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Abstract 

 
Aim: In our study, we investigated, based on the premise of a long wavelength, how Hall's theory affected 

the peristaltic pumping of a fluid with a hyperbolic tangent within an inclined planar channel, and how both 

affected each other. 

Study Design: Abstract, introduction, Statement, Analytical Solution, Results and Discussion, and 

conclusion. 

Methodology: The intra-uterine fluid motion with tiny particles in a non-pregnant uterus is one of the many 

applications of the current physical problem, and this fluid motion condition is crucial for analysing the 

motion of the embryo in a uterus. Perturbation-oriented numerical research has been carried out in the current 

study to characterise the properties of velocity and axial pressure gradient in an inclined channel under Hall 

effect on the peristaltic flow of a Hyperbolic tangent because of these real-world applications. Under low 
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Reynolds number and long-wavelength approximations, the current physical model yields the governing two-

dimensional coupled nonlinear flow equations. For different values of the physical parameters, a suitable 

equation for the stream function is derived, and a regular perturbation scheme is used to produce the 

numerical solutions in terms of pressure rise and velocity. Weissenberg number, power-law index, Hall 

parameter, Hartmann number, and amplitude ratio relationships are examined in graphs along with their 

effects on the axial pressure gradient and time-averaged volume flow rate. According to the findings of this 

study, whereas the axial pressure gradient and time-averaged flow rate in the pumping region enhance with 

rising values of the Weissenberg, Hartmann, Reynolds, angle of inclination, and amplitude ratio, they 

diminish with enhances in the power-law index, Hall parameter, and Froude number. Hyperbolic tangent 

fluid has been discovered to require less pumping than Newtonian fluid. 

 

 
Keywords: Hall effect; peristaltic flow; incline channel;  hyperbolic tangent fluid. 

 

1 Introduction 
 

Peristaltic transport is a form of fluid transportation that involves a gradual wave of area contraction or 

expansion down the length of a distensible tube transporting fluid. Peristaltic transport frequently occurs in a 

range of biological systems, such as the oesophagus, intra-urinary fluid circulation, small blood vessel 

circulation, and the flow of countless distinct glandular ducts. Many theoretical and practical studies have been 

done to understand peristalsis using quick changes in geometry and realistic assumptions. Many living 

organisms use peristaltic fluid flow, including the heart-lung machine, trapping phenomena, pumping, dialysis 

equipment, reflux, food passing through the oesophagus, fluid motion through lymphatic vessels, and cilia 

movement. These physical processes are studied by considering well-known non-Newtonian fluid flow models. 

However, in this direction, the hyperbolic tangent fluid flow model is one of the most significant liquid models 

in the class of non-Newtonian liquids. From the experimental point of view, it is noticed that the tangent 

hyperbolic flow model assumes the shear thinning behaviour very exactly. Hyperbolic tangent liquids are mostly 

used in laboratory experiments, R&D industries, medicine, and engineering fields for various purposes. 

Following are a few examples of hyperbolic tangent fluid in the field of biology and industry: blood, solutions, 

whipped cream, ketchup, polymers, melts, nail polish and paints. There are significant practical ramifications for 

the special group of liquids that have a viscosity that is affected by shear stress or flow rate. The majority of 

non-Newtonian fluids, including polymers, have viscosities that are nonlinearly declining functions of the 

generalised shear rate. Shear-thinning behaviour is what is meant by this. A hyperbolic tangent fluid is such a 

substance (Ai and Vafai, [1]). Nadeem and Akram [2] first investigated the tangent hyperbolic fluid model and 

found that the narrow part of the channel requires a large pressure gradient, also in the narrow part the pressure 

gradient decreases with the increase in Weissenberg number (We), and channel width (d). Noreen et el. [3] 

investigated the Effects of slip and induced magnetic field on the peristaltic flow of pseudoplastic fluid. Prakash 

et el. [4] studied the effects of the peristaltic flow of a third order fluid in the tapered asymmetric channel are 

analyzed under longwave length and low Reynolds number situations  Akbar et al. [5] investigated The 

peristaltic flow of a magnetohydrodynamic (MHD) Tangent hyperbolic fluid in an inclined asymmetric channel 

and the impact of various pertinent parameters is plotted and discussed, and the most interesting mechanism of 

peristalsis is trapping, which is also taken into account by drawing a stream of all the physical parameters. 

Prabhakaran et al. [6] the peristaltic transport of a non-Newtonian fourth grade fluid in a channel  between two 

porous beds with suction and injection is investigated. Eldabe et al. [7] explored the influence of hall, heat, and 

mass transfer on the peristaltic flow of MHD third order fluid under long-wavelength and low Reynolds number 

approximation. Abbas et al. [8] Three dimensional peristaltic flow of hyperbolic tangent fluid in a non-uniform 

channel has been investigated and found that the magnitude of the velocity is maximum in the canter of the 

channel whereas it is minimum near the walls. Saravana et al. [9] Heat and mass transfer are used to investigate 

the effects of elastic wall properties on the peristaltic transport of a conducting hyperbolic tangent fluid in a non-

uniform channel. Then, the trapping phenomenon is examined, and it is found that the size of the trapping bolus 

grows as the power law index of the hyperbolic tangent fluid increases. Subbanarasimhudu and Subba Reddy 

[10] investigated the effect of Hall on the peristaltic pumping of a hyperbolic tangent fluid in a planar channel 

under the assumption of long wavelength. By selecting the Weissenberg number We = 0, the power-law index n 

= 0, and the Hartmann number M = 0, they were able to assess the results for Newtonian fluid. Sucharitha et al. 

[11] explored the effects of a magnetic field and slip on the convective peristaltic transport of a Bingham fluid in 

an inclined nonuniform porous channel with flexible walls and observed that the velocity increases with 

increasing slip parameter values and decreases with decreasing slip parameter values, whereas the temperature 
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and heat transfer coefficient exhibits the opposite behaviour, with the velocity, temperature, and heat transfer 

coefficients decreasing as the magnetic and permeability parameters increase. The channel's incline boosts both 

velocity and temperature.  Selvi and Srinivas [12] investigated how elasticity affected the peristaltic movement 

of Herschel-Bulkley fluid in a tube with a non-uniform cross-section. The findings indicated that the yield stress 

and fluid behaviour index have a significant impact on the flux variation of Herschel-Bulkley fluid in a non-

uniform elastic tube, and An analysis was done on the influence of elastic factors on flow variation. 

 

We know from biochemistry that positive or negatively charged molecules combine to create cells. As a result, 

the interplay between molecules and their orientation may undergo substantial changes when these magnetic 

fields are applied to living things. stimulation of the kidney projection region and upper ureter with remote-

controlled impulse magnetic field (IMF) was experimentally studied by Li et al. [13] It was found that IMF 

activates impulse activity of ureteral smooth muscles in 100% of cases. Hayat et al. [14] first investigated the 

peristaltic transport of an incompressible, electrically conducting Maxwell fluid in a planar channel. Under a 

zero Reynolds number and long wavelength approximation, the MHD peristaltic flow of a hyperbolic tangent 

fluid model in a vertical asymmetric channel was investigated. 

 

In order to analyse blood flow, such as using a catheter or drug delivery, magnetic fields are used Akram and 

Nadeem [15]. Devaki et al. [16] deal with the analytical investigation of the peristaltic motion of ferromagnetic 

fluids through a vertical slot with mixed convection. Chakradhar et al. [17] The peristaltic transport of a viscous 

fluid in an exceedingly porous channel with suction and injection by using the Galerkin method studied. Vidya 

et al. [18] found that the regulating of velocity due to magnetic constants is observed while the thermal 

determination of particles displays an enhancing tendency. The consequences of Hall as well as slip taking place 

on the peristaltic stream of a Jeffrey solution through a permeable middling within an inclined 2D strait below 

the extensive wavelength estimation are explored by Gangavathi et al. [19]. Investigating the rheological 

characteristics of biological fluids such as saliva, blood, cerebrovascular fluids, inside cells, and interstitial 

fluids requires an understanding of Ree-Eyring non-Newtonian fluid peristalsis. Ajithkumar et al. [20] explored 

the cross-diffusive magnetohydrodynamic peristaltic transport of a Ree–Eyring fluid conveying tiny particles 

through a flexible porous channel under the influence of activation energy. 

 

The current review of the literature showed that the Hall effect's influence on the peristaltic flow of a fluid with 

a hyperbolic tangent in an inclined channel has not yet been tried. This was accomplished using the long 

wavelength supposition. Additionally, this paper uses the perturbation strategy to generate semi-numerical 

solutions in an inclined channel with peristaltic flow of a Hyperbolic tangent. The expressions for the velocity 

and axial pressure gradient are obtained by using the perturbation technique. The flow patterns are represented 

in terms of the Weissenberg number, power-law index, Hall parameter, Hartmann number, and amplitude ratio 

on the axial pressure gradient and time-averaged volume flow rate. The relationships between the Weissenberg 

number, power-law index, Hall parameter, Hartmann number, and amplitude ratio and how they impact the axial 

pressure gradient and time-averaged volume flow rate are examined using graphs. 

 

2 Statement 
 

We explore the peristaltic flow of a fluid with a hyperbolic tangent in a symmetric, two-dimensional channel 

with width 2a in the presence of a magnetic field. The flow is produced by sinusoidal wave trains propagating 

along the channel walls at a constant speed. The transverse direction of the flow is subjected to a constant 

magnetic field 0B . The resultant magnetic field  

 

is disregarded due to the perception that the magnetic Reynolds quantity is negligible. Fig. 1. precisely 

represented the physical characteristics of fluid flow along a hyperbolic tangent. Considering the 

aforementioned flow hypotheses, the current flow mechanism is defined as follows: [2,5,8,10] 

 

2
( , ) cos ( )Y H X t a b X ct




                                        (1) 

 

where X, Y are the rectangular coordinates,   is the wavelength, and b is the wave's amplitude. X measured 

perpendicular to X and parallel to the channel's axis.  
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In the lab frame ( , )X Y , the flow is erratic. The boundary form, however, is stationary in a coordinate system 

moving at the propagation velocity c. 

 

The equation for the conversion of the fixed frame to the wave frame is 

 

, , ,x X ct y Y u U c v V                                                        (2) 

 

where the wave and fixed frames' respective velocity components, ( , )u v  and ( , )U V , are given.  

 

 
 

Fig. 1. The channel's physical model [10] 

 

The computation process for switching between the fixed frame to a wave frame is as follows: 

 

A hyperbolic tangent fluid's constitutive equation is [2,5,8,10] 

 

   0 tanh
n

      
     
 

                                                               (3) 

  consists of the following 

 

1 1

2 2
ij ji

i j

                                                        (4) 

 

Consequently, equation (3) has the following structure: For 0   and 1  ,

      0 0 01 1 1 1
n n

n                                                                                  (5) 

 

For 0   and 0n  , the aforementioned model is reduced to Newtonian. 

 

In the wave frame of reference, the equations regulating the flow are: [2,5,8,10] 

 

0
u v

x y

 
 

 
                                       (6) 
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 
2

0

2
( ) sin

1

yxxx Bu u p
u v mv u c g

x y x x y m

 
  

    
         

      
                          (7) 

 

  
2

0

2
( ) cos

1

xy yy Bv u p
u v v m u c g

x y y x y m

  
  

    
         

      
                      (8) 

 

where 0B =  the intensity of the magnetic field,  = density,  = electrical conductivity, and m = Hall 

parameter. 

 

Dimensional boundary conditions include the following: 

 

at y H , u c                                                                  (9) 

 

at 0y   , 0
u

y





                                  (10) 

 

including the non-dimensional variables mentioned: [2,5,8,10]
2

0

,  , ,  ,  ,  ,
pax y u v a b

x y u v p
a c c c a

 
    

        

 

0 0 0

,  ,  ,  ,  ,xx yyxx xy xy yy

H ct a a
h t

a c c c


     

   
      

 
2

0

Re ,  ,  , ,
ac c a q c

We q Fr
a c ac ag

 





                                                        (11) 

 

into the equations (6) - (8), following the bars being dropped, reduce to 

 

0
u v

x y

 
 

 
                                     (12) 

 

  
2

2

2

Re
Re 1 sin

1

xyxxu u p M
u v m v u

x y x x y m Fr


   

    
         

      
 (13) 

 

  
2

3 2

2

Re
Re 1 cos

1

xy yyv v p M
u v m u v

x y y y y m Fr

  
     

    
         

      
 (14) 

 

Were,  2 1 1xx

u
n We

x
 


      

,   21 1xy

u v
n We

y x
  

  
          

,  

 

 2 1 1yy

v
n We

y
  


      

, 

1
2 22 2

2 2 22 2
u u v v

x y x y
   

        
        

         
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And Hartmann number 
0

0

M aB



  . 

 

The equations (13) and (14) under the lubrication approach become simpler by ignoring the terms of order   

and Re. 

 

 
2

2

Re
1 1 1 sin

1

p u u M
n We u

x y y y m Fr


       
        

        

                               (15)  

 

0
p

y





                        (16) 

 

Equations (15) and (16) allow us to derive 

 

   
22 2

2 2

Re
1 1 sin

1

dp u u M
n nWe u

dx y y y m Fr


    
       

      

                              (17) 

 

In the wave frame, the equivalent non-dimensional boundary conditions are provided by 

 

1u       at  1 cos 2y h x     (18) 

 

0
u

y





   at 0y                                   (19) 

 

In a wave frame of reference, the volume flow rate is calculated  using the simple formula 

 

0

h

q udy                                                                  (20) 

 

 The laboratory's instantaneous flow frame ( , )Q X t  is 

 

0 0

( , ) ( 1)

h h

Q X t UdY u dy q h                                                      (21) 

 

For the time-averaged volume flow rate of the peristaltic wave over a period T, expressed as: 

 

0

1
1

T

Q Qdt q
T

                                                    (22) 

 

3 Analytical Solution 
 

Since equation (17) is a non-linear differential equation, it is not possible to obtain a closed-form solution. 

Therefore, we employ regular perturbation to find the solution. 
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For the perturbation solution, we expand ,
dp

u
dx

 , q as follows  

 

 2

0 1u u Weu O We            (23) 

 

 20 1
dp dpdp

We O We
dx dx dx

            (24) 

 

 2

0 1q q We q O We            (25) 

 

Substituting these equations into the equations (17) - (19), we obtain 

 

3.1 System of order 
0We  

 

   
2 2

0 0
02 2

Re
1 1 sin

1

dp u M
n u

dx y m Fr



    

 
                                (26)  

 

and the respective boundary conditions are 

 

0 1u     at  y h                                           (27) 

 

0 0
u

y





 at 0y                                      (28) 

 

3.2 System of order 
1We  

 

 
22 2

1 1
12 2

1
1

oudp u M
n n u

dx y y y m

   
     

      

                    (29) 

 

and the respective boundary conditions are 

 

1 0u      at   y h                                         (30) 

 

1 0
u

y





  at  0y                                   (31) 

 

3.3 Solution for the system of order 
0We  

 

To solve equation (26), we use the boundary conditions (27) and (28). 

 

 
0

0 2

1 Re cosh
sin 1 1

1 cosh

dp y
u

n dx Fr h




 

  
      

    
                                              (32) 

 

where   2/ 1 (1 )M n m     . 



 

 
 

 

Maheshbabu and Mohan; Asian Res. J. Math., vol. 19, no. 10, pp. 75-95, 2023; Article no.ARJOM.105036 
 

 

 
82 

 

The volume flow rate 0q  is given by 

 

 
0

0 3

1 Re sinh cosh
sin

1 cosh

dp h h h
q h

n dx Fr h

  


 

  
     

    
                              (33)  

 

From equation (3.11), we have 

 

   

 

3

00
1 cosh Re

sin
sinh cosh

q h n hdp

dx h h h Fr

 


  

 
 


                                              (34)  

 

3.4 Solution for the system of order 
1We  

 

Equation (32) is substituted for equation (29), equation (29) is solved, equation (29) is used to apply the 

boundary conditions (30) and (31), and the result is  

 

   

 

 

2

0

1
1 32

Re
sin

sinh 2 2sinh cosh1 cosh
1

1 cosh 3 2sinh sinh 2 cosh1 cosh

dp
h h ydp y n dx Fr

u
n dx h y y hn h


  

     

 
           

         

    (35) 

 

The volume flow rate 1q  is given by  

 

 

2

01
1 13

1 sinh cosh Re
sin

1 cosh

dpdp h h h
q A

n dx h dx Fr

  


 

   
    

   
                              (36)  

 

where 

 
1 34 3

4 3cosh 2sinh 2 sinh cosh cosh 2

6 1 cosh

h h h h h
A n

n h

    

 

   
 
  

. 

 

From equations (36) and (34), we have    

 

 

 

23

1 01
2

1 cosh Re
sin

sinh cosh

q n h dpdp
A

dx h h h dx Fr

 


  

  
   

  
                               (37)  

 

where 

   
2 2 2

4 3cosh 2sinh 2 sinh cosh cosh 2

6 1 cosh sinh cosh

h h h h h
A n

n h h h h

    

    

   
 
   

. 

 

Equations (24) are changed by substituting equations (34) and (37), using 

 

relation 1oq q Weq   and neglecting terms greater than  O We , we get 

 

   

 
 

 

23 5

3

3

1 cosh Re
sin

sinh cosh 6 sinh cosh

q h n h q hWeAdp

dx h h h Frh h h

  


     

  
  

 
 (38) 
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where 3 4 3cosh 2sinh 2 sinh cosh cosh 2A h h h h h        . 

 

As follows is the definition of the dimensionless pressure increase per wave frame wavelength: 
 

1

0

dp
p dx

dx
                                        (39) 

 

It is feasible to confirm and establish the veracity of the current peristaltic flow model by comparing the current 

solutions to the prior outcomes of Subbanarasimhudu and Subba Reddy (12) with 0  . 
 

4 Results and Discussion  
 

Fig. 2. describes the variation of the axial pressure gradient (
dp

dx
) with Weissenberg number ( We ) for 

0.5n  , 0.3m  , 1M  , 0.5  , Re 5 , 
6


  , 2Fr  and 1Q   . This is what is noticed, 

Increasing 
dp

dx
 causes We  to increase 

 

The relationship between the power-law index ( n ) and the axial pressure gradient (
dp

dx
 ) for 0.01We  , 

0.3m  , 1M  , 0.5  , Re 5 , 
6


  , 2Fr  and 1Q    is shown in Fig. 3. It has been noted 

that, With n  , 
dp

dx
 falls off.  

 

Fig. 4 displays the variation of the axial pressure gradient (
dp

dx
) with the Hall parameter  

( m ) for 0.5n  , 0.01We  , 1M  , 0.5  , Re 5 , 
6


  , 2Fr  and 1Q   . The  

 

finding is, as m  increases, 
dp

dx
 lowers. 

 

Changes in the axial pressure gradient (
dp

dx
 ) with Hartmann number ( M )  for 0.5n  , 0.3m  , 

0.01We  , 0.5  , Re 5 , 
6


  , 2Fr  and 1Q    is seen in Fig 5. It has been observed that 

raising  M raises 
dp

dx
 .    

 

Fig. 6. illustrates the variation of the axial pressure gradient (
dp

dx
 ) with Reynolds number ( Re ) for 0.5n  , 

0.01We  , 1M  , 0.5  , 0.3m  , 
6


  , 2Fr  and 1Q   . The finding when rises Re , 

dp

dx
 

rises as well. 
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The relationship between the Froude number ( Fr )  and the axial pressure gradient (
dp

dx
 ) for 0.5n  , 

0.3m  , 0.01We  , 0.5  , Re 5 , 
6


  , 1M  and 1Q    is displayed in Fig. 7. It has been 

found that raising Fr   results in a decrease in 
dp

dx
. 

 

Fig. 8. demonstrates the variation of the axial pressure gradient (
dp

dx
) with inclination angle ( ) for 0.5n  , 

0.3m  , 1M  , 0.01We  , Re 5 , 0.5  , 2Fr  and 1Q   . It is discovered that as   grows, 

so does 
dp

dx
.  

 

The relationship between the amplitude ratio ( ) and the axial pressure gradient (
dp

dx
 ) for 0.5n  , 0.3m 

, 1M  , 0.01We  , Re 5 , 
6


  , 2Fr  and 1Q    is depicted in Fig. 9. As the amplitude ratio 

  increases, it is observed that the axial pressure gradient 
dp

dx
 also increases. 

 

Fig. 10 shows how the pressure rise p   changes depending on the Weissenberg number  

 

(We ) and the time-averaged volume flow rate ( Q ) with 0.5n  , 0.3m  , 1M  , Re 5 , 
6


  , 

2Fr  and 0.5  . In regions of pumping  0p  , free pumping  0p   , and co-pumping 

 0p  , it is seen that  Q  rises with rising We .   

 

Comparison of the pressure rise p  variation with time-averaged flow rates ( Q ) for various power-law index (

n ) values with 0.01We  , 0.3m  , 1M  , Re 5 , 
6


  , 2Fr  and 0.5   is portrayed in  Fig. 

11. It is noted that, Q  decreases with an increase n  in both the pumping and free pumping regions, while it 

increases with an increase n  in the co pumping region.   Notably, Q   reduces with an increase n   in the 

pumping and free pumping zones, whereas it increases with an increase in n  the co-pumping region.    
 

Based on the time-averaged flow rate ( Q ) and different Hall parameter ( m ) values, Fig. 12. shows how 

pressure rise p  changes with  0.5n  , 0.01We  , 1M  , Re 5 , 
6


  , 2Fr  and 0.5  . In 

the pumping region, Q   is observed to decrease with an increase m , whereas, in the regions of free pumping 

and co-pumping, it increases with an increase m .     
 

 with 0.5n  , 0.3m  , 0.01We  , Re 5 , 
6


  , 2Fr  and 0.5   The variation of the pressure 

rise p  with the time-averaged flow rate ( Q ) for different values of Hartmann number ( M ) is shown in Fig. 
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13. As M  increases in the pumping region, the time-averaged flow rate Q  is observed to grow, while in the 

free pumping and co pumping regions, it decreases. 
 

As depicted in Fig. 14, the pressure rise p  varies with Reynolds number  ( Re ) and the time-averaged flow 

rate  ( Q ) for different values of 0.5n  , 0.01We  , 1M  , 0.3m  , 
6


  , 2Fr  and 0.5  . In 

all pumping, free pumping, and co-pumping areas, it is discovered that Q rises as R rises. 
 

For different Froude number Fr  values with 0.5n  , 0.3m  , 0.01We  , Re 5 , 
6


  , 1M  and 

0.5  , the relationship between the pressure rise p   and the time-averaged flow rate ( Q ) is demonstrated 

in Fig. 15. In all regions of pumping, free pumping, and co-pumping, it is seen that Q  falls off as Fr  rises.  

 

For varied values of inclination angle ( ), with 0.5n  , 0.01We  , 1M  , 0.3m  , Re 5 , 2Fr 

and 0.5  , Fig. 16 illustrates the fluctuation of the pressure rise p  with the time-averaged flow rate ( Q ). 

It has been found that Q  rises along with rising   in all regions of pumping, free pumping, and co-pumping. 

 

Fig. 17. depicts the amplitude ratio ( ), which varies for different values with 0.5n  , 0.3m  , 1M  , 

Re 5 , 
6


  , 2Fr   and 0.01We  , for the pressure rise p  and the time-averaged flow rate ( Q ). In 

the regions of pumping and free pumping, Q   is seen to increase as      increases, whereas in the region of co-

pumping for chosen  0p  ,  Q   is seen to decrease as      increases. 

 

 
 

Fig. 2. The variation of the axial pressure gradient 
dp

dx
 with We  for 0.5n  , 0.3m  , 1M  , 

0.5  , Re 5 , 
6


  , 2Fr  and 1Q    
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5 Conclusions 
 

This study examines the impact of Hall on the peristaltic pumping of a fluid with a hyperbolic tangent in an 

inclined planar channel under the long wavelength assumption. Using the perturbation technique, the 

expressions for the velocity and axial pressure gradient are obtained. 

 

It is found that the axial pressure gradient and time-averaged flow rate in the pumping region increase with 

increasing the Weissenberg number We , the Hartmann number M , the Reynolds number Re , the angle of 

inclination   , and the amplitude ratio  , while they decrease with increasing power-law index n , Hall 

parameter m  and the Froude number Fr .  

 

When compared to Newtonian fluid, it has been found that hyperbolic tangent fluid requires less pumping.  

 

By way of conclusion, we can say that this work will be very beneficial for authors who wish to continue it in 

the future by incorporating various physical aspects, slip circumstances, convective boundary circumstances, 

fluctuating fluid characteristics, etc. 
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