivileged in their rights. For example, due to
the fact that actors are able to see it, a function
that continuously consults the database and
changes other functions could represent a
significant security concern [102, 103].

4. SERVERLESS SECURITY BEST
PRACTICES

4.1 Use API Gateways as Security Buffers

Using API HTTPS endpoint gateways is one
strategy for preventing event-data injection in
serverless apps. This strategy involves
separating data from functions. An application
programming interface (API) gateway will serve
as a security buffer due to the fact that data will
be retrieved from a wide variety of sources. This
separation between app users on the client-side
and serverless services on the backend will be
created by the API gateway. This decreases the
area that can be exploited by an attacker by
offering multiple security checks through the use
of a reverse proxy. When you use HTTPs
endpoints, you are able to exploit inherent
security protocols, such as data encryption and
the key management provided by your provider.
These protocols are beneficial since they assist
in protecting the sensitive data, environment
variables, and stored data [104, 105].

4.2 Data Separation and Secure
Configurations

You should implement preventative measures,
such as code scanning, the separation of
commands and queries, and the identification of
any exposed secret keys or unlinked triggers,
and then configure these measures such that
they correspond to the CSP's best practices for
serverless applications. Doing so will help you
avoid denial of service attacks. To prevent
execution calls from being disrupted by DoS
attackers, function timeouts should be reduced to
their bare minimum [106].

4.3 Dealing with Insecure Authentication

Implementing numerous specialized access
control and authentication services is required if
you want to reduce the likelihood of your
authentication being compromised. You can
make authentication more difficult to circumvent
by utilizing the access control solutions provided
by the CSP. These options include OAuth, OIDC,
SAML, OpenID Connect, and multi-factor
authentication (also known as MFA). Additionally,
you have the ability to implement unique

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

201

password complexity criteria and restrictions with
regard to length and character type, which
makes it difficult for hackers to crack your
passwords [107, 108].

4.4 Sufficient Serverless Monitoring and
Logging

You will need to make an investment in a
comprehensive observability and monitoring
solution in order to obtain in-depth visibility into
all of the functions contained within a serverless
application. Because it does not cover the
application layer, relying exclusively on the
logging and monitoring capabilities supplied by
the CSP is not enough to ensure adequate
security. The application event data that is
contained within it is vulnerable to security
breaches, and if it is not constantly watched, it
could serve as a potential entry point for
assaults. This is a significant danger that cannot
be ignored [109, 110].

4.5 Minimize Privileges

The separation of functions from one another
and the limitation of the interactions between
them through the use of IAM roles provisioned on
their rights is the recommended method for
reducing the number of privileges in
independently operating functions. This could
also be accomplished by ensuring that the
program is executed with the bare minimum
number of permissions necessary to carry out an
event correctly [111, 112].

4.6 Separate Application Development
Environments

The concept of separating the multiple
environments into staging, development, and
production is one of the most effective ways to
provide continuous development, integration, and
deployment (CI/CD), which is one of the finest
development practices. This guarantees that
effective vulnerability management is prioritized
at each and every level of the development
process before moving on to the next version of
the code. Additionally, it ensures ongoing
testing and improvement of the program through
patch priority, safeguarding updates, and
finding vulnerabilities, which enables
developers to keep one step ahead of attackers
[113, 114].

5. STAYING AHEAD OF SERVERLESS
SECURITY RISKS WITH SYSDIG

It is impossible to overstate the level of popularity
that abstraction has among cloud agent models
due to the growing adoption of cloud platforms
and serverless architecture. Within the serverless
environment, the utilization of virtual images and
containers (such EKS and ECS) as host
machines is continually expanding. Container
security, on the other hand, is the most difficult
aspect of the containerization process. Container
security refers to the process of ensuring that
security protocols are applied in order to
safeguard the underlying infrastructure, runtime,
and data in container applications [115]. Falco
was developed by Sysdig in order to facilitate the
acceleration of innovation and the increase of
standardization in the Container-as-a-Service
(Caas) industry. Falco assists in the detection of
threats across containers, cloud-native hosts,
and Kubernetes. In addition, Sysdig has
developed serverless agents with the assistance
of AWS Fargate to make the Container-as-a-
Service model more user-friendly and simpler to
monitor for the occurrence of security events
within the containers. This was accomplished.
The entirety of Sysdig's product catalog will
assist in resolving the majority of the serverless
security issues outlined above and will guide you
through the process of implementing the ideal
procedures for a flawless serverless solution
[116].

Guidelines that should be followed in order to
improve the safety of serverless applications

5.1 Ensure the Confidentiality of
Sensitive Information

Encrypt every piece of data and utilize a trusted
storage method for your credentials. Conduct a
review of the roles and permissions that have
been assigned to the various users, third parties,
and application operations. In addition to this,
you need make custom roles according to the
requirements and assign those roles to the
functions.

5.2 Include a Plan for Handling Incidents
in Your System

It is absolutely necessary to put an incident
response plan into action in order to be able to

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

202

Fig. 3. Serverless pros and cons

recognize the early warning indications of an
assault. This helps to uncover concerns earlier
so that they can be resolved in accordance with
their severity. This ensures that the application is
protected.

5.3 Ensure that Appropriate Security
Logs are Kept

Your application's level of protection relies
heavily on its ability to maintain accurate
monitoring and security logging. The
vendors of cloud services each have their
own set of recommendations to solve this
problem.

5.4 Dependencies on Outside Parties

It is advisable to get rid of dependencies that
aren't necessary. Priority should be given to the
ongoing monitoring and upgrading of the
framework's, libraries', and other
dependencies' versions, as well as the creation
of security patches for earlier versions
of the dependencies' frameworks and libraries
[117].

6. CONCLUSION

The process of deploying and delivering software
has continued to advance, particularly ever since
the introduction of reasonably priced and
dependable cloud hosting. There has been an
explosive development in the number of
businesses "going serverless," which is a terrific
approach to create scalable apps thanks to the
serverless designs that provide this great way.
Having said that, additional caution is necessary.
Due to the fact that this model of providing
security is based on shared responsibility, all
parties involved should be aware of what it is that
they are responsible for securing.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

REFERENCES

1. Armbrust M, Fox A, Griffith R, Joseph AD,
Katz R, Konwinski A, Lee G, Patterson D,

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

203

Rabkin A, Stoica I, Zaharia M Above the
clouds: A berkeley view of cloud
computing. Tech Rep, University of
California at Berkeley; 2009.

Available:http://berkeleyclouds.blogspot.co
m/2009/02/above-clouds-released.html

2. AWS Lambda; 2021.

Available:https://aws.amazon.com/lambda/

Accessed 21 Oct 2022.

3. Azure Serverless | Microsoft Azure;2021.
Available:https://azure.microsoft.com/soluti
ons/serverless/.

Accessed 21 Oct 2022.

4. Serverless Computing Solutions—Google
Cloud; 2021.
Available:https://cloud.google.com/serverle
ss

Accessed 21 Oct 2022.

5. IBM Cloud Functions; 2021.

Available:https://www.ibm.com/cloud/functi
ons.

Accessed 21 Oct 2022.

6. Alibaba Cloud Function Compute; 2021.
Available:https://www.alibabacloud.com/pr
oducts/function-compute.

Accessed 21 Oct 2022.

7. AWS Lambda Customer Case Studies;
2021a
Available:https://aws.amazon.com/lambda/
resources/customer-case-studies/.
Accessed 21 Oct 2022.

8. Serverless Computing Market Insights;
2021b.
Available:https://www.digitaljournal.com/pr/
serverless-computing-market-insights-
2022-business-opportunities-current-
trends-and-restraints-forecast-
2026#ixzz7W67yDNi4.

Accessed 21 Oct 2022.

9. Hong S, Srivastava A, Shambrook W,
Dumitras T. Go Serverless: Securing
Cloud via Serverless Design Patterns. In:
USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud). USENIX
Association, Boston; 2018.

10. (2021) OWASP Serverless Top 10.
https://owasp.org/www-project-serverless-
top-10/. Accessed 21 Oct 2022.

11. AWS Serverless Application Repository;
2021

Available:https://aws.amazon.com/en/serv
erless/serverlessrepo/.

Accessed 21 Oct 2022.

12. Gao X, Gu Z, Li Z, Jamjoom H, Wang C
Houdini’s Escape: Breaking the Resource
Rein of Linux Control Groups. In: ACM
SIGSAC Conference on Computer and
Communications Security (CCS).
Association for Computing Machinery, New
York. 2019;1073–1086

13. Nam J, Lee S, Seo H, Porras P,
Yegneswaran V, Shin S () BASTION: A
Security Enforcement Network Stack for
Container Networks. In: USENIX Annual
Technical Conference (USENIX ATC).
USENIX Association. 2020;81–95

14. Ory Segal: Serverless Security //
Serverless Days TLV; 2021a.
Available:https://www.youtube.com/watch?
v=M7wUanfWs1c &t=743s.

 Accessed 21 Oct 2022.

15. Event Injection: Protecting your Serverless
Applications; 2021b.
Available:https://www.jeremydaly.com/eve
nt-injection-protecting-your-serverless-
applications/. Accessed 21 Oct 2022.

16. Yelam A, Subbareddy S, Ganesan K,
Savage S, Mirian A. CoResident Evil:
Covert Communication In The Cloud With
Lambdas. In: the Web Conference
(WWW). Association for Computing
Machinery, New York. 2021;1005–1016

17. Wang L, Li M, Zhang Y, Ristenpart T, Swift
M. Peeking behind the Curtains of
Serverless Platforms. In: USENIX
Conference on Usenix Annual Technical
Conference (USENIX ATC). USENIX
Association, Boston. 2018;133–145

18. CVE-2022-0185: Kubernetes Container
Escape Using Linux Kernel Exploit; 2022.
Available:https://www.crowdstrike.com/blo
g/cve-2022-0185-kubernetes-container-
escape-using-linux-kernel-exploit/.

Accessed Oct 21 2022.

19. Hacking serverless runtimes: Profiling
AWS Lambda, Azure Functions, And more;
2019.
Available:https://www.blackhat.com/us-
17/briefings/schedule/#hacking-serverless-
runtimes-profiling-aws-lambda-azure-
functions-and-more-6434.

20. Xiong J, Wei M, Lu Z, Liu Y. Warmonger:
Inflicting Denial-of-Service via Serverless
Functions in the Cloud. In: ACM SIGSAC
Conference on Computer and
Communications Security (CCS)..
Association for Computing Machinery, New
York. 2021;955–969

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

204

21. Kelly D, Glavin FG, Barrett E. Denial of
wallet–Defining a looming threat to
serverless computing. Journal of
Information Security and Applications
2021;(60):2214–2126.

22. Many-faced threats to Serverless
security;2021.

Available:https://hackernoon.com/many-
faced-threats-to-serverless-security-
519e94d19dba.

Accessed 21 Oct 2022.

23. Liu G, Gao X, Wang H, Sun K. Exploring
the Unchartered Space of Container
Registry Typosquatting. In: USENIX
Security Symposium (USENIX Security).
USENIX Association, Boston. 2022;35–51

24. Makrani HM, Sayadi H, Nazari N,
Khasawneh KN, Sasan A, Rafatirad S,
Homayoun H. Cloak & Co-locate:
Adversarial Railroading of Resource
Sharing-based Attacks on the Cloud. In:
International Symposium on Secure and
Private Execution Environment Design
(SEED). 2021;1–13.

25. Fang C, Wang H, Nazari N, Omidi B,
Sasan A, Khasawneh KN, Rafatirad S,
Homayoun H .Repttack: Exploiting Cloud
Schedulers to Guide Co-Location Attacks.
In: Network and Distributed System
Security Symposium (NDSS); 2022

26. Razavi K, Gras B, Bosman E, Preneel B,
Giuffrida C, Bos H. Flip Feng Shui:
Hammering a Needle in the Software
Stack. In: USENIX Security Symposium
(USENIX Security). USENIX Association,
Austin. 2016;1–18

27. Kocher P, Horn J, Fogh A, Genkin D,
Gruss D, Haas W, Hamburg M, Lipp M,
Mangard S, Prescher T, Schwarz M,
Yarom Y (2019) Spectre Attacks:
Exploiting Speculative Execution. In: IEEE
Symposium on Security and Privacy
(S&P). 2019;1–19.

28. Lipp M, Schwarz M, Gruss D, Prescher T,
Haas W, Fogh A, Horn J, Mangard S,
Kocher P, Genkin D, Yarom Y, Hamburg M
() Meltdown: Reading Kernel Memory from
User Space. In: USENIX Security
Symposium (USENIX Security). USENIX
Association, Baltimore. 2018;973–990.

29. Datta P, Kumar P, Morris T, Grace M,
Rahmati A, Bates A. Valve: Securing
Function Workflows on Serverless
Computing Platforms. In: The Web
Conference (WWW). pp. Association for

Computing Machinery, New York.
2020;939–950.

30. Sankaran A, Datta P, Bates A. Workflow
integration alleviates identity and access
management in serverless computing. In:
Annual Computer Security Applications
Conference (ACSAC). 496–509.
Association for Computing Machinery, New
York; 2020.

31. Anjali, Caraza-Harter T, Swift MM.
Blending Containers and Virtual Machines:
A Study of Firecracker and GVisor. In:
ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution
Environments (VEE). Association for
Computing Machinery, New York.
2020;101–113

32. Hyper-V Technology Overview; 2021.

Available:https://docs.microsoft.com/en-
us/windows-server/virtualization/hyper-
v/hyper-v-technology-overview. Accessed
21 Oct 2022.

33. Nabla containers: A new approach to
container isolation; 2021

Available:https://nabla-
containers.github.io/.

Accessed 21 Oct 2022.

34. Kata containers; 2021.

Available:https://katacontainers.io/.

Accessed 21 Oct 2022.

35. Ferraiolo DF, Kuhn DR. Role-Based
Access Controls;2009.
Available:https://doi.org/10.48550/ARXIV.0
903.2171.

36. Spiffe: Secure Production Identity
Framework for Everyone; 2021.

Available:https://spiffe.io/.

Accessed 21 Oct 2022.

37. Corsha: API Identity & Access
Management; 2021.

Available:https://corsha.com/.

Accessed 21 Oct 2022.

38. The Minimum Elements For a Software Bill
of Materials (SBOM);2021.
Available:https://www.ntia.doc.gov/report/2
021/minimum-elements-software-bill-
materials-sbom. Accessed 21 Oct 2022.

39. Gone in 60 Milliseconds: Intrusion and
Exfiltration in Serverless Architectures;
2021.
Available:https://media.ccc.de/v/33c3-
7865-gone_in_60_milliseconds.

Accessed 21 Oct 2022

about:blank
about:blank

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

205

40. (2021) How AWS Lambda reuses
containers (and how it affects you).
https://pfisterer.dev/posts/aws-lambda-
container-reuse. Accessed 21 Oct 2022.

41. Savi M, Banfi A, Tundo A, Ciavotta M.
Serverless Computing for NFV: Is it Worth
it? A Performance Comparison Analysis.
In: IEEE International Conference on
Pervasive Computing and
Communications Workshops and other
Affiliated Events (PerCom Workshops).
2022;680–685.

42. Castro P, Ishakian V, Muthusamy V,
Slominski A. The Rise of Serverless
Computing. Commun ACM. 2019;62.

43. Colantonio A, Pietro R, Ocello A. Role
Mining in Business: Taming Role-Based
Access Control Administration. Singapore:
World Scientific; 2012

44. Combe T, Martin A, Pietro R. To Docker or
Not to Docker: A Security Perspective.
IEEE Cloud Comput. 2016;3.

45. Hu VC, Kuhn DR, Ferraiolo DF, Voas J.
Attribute-Based Access Control. Computer.
2015;48.

46. Kulkarni SG, Liu G, Ramakrishnan KK,
Wood T. Living on the edge: Serverless
computing and the cost of failure resiliency
In: 2019 IEEE International Symposium on
Local and Metropolitan Area Networks
(LANMAN). 2019;1–6.

Available:https://doi.org/10.1109/LANMAN.
2019.8846970

47. Jambunathan B, Yoganathan K.
Architecture decision on using
microservices or serverless functions with
containers In: 2018 International
Conference on Current Trends Towards
Converging Technologies (ICCTCT),
2018;1–7.
Available:https://doi.org/10.1109/ICCTCT.2
018.8551035.

48. Kuhlenkamp J, Werner S (2018)
Benchmarking faas platforms: Call for
community participation In: 2018
IEEE/ACM International Conference on
Utility and Cloud Computing Companion
(UCC Companion), 189–194.
https://doi.org/10.1109/UCC-
Companion.2018.00055.

49. Somma G, Ayimba C, Casari P, Romano
SP, Mancuso V. When less is more: Core-
restricted container provisioning for
serverless computing In: IEEE INFOCOM
2020 - IEEE Conference on Computer

Communications Workshops (INFOCOM
WKSHPS), 2020;1153–1159.
Available:https://doi.org/10.1109/INFOCO
MWKSHPS50562.2020.9162876.

50. Sewak M, Singh S (2018) Winning in the
era of serverless computing and function
as a service In: 3rd International
Conference for Convergence in
Technology (I2CT). 2018;1–5.
Available:https://doi.org/10.1109/I2CT.201
8.8529465.

51. Feng L, Kudva P, Da Silva D, Hu J (2018)
Exploring serverless computing for neural
network training In: 2018 IEEE 11th
International Conference on Cloud
Computing (CLOUD), 334–341.
https://doi.org/10.1109/CLOUD.2018.0004
9.

52. Werner S, Kuhlenkamp J, Klems M, Müller
J, Tai S. Serverless big data processing
using matrix multiplication as example In:
2018 IEEE International Conference on Big
Data (Big Data), 2018;358–365.

Available:https://doi.org/10.1109/BigData.2
018.8622362

53. Al-Ali Z, Goodarzy S, Hunter E, Ha S, Han
R, Keller E, Rozner E (2018) Making
serverless computing more serverless In:
2018 IEEE 11th International Conference
on Cloud Computing (CLOUD), 456–459.
https://doi.org/10.1109/CLOUD.2018.0006
4.

54. Pérez A, Risco S, Naranjo DM, Caballer M,
Moltó G. On-premises serverless
computing for event-driven data
processing applications In: IEEE 12th
International Conference on Cloud
Computing (CLOUD). 2019;414–421.

Available:https://doi.org/10.1109/CLOUD.2
019.00073.

55. Taibi D, El Ioini N, Pahl C, Niederkofler J.
Patterns for Serverless Functions
(Function-as-a-Service): A Multivocal
Literature Review In: Proceedings of the
10th International Conference on Cloud
Computing and Services Science.
CLOSER, 2020(1):181–192.
Available:https://doi.org/10.5220/00095785
01810192.

56. Hellerstein JM, Faleiro J, Gonzalez JE,
Schleier-Smith J, Sreekanti V, Tumanov A,
Wu C .Serverless Computing: One Step
Forward, Two Steps Back; 2018.
Available:http://arxiv.org/abs/1812.03651

Accessed 4 Oct 2021.

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

206

57. Sadaqat M, Colomo-Palacios R, Knudsen
LES. Serverless Computing: A Multivocal
Literature Review. NOKOBIT - Norsk
Konferanse for Organisasjoners Bruk Av
Informasjonsteknologi. 2018;26(1):1–13.

58. Fox GC, Ishakian V, Muthusamy V,
Slominski A. Status of Serverless
Computing and Function-as-a-
Service(FaaS) in Industry and Research.
arXiv e-prints. 2017;1708–08028.
Available:http://arxiv.org/abs/1708.08028.

Accessed 6 Jan 2021.

59. Hassan HB, Barakat SA, Sarhan QI.
Serverless Literature Dataset. Zenodo;
2021.
Available:https://doi.org/10.5281/zenodo.4
660553

60. Bila N, Dettori P, Kanso A, Watanabe Y,
Youssef A. Leveraging the serverless
architecture for securing linux containers
In: 2017 IEEE 37th International
Conference on Distributed Computing
Systems Workshops (ICDCSW).
2017;401–404.
Available:https://doi.org/10.1109/ICDCSW.
2017.66

61. Chang KS, Fink SJ. Visualizing serverless
cloud application logs for program
understanding In: 2017 IEEE Symposium
on Visual Languages and Human-Centric
Computing (VL/HCC), 2017;261–265.

Available:https://doi.org/10.1109/VLHCC.2
017.8103476

62. Ishakian V, Muthusamy V, Slominski A.
Serving deep learning models in a
serverless platform In: 2018 IEEE
International Conference on Cloud
Engineering (IC2E), 2018;257–262.
Available:https://doi.org/10.1109/IC2E.201
8.00052

63. Parás G, Garcáa-López P, Sánchez-
Artigas M (2020) Serverless elastic
exploration of unbalanced algorithms In:
2020 IEEE 13th International Conference
on Cloud Computing (CLOUD), 149–157.

Available:https://doi.org/10.1109/CLOUD4
9709.2020.00033

64. Kuhlenkamp J, Werner S, Tai S. The ifs
and buts of less is more: A serverless
computing reality check In: 2020 IEEE
International Conference on Cloud
Engineering (IC2E). 2020;154–161.
Available:https://doi.org/10.1109/IC2E4871
2.2020.00023

65. Pfandzelter T, Bermbach D. Tinyfaas: A
lightweight faas platform for edge
environments In: 2020 IEEE International
Conference on Fog Computing (ICFC).
2020;17–24.
Available:https://doi.org/10.1109/ICFC4937
6.2020.00011

66. Bermbach D, Maghsudi S, Hasenburg J,
Pfandzelter T. Towards auction-based
function placement in serverless fog
platforms In: 2020 IEEE International
Conference on Fog Computing (ICFC).
2020;25–31.

Available:https://doi.org/10.1109/ICFC4937
6.2020.00012

67. Garcia Lopez P, Sanchez-Artigas M, Paris
G, Barcelona Pons D, Ruiz Ollobarren A,
Arroyo Pinto. Comparison of faas
orchestration systems; D2018.

Available:https://doi.org/10.1109/ucc-
companion. 2018.00049.

68. Ichnowski J, Lee W, Murta V, Paradis S,
Alterovitz R, Gonzalez JE, Stoica I,
Goldberg K. Fog robotics algorithms for
distributed motion planning using lambda
serverless computing In: 2020 IEEE
International Conference on Robotics and
Automation (ICRA). 2020;4232–4238.
Available:https://doi.org/10.1109/ICRA409
45.2020.9196651

69. Gupta V, Carrano D, Yang Y, Shankar V,
Courtade T, Ramchandran K. Serverless
straggler mitigation using error-correcting
codes In: 2020 IEEE 40th International
Conference on Distributed Computing
Systems (ICDCS), 2020;135–145.
Available:https://doi.org/10.1109/ICDCS47
774.2020.00019

70. Lloyd W, Ramesh S, Chinthalapati S, Ly L,
Pallickara S. Serverless computing: An
investigation of factors influencing
microservice performance In: 2018 IEEE
International Conference on Cloud
Engineering (IC2E). 2018;159–169.

Available:https://doi.org/10.1109/IC2E.201
8.00039

71. Lloyd W, Vu M, Zhang B, David O,
Leavesley G. Improving application
migration to serverless computing
platforms: Latency mitigation with keep-
alive workloads In: 2018 IEEE/ACM
International Conference on Utility and
Cloud Computing Companion (UCC
Companion). 2018;195–200.

about:blank

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

207

Available:https://doi.org/10.1109/UCC-
Companion.2018.00056.

72. Al-Masri E, Diabate I, Jain R, Lam MHL,
Nathala SR. A serverless iot architecture
for smart waste management systems In:
2018 IEEE International Conference
on Industrial Internet (ICII). 2018;179–
180.

Available:https://doi.org/10.1109/ICII.2018.
00034

73. Cordingly R, Yu H, Hoang V, Perez D,
Foster D, Sadeghi Z, Hatchett R, Lloyd
WJ. Implications of programming language
selection for serverless data processing
pipelines In: 2020 IEEE Intl Conf on
Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on
Cloud and Big Data Computing, Intl Conf
on Cyber Science and Technology
Congress
(DASC/PiCom/CBDCom/CyberSciTech),
2020;704–711.
Available:https://doi.org/10.1109/DASC-
PICom-CBDCom-
CyberSciTech49142.2020.00120.

74. Cordingly R, Shu W, Lloyd WJ (2020)
Predicting performance and cost of
serverless computing functions with saaf
In: 2020 IEEE Intl Conf on Dependable,
Autonomic and Secure Computing, Intl
Conf on Pervasive Intelligence and
Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber
Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech).
2020;640–649.

Available:https://doi.org/10.1109/DASC-
PICom-CBDCom-
CyberSciTech49142.2020.00111.

75. Toader L, Uta A, Musaafir A, Iosup A.
Graphless: Toward serverless graph
processing In: 2019 18th International
Symposium on Parallel and Distributed
Computing (ISPDC). 2019;66–73.
Available:https://doi.org/10.1109/ISPDC.20
19.00012

76. van Eyk E, Iosup A. Addressing
performance challenges in serverless
computing In: ICT. OPEN; 2018.

77. Oakes E, Yang L, Houck K, Harter T,
Arpaci-Dusseau AC, Arpaci-Dusseau RH.
Pipsqueak: Lean lambdas with large
libraries In: 2017 IEEE 37th International
Conference on Distributed Computing

Systems Workshops (ICDCSW),
2017;395–400.
Available:https://doi.org/10.1109/ICDCSW.
2017.32

78. Aumala G, Boza E, Ortiz-Avilés L, Totoy G,
Abad C. Beyond load balancing: Package-
aware scheduling for serverless platforms
In: 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2019;282–291.
Available:https://doi.org/10.1109/CCGRID.
2019.00042

79. Manner J, Endreß M, Heckel T, Wirtz G.
Cold start influencing factors in function as
a service In: 2018 IEEE/ACM International
Conference on Utility and Cloud
Computing Companion (UCC Companion).
2018;181–188.

Available:https://doi.org/10.1109/UCC-
Companion.2018.00054

80. Winzinger S, Wirtz G. Model-based
analysis of serverless applications In: 2019
IEEE/ACM 11th International Workshop on
Modelling in Software Engineering (MiSE),
2019;82–88.
Available:https://doi.org/10.1109/MiSE.201
9.00020

81. Winzinger S, Wirtz G. Applicability of
coverage criteria for serverless
applications In: 2020 IEEE International
Conference on Service Oriented Systems
Engineering (SOSE). 2020;49–56.
Available:https://doi.org/10.1109/SOSE490
46.2020.00013

82. Gias AU, Casale G (2020) Cocoa: Cold
start aware capacity planning for function-
as-a-service platforms In: 2020 28th
International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS),
2020;1–8.
Available:https://doi.org/10.1109/MASCOT
S50786.2020.9285966

83. Chatley R, Allerton T. Nimbus: Improving
the developer experience for serverless
applications In: 2020 IEEE/ACM 42nd
International Conference on Software
Engineering: Companion Proceedings
(ICSE-Companion). 2020;85–88.

84. Vandebon J, Coutinho JGF, Luk W,
Nurvitadhi E, Naik M Slate: Managing
heterogeneous cloud functions In: 2020
IEEE 31st International Conference on
Application-specific Systems, Architectures
and Processors (ASAP). 2020;141–148.

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

208

Available:https://doi.org/10.1109/ASAP493
62.2020.00032

85. Kim J, Lee K. Functionbench: A suite of
workloads for serverless cloud function
service In: 2019 IEEE 12th International
Conference on Cloud Computing
(CLOUD). 2019;502–504.
Available:https://doi.org/10.1109/CLOUD.2
019.00091

86. Kim J, Park J, Lee K. Network resource
isolation in serverless cloud function
service In: 2019 IEEE 4th International
Workshops on Foundations and
Applications of Self* Systems (FAS*W),
2019;182–187.

Available:https://doi.org/10.1109/FAS-
W.2019.00051.

87. Park J, Kim H, Lee K (2020) Evaluating
concurrent executions of multiple function-
as-a-service runtimes with microvm In:
2020 IEEE 13th International Conference
on Cloud Computing (CLOUD).2020;532–
536.

Available:https://doi.org/10.1109/CLOUD4
9709.2020.00080

88. Wu M, Mi Z, Xia Y (2020) A survey on
serverless computing and its implications
for jointcloud computing In: 2020 IEEE
International Conference on Joint Cloud
Computing, 94–101.
https://doi.org/10.1109/JCC49151.2020.00
023.

89. Li Z, Chen Q, Xue S, Ma T, Yang Y, Song
Z, Guo M. Amoeba: Qos-awareness and
reduced resource usage of microservices
with serverless computing In: 2020 IEEE
International Parallel and Distributed
Processing Symposium (IPDPS),
2020;399–408.
Available:https://doi.org/10.1109/IPDPS47
924.2020.00049.

90. Liu J, Mi Z, Huang Z, Hua Z, Xia Y.
Hcloud: A serverless platform for jointcloud
computing In: 2020 IEEE International
Conference on Joint Cloud Computing.
2020;86–93.
Available:https://doi.org/10.1109/JCC4915
1.2020.00022.

91. Wang H, Niu D, Li B. Distributed machine
learning with a serverless architecture In:
IEEE INFOCOM 2019 - IEEE Conference
on Computer Communications.
2019;1288–1296.
Available:https://doi.org/10.1109/INFOCO
M.2019.8737391

92. Mahmoudi N, Khazaei H. Performance
modeling of serverless computing
platforms. IEEE Trans Cloud Comput:
2020;1–1.

Available:https://doi.org/10.1109/TCC.2020
.3033373

93. Wurster M, Breitenbücher U, Képes K,
Leymann F, Yussupov V. Modeling and
automated deployment of serverless
applications using tosca In: 2018 IEEE
11th Conference on Service-Oriented
Computing and Applications (SOCA),
2018;73–80.
Available:https://doi.org/10.1109/SOCA.20
18.00017

94. Yussupov V, Breitenbücher U, Hahn M,
Leymann F. Serverless parachutes:
Preparing chosen functionalities for
exceptional workloads In: 2019 IEEE 23rd
International Enterprise Distributed Object
Computing Conference (EDOC).
2019;226–235.
Available:https://doi.org/10.1109/EDOC.20
19.00035

95. Shahrad M, Fonseca R, Goiri I, Chaudhry
G, Batum P, Cooke J, Laureano E,
Tresness C, Russinovich M, Bianchini R
(2020) Serverless in the wild:
Characterizing and optimizing the
serverless workload at a large cloud
provider In: 2020 USENIX Annual
Technical Conference (USENIX ATC 20).
2020;205–218.

96. Das A, Imai S, Patterson S, Wittie MP.
Performance optimization for edge-cloud
serverless platforms via dynamic task
placement In: 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud
and Internet Computing (CCGRID).
2020;41–50.
Available:https://doi.org/10.1109/CCGrid49
817.2020.00-89

97. Das A, Leaf A, Varela CA, Patterson S
(2020) Skedulix: Hybrid cloud scheduling
for cost-efficient execution of serverless
applications In: 2020 IEEE 13th
International Conference on Cloud
Computing (CLOUD). 2020;609–618.
Available:https://doi.org/10.1109/CLOUD4
9709.2020.00090.

98. Lin W, Krintz C, Wolski R, Zhang M, Cai X,
Li T, Xu W. Tracking causal order in aws
lambda applications In: 2018 IEEE
International Conference on Cloud
Engineering (IC2E). 2018;50–60.

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

209

Available:https://doi.org/10.1109/IC2E.201
8.00027

99. George G, Bakir F, Wolski R, Krintz C
(2020) Nanolambda: Implementing
functions as a service at all resource
scales for the internet of things In:
IEEE/ACM Symposium on Edge
Computing (SEC). 2020;220–231.

Available:https://doi.org/10.1109/SEC5001
2.2020.00035

100. Zhang M, Krintz C, Wolski R (2020) Stoic:
Serverless teleoperable hybrid cloud for
machine learning applications on edge
device In: 2020 IEEE International
Conference on Pervasive Computing and
Communications Workshops (PerCom
Workshops), 1–6.
https://doi.org/10.1109/PerComWorkshops
48775.2020.9156239.

101. Elgamal T. Costless: Optimizing cost of
serverless computing through function
fusion and placement In: 2018 IEEE/ACM
Symposium on Edge Computing (SEC),
2018;300–312.
https://doi.org/10.1109/SEC.2018.00029.

102. Malawski M, Gajek A, Zima A, Balis B,
Figiela K. Serverless execution of scientific
workflows: Experiments with hyperflow,
aws lambda and google cloud functions.
Futur Gener Comput Syst: 2017;1–13.

Available:https://doi.org/10.1016/j.future.20
17.10.029.

103. Moczurad P, Malawski M (2018) Visual-
textual framework for serverless
computation: A luna language approach In:
2018 IEEE/ACM International Conference
on Utility and Cloud Computing
Companion (UCC Companion). 2018;169–
74.

Available:https://doi.org/10.1109/UCC-
Companion. 2018.00052.

104. Akhtar N, Raza A, Ishakian V, Matta I
Cose: Configuring serverless functions
using statistical learning In: IEEE
INFOCOM 2020 - IEEE Conference on
Computer Communications. 2020;129–38.

Available:https://doi.org/10.1109/INFOCO
M41043.2020.9155363

105. Balla D, Maliosz M, Simon C (2020) Open
source faas performance aspects In: 43rd
International Conference on
Telecommunications and Signal
Processing (TSP). 2020;358–364.
Available:https://doi.org/10.1109/TSP4954
8.2020.9163456

106. Pelle I, Czentye J, Dóka J, Kern A, Gerő
BP, Sonkoly B. Operating latency sensitive
applications on public serverless edge
cloud platforms. IEEE Internet Things J.
2020;1–1.
Available:https://doi.org/10.1109/JIOT.202
0.3042428

107. Carver B, Zhang J, Wang A, Cheng Y. In
search of a fast and efficient serverless
dag engine In: 2019 IEEE/ACM Fourth
International Parallel Data Systems
Workshop (PDSW). 2019;1–10.

Available:https://doi.org/10.1109/PDSW49
588.2019.00005

108. Gadepalli PK, Peach G, Cherkasova L,
Aitken R, Parmer G. Challenges and
opportunities for efficient serverless
computing at the edge In: 2019 38th
Symposium on Reliable Distributed
Systems (SRDS), 2019;261–2615.

Available:https://doi.org/10.1109/SRDS473
63.2019.00036

109. Somu N, Daw N, Bellur U, Kulkarni P.
Panopticon: A comprehensive
benchmarking tool for serverless
applications In: 2020 International
Conference on COMmunication Systems
NETworkS (COMSNETS). 2020;144–151.
Available:https://doi.org/10.1109/COMSNE
TS48256.2020.9027346

110. Kim YK, HoseinyFarahabady MR, Lee YC,
Zomaya AY, Jurdak R. Dynamic control of
cpu usage in a lambda platform In: 2018
IEEE International Conference on Cluster
Computing (CLUSTER). 2018;234–244.

Available:https://doi.org/10.1109/CLUSTE
R.2018.00041

111. Suresh A, Somashekar G, Varadarajan A,
Kakarla VR, Upadhyay H, Gandhi A (2020)
Ensure: Efficient scheduling and
autonomous resource management in
serverless environments In: 2020 IEEE
International Conference on Autonomic
Computing and Self-Organizing Systems
(ACSOS). 2020;1–10.

Available:https://doi.org/10.1109/ACSOS4
9614.2020.00020

112. Kim Y, Lin J (2018) Serverless data
analytics with flint In: 2018 IEEE 11th
International Conference on Cloud
Computing (CLOUD), 2018;451–455.
Available:https://doi.org/10.1109/CLOUD.2
018.00063

113. Parres-Peredo A, Piza-Davila I, Cervantes
F (2019) Building and evaluating user

Cinar; Asian J. Res. Com. Sci., vol. 16, no. 4, pp. 194-210, 2023; Article no.AJRCOS.107654

210

network profiles for cybersecurity using
serverless architecture In: 2019 42nd
International Conference on
Telecommunications and Signal
Processing (TSP). 2019;164–167.

Available:https://doi.org/10.1109/TSP.2019
.8768825

114. Deese A. Implementation of unsupervised
k-means clustering algorithm within
amazon web services lambda In: 2018
18th IEEE/ACM International Symposium
on Cluster, Cloud and
Grid Computing (CCGRID). 2018;
626–632.

Available:https://doi.org/10.1109/CCGRID.
2018.00093

115. Kritikos K, Skrzypek P. A review of
serverless frameworks In: 2018 IEEE/ACM
International Conference on Utility and
Cloud Computing Companion (UCC
Companion). 2018;161–168.

Available:https://doi.org/10.1109/UCC-
Companion.2018.00051

116. Kritikos K, Skrzypek P (2019) Simulation-
as-a-service with serverless computing In:
2019 IEEE World Congress on Services
(SERVICES). 2019;2642-939X:200–205.
Available:https://doi.org/10.1109/SERVICE
S.2019.00056

117. Christoforou A, Andreou AS. An effective
resource management approach in a faas
environment In: ESSCA@UCC. 2018;2–8.

© 2023 Cinar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/107654

about:blank

