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Abstract: This work deals with a coupled system of wave with past history effective just in one of the
equations. We show that the dissipation given by the memory effect is not strong enough to produce
exponential decay. On the other hand, we show that the solution of this system decays polynomially with
rate t−

1
2 . Moreover by recent result due to A. Borichev and Y. Tomilov, we show that the rate is optimal. To

the best of our knowledge, there is no result for optimal rate of polynomial decay for coupled wave systems
with memory in the previous literature.
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1. Introduction

I n this paper we consider a coupled system of wave with past history given by

utt − ∆u +
∫ ∞

0
g(s)∆u(t− s) ds + αv = 0 in Ω× (0, ∞), (1)

vtt − ∆v + αu = 0 in Ω× (0, ∞), (2)

u = v = 0 on Γ× (0, ∞), (3)

(u(x, 0), v(x, 0)) = (u0(x), v0(x)), in Ω, (4)

(ut(x, 0), vt(x, 0)) = (u1(x), v1(x)), in Ω, (5)

where Ω is an open bounded set of Rn with smooth boundary Γ.
The above model can be used to describe the evolution of a system consisting of two elastic membranes

subject to an elastic force that attracts one membrane to the other with coefficient α > 0. Note that the term∫ ∞
0 g(s)∆u(t− s) ds, acts on the first membrane as a stabilizer.

Many interesting physical phenomena such as viscoelasticity, hereditary polarization in dielectrics,
population dynamics or heat flow in real conductors, to name some, are modeled by differential equations
which are influenced by the past values of one or more variables in play so-called equations with memory. The
main problem in the analysis of equations of this kind lies in their nonlocal character, due to the presence of
the memory term given by the time convolution of the unknown function against a suitable memory kernel.
The memory term may can produce loss of exponential stability for the system, [1]. The history of nonlocal
problems with integral conditions for partial differential equations is recent and goes back to [2]. In [3], a
review of the progress in the nonlocal models with integral type was given with many discussions related to
physical justifications, advantages, and numerical applications.

Coupled wave system has been considered in various contexts. In [4] both wave equations are damped
on the boundary and the coupling is effected by compact operator and exponential stability is obtained
when the boundary damping is linear. Boundary damping is also considered in [5,6]. On exact boundary
controllability for linearly coupled wave equations, we refer [7]. Uniform exponential stability was given
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in [8] for wave equations coupled in parallel with coupling distributed springs and viscous dampers due to
different boundary conditions and wave propagation speeds.

For weak damping acting only one equation, the optimal polynomial decay to coupled wave equations
was studied in [9]. In [10], it was proved that the energy of associated coupled system weakly dissipative
decays polynomially with explicit polynomial decay rates for sufficiently smooth solutions. In [11], under new
compatibility assumptions, the authors proved polynomial decay for the energy of solutions and optimized
previous results by interpolation techniques introduced in [10].

On the asymptotic behavior of the coupled system (1)-(5) we refer the work [12] where the authors proved
by method introduced in [11] that the solution has a polynomial rate of decay. The central question of this work
is to analyze what is the best decay rate of the system (1)-(5). In this direction, we prove that the associated
semigroup decays with rate t−

1
2 . Moreover we show that the rate is optimal. For what we know in the literature

the optimal rate of polynomial decay for coupled wave systems with memory was not previously considered.
The mathematical structure of the paper is organized as follows: In Section 2 we discuss the existence,

regularity and uniqueness of strong solutions of the system (1)-(5) by semigroup technique, see [13]. In Section
3 we study the lack of exponential decay using Prüss’s results [14]. Finally in section 4 we show that the system
is polynomially stable giving an optimal decay rate. That is, this rate cannot be improved. For this we use the
recent result due to Borichev and Tomilov [15].

2. Semigroup Setup

Following the approach of Dafermos [16] and Fabrizio and Morro [17], we consider η = ηt(s), the relative
history of u, defined as

η = ηt(s) = u(t)− u(t− s). (6)

Hence, putting

β0 = 1−
∫ ∞

0
g(s) ds > 0,

the system (1)-(5) turns into the system

utt − β0∆u−
∫ ∞

0
g(τ)∆η(·, τ) dτ + αv = 0 in Ω× (0, ∞), (7)

vtt − ∆v + αu = 0 in Ω× (0, ∞), (8)

ηt + ηs − ut = 0, in Ω× (0, ∞) (9)

u = v = ηt(s) = 0 on Γ× (0, ∞), ∀s ≥ 0 (10)

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) in Ω, (11)

(ut(x, 0), vt(x, 0) = (u1(x), v1(x)) in Ω, (12)

η0(·, s) = u0(·, 0)− u0(·,−s), Ω× (∞), (13)

where the third equation is obtained differentiating (6) with respect to s and the condition (13) means that the
history is considered as an initial value.

We study the existence and uniqueness of solutions for the system (7)-(13) using the semigroup
techniques. As in [18], we use the following hypotheses on g

g ∈ C1(R+) ∩ L1(R+), g(t) > 0, ∃ q0, q1 > 0 : −q0g(t) ≤ g′(t) ≤ −q1g(t), ∀t ≥ 0. (14)

In view of (14), let L2
g(R+; H1

0(Ω)) be the Hilbert space of H1
0(Ω)-value functions on R+, endowed with

the inner product

( f , h)L2
g(R+ ,H1

0 (Ω)) =
∫ ∞

0
g(s)

∫
Ω
∇ f (x, s) · ∇h(x, s) dx ds.

To give an accurate formulation of the evolution problem we introduce the product Hilbert spaces

H = H1
0(Ω)× L2(Ω)× H1

0(Ω)× L2(Ω)× L2
g(R+; H1

0(Ω))
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endowed with the following inner product

〈U, V〉 = β0

∫
Ω
∇u1 · ∇v1 dx +

∫
Ω

u2v2 dx +
∫

Ω
∇u3 · ∇v3 dx +

∫
Ω

u4v4 dx

+α
∫

Ω
(u1v3 + u3v1) dx +

∫ ∞

0
g(s)

∫
Ω
∇u5(x, s) · ∇v5(x, s) dx ds, (15)

where U = (u1, u2, u3, u4, u5)
T , V = (v1, v2, v3, v4, v5)

T ∈ H.
Let U = (u, ut, v, vt, η)T be and we define the operator A : D(A) ⊂ H → H given by

A =


0 I 0 0 0

β0∆ 0 −αI 0 T
0 0 0 I 0
−αI 0 ∆ 0 0

0 I 0 0 −(·)s


with domain

D(A) = {(u, ϕ, v, ψ, η)T ∈ H; β0u−
∫ ∞

0
g(s)η(s) ds ∈ H1

0(Ω) ∩ H2(Ω),

ϕ ∈ H1
0(Ω), v ∈ H1

0(Ω) ∩ H2(Ω), ψ ∈ H1
0(Ω), η ∈ D(T )}

where
T η =

∫ ∞

0
g(s)∆η(s) ds, ∀η ∈ D(T )

with
D(T ) = {η ∈ L2

g(R+; H1
0(Ω)); ηs ∈ L2

g(R+; H1
0(Ω)), η(0) = 0},

where ηs is the distributional derivative of η with respect to the internal variable s. Therefore, the system
(7)-(13) is equivalent to

dU
dt

= AU (16)

U(0) = U0, (17)

with U = (u, ut, v, vt, η)T , U0 = (u0, u1, v0, v1, η0)
T . With the above notations, we have the following result.

Theorem 1. The operator A generate a C0-semigroup S(t) of contraction on H. Thus, for any initial data U0 ∈ H,
the problem (7)-(13) has a unique weak solution U(t) ∈ C0([0, ∞[,H). Moreover, if U0 ∈ D(A), then U(t) is strong
solution of (7)-(13), that is, U(t) ∈ C1([0, ∞[,H) ∩ C0([0, ∞[, D(A)).

Proof. It is easy to see that D(A) is dense in H. Now, for U = (u, ut, v, vt, η)T ∈ D(A) and using the inner
product (15), we get

〈AU, U〉 = β0

∫
Ω
∇ut · ∇u dx +

∫
Ω
(β0∆u− αv +

∫ ∞

0
g(s)∆η(s) ds)ut dx

+
∫

Ω
∇vt · ∇v dx +

∫
Ω
(∆v− αu)vt dx + α

∫
Ω
(utv + vut) dx +

∫ ∞

0
g(s)

∫
Ω
∇(ut − ηs(s)) · ∇η(s) dx ds

from where it follows that

〈AU, U〉 = −
∫ ∞

0
g(s)

∫
Ω
∇ηs(s) · ∇η(s) dx ds.

Integrating by parts and using (14), we have

Re〈AU, U〉 = 1
2

∫ ∞

0
g′(s)

∫
Ω
|∇η(s)|2 dx ds ≤ − q1

2

∫ ∞

0
g(s)

∫
Ω
|∇η(s)|2 dx ds ≤ 0.
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Therefore, A is a dissipative operator.
Next, we show that (I −A) is maximal. For this, let us consider the equation

(I −A)U = F

where U = (u, ϕ, v, ψ, η)T and F = ( f 1, f 2, f 3, f 4, f 5)T ∈ H. Then, in terms of its components, we can write

u− ϕ = f 1, (18)

ϕ− β0∆u + αv−
∫ ∞

0
g(s)∆η(s) ds = f 2, (19)

v− ψ = f 3, (20)

ψ− ∆v + αu = f 4, (21)

η − ϕ + ηs = f 5. (22)

Integrating (22), we have

η(·, s) = ϕ(·)(1− e−s) +
∫ s

0
eτ−s f 5(·, τ) dτ. (23)

Substituting ϕ and η from (18) and (23) into (19), we get

u− βg∆u + αv = f 1 + f 2 +
∫ ∞

0
g(s)

[
(e−s − 1)∆ f 1 +

∫ s

0
eτ−s∆ f 5(τ) dτ

]
ds (24)

where
βg = β0 +

∫ ∞

0
g(s)(1− e−s) ds.

Note that βg is a positive constant in virtue of (14). Moreover, it can be shown that the right-had side of
(24) is in H−1(Ω).

On the other hand, the substitution of ψ given in (20) into (21) gives us

v− ∆v + αu = f 3 + f 4. (25)

First we prove that u, v ∈ H1
0(Ω). To do this, let us consider the bilinear form

a(Φ1, Φ2) =
∫

Ω
u1u2 dx +

∫
Ω

v1v2 dx + βg

∫
Ω
∇u1 · ∇u2 dx

+
∫

Ω
∇v1 · ∇v2 dx + α

∫
Ω
(v1u2 + u1v2) (26)

where Φ1 = (u1, v1) and Φ2 = (u2, v2).
Then, Lax-Milgram theorem (see [19]) provides existence and uniqueness of the solutions

u, v ∈ H1
0(Ω).

From (18) and (20), we have ϕ, ψ ∈ H1
0(Ω).

Now, from (23), we obtain

||η||2L2
g(R+ ;H1

0 (Ω))
≤ C

(
||ϕ||2H1

0 (Ω)
+ || f 5||2L2

g(R+ ;H1
0 (Ω))

)
, (27)

from where it follows that
η ∈ L2

g(R+; H1
0(Ω)).

From (19), we get

β0∆u +
∫ ∞

0
g(s)∆η(s) ds ∈ L2(Ω).
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On the other hand, from (22), we obtain

||ηs||2L2
g(R+ ;H1

0 (Ω))
≤ C

(
||ϕ||2H1

0 (Ω)
+ || f 5||2L2

g(R+ ;H1
0 (Ω))

+ ||η||2L2
g(R+ ;H1

0 (Ω))

)
.

From where it follows that
ηs ∈ L2

g(R+; H1
0(Ω)).

Again from (23), we have
η(0) = 0.

Thus, I −A is maximal. Then, thanks to the Lumer-Phillips theorem (see [13], Theorem 4.3), the operator
A generates a C0-semigroup of contractions etA onH. The proof is now complete.

3. Lack of exponential decay

Our starting point is to show that the semigroup associated to the system (7)-(13) is not exponential stable.
To show this, we assume that g(t) = e−µt, with t ∈ R+ and µ > 1. We will use the Prüss’s theorem [14] to
prove the lack of exponential stability.

Theorem 2. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert space. Then S(t) is exponentially stable if and
only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR

and
lim
|β|→∞

‖(iβ−A)−1‖ < ∞

hold, where ρ(A) is the resolvent set of A.

To do this, let us consider the spectral problem:{
−∆wm = λmwm in Ω

wm = 0 on Γ,
(28)

where
lim

m→∞
λm = +∞.

The following theorem describes the main results of this section.

Theorem 3. Let S(t) be C0-semigroup of contractions generated by A. Then S(t) is not exponentially stable.

Proof. Here we will use the Theorem 2. That is, we will show that there exists a sequence of values λm such
that

||(λm −A)−1||L(H) → ∞. (29)

It is equivalent to prove that there exist a sequence of data Fm ∈ H and a sequence of complex numbers
λm ∈ iR, with ||Fm||H ≤ 1 such that

||(λm I −A)−1Fm||H → ∞ (30)

where

λmUm −AUm = Fm (31)

with Um not bounded.
To simplify the notation we will omit the subindex m. Then, the Equation (31) becomes
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

iλu− ϕ = f 1,
iλϕ− β0∆u + αv−

∫ ∞
0 g(s)∆η(x, s)ds = f 2,

iλv− ψ = f 3,
iλψ− ∆v + αu = f 4,
iλη − ϕ + ηs = f 5.

(32)

Let us consider f 1 = f 3 = f 5 = 0 and f 2 = f 4 = wm to obtain ϕ = iλu e ψ = iλv. Then, the system (32)
becomes 

−λ2u− β0∆u + αv−
∫ ∞

0 g(s)∆η(x, s)ds = wm,
−λ2v− ∆v + αu = wm,

iλη + ηs − iλu = 0.
(33)

We look for solutions of the form

u = awm, v = bwm, ϕ = cwm, ψ = dwm, η(x, s) = γ(s)wm

with a, b, c, d ∈ C and γ(s) depend on λ and will be determined explicitly in the sequel. From (33), we get a
and b satisfy 

−λ2a + β0aλm + αb + λm
∫ ∞

0 g(s)γ(s)ds = 1,
−λ2b + λmb + αa = 1,

γs + iλγ− iλa = 0.
(34)

Solving (34)3 we get

γ(s) = Ce−iλs + a. (35)

Since η(0) = 0 then C = −a, and (35) becomes

γ(s) = a− ae−iλs. (36)

Then, from (36) we have∫ ∞

0
g(s)γ(s) ds =

∫ ∞

0
g(s)(a− ae−iλs) ds = ab0 − a

∫ ∞

0
g(s)e−iλs ds (37)

where
b0 =

∫ ∞

0
g(s) ds.

Now, choosing λ =
√

λm, using the equation (34)1 and (34)2 we obtain

a =
1
α

,

b =
λm(1− β0)

α2 − λm

α

∫ ∞

0
g(s)γ(s) ds +

1
α

,

c = i
√

λm

α
,

d = i
√

λm(
λm(1− β0)

α2 − λm

α

∫ ∞

0
g(s)γ(s) ds +

1
α
).

Recalling that

ϕ = cwm = i
√

λm

α
wm
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we get

||ϕ||2L2(Ω) =
λm

α2 .

Therefore we have
lim

m→∞
||Um||2H ≥ lim

m→∞
||ϕ||2L2(Ω) = lim

m→∞

λm

α2 = ∞.

Using theorem 3 follows that S(t) is not exponentially stable. The proof is now complete.

4. Polynomial decay and optimally result

In this section we study the polynomial decay associated to the system (7)-(13) and subsequently we find
the optimal rate of decay. Then, let us consider the resolvent equation

(iλI −A)U = F, with λ ∈ R and F ∈ H,

that is,

iλu− ϕ = f 1, (38)

iλϕ− β0∆u + αv− T η = f 2, (39)

iλv− ψ = f 3, (40)

iλψ− ∆v + αu = f 4, (41)

iλη − ϕ + ηs = f 5. (42)

In the next step we shall show three lemmas important to proof the main result.

Lemma 1. The solutions of the system (7)-(13), given by the Theorem 1, satisfies∫
Ω

∫ ∞

0
g(s)|∇η|2 ds dx ≤ K|λ|2||U||H||F||H

where K is a positive constant and |λ| > 1.

Proof. Multiplying the equality (39) by ϕ and integrating by parts on Ω, we get

iλ
∫

Ω
|ϕ|2 dx + β0

∫
Ω
∇u · ∇ϕ dx︸ ︷︷ ︸

:=I1

+ α
∫

Ω
vϕ dx︸ ︷︷ ︸

:=I2

+
∫

Ω

∫ ∞

0
g(s) ∇η(s) · ∇ϕ ds dx︸ ︷︷ ︸

:=I3

=
∫

Ω
f 2 ϕ dx. (43)

Substituting ϕ given in (38) into I1 and I2, we have

I1 = −iλβ0

∫
Ω
|∇u|2 dx− β0

∫
Ω
∇u · ∇ f 1 dx (44)

and

I2 = −iλα
∫

Ω
|u|2 dx− α

∫
Ω

u f 1 dx. (45)

Now, substituting ϕ given in (42) into I3 and integrating by parts, we obtain

I3 = −iλ
∫

Ω

∫ ∞

0
g(s)|∇η(s)|2 ds dx−

∫
Ω

∫ ∞

0
g′(s)|∇η(s)|2 ds dx−

∫
Ω

∫ ∞

0
g(s)∇η(s) · ∇ f 5 ds dx dx. (46)

Substituting (44), (45) and (46) into (43), we get

iλ
∫

Ω
|ϕ|2 dx− iλβ0

∫
Ω
|∇u|2 dx− iλα

∫
Ω
|u|2 dx− iλ

∫
Ω

∫ ∞

0
g(s)|∇η(s)|2 ds dx− 1

2

∫
Ω

∫ ∞

0
g′(s)|∇η(s)|2 ds dx

= β0

∫
Ω
∇u · ∇ f 1 dx + α

∫
Ω

u f 1 dx +
∫

Ω

∫ ∞

0
g(s)∇η(s) · ∇ f 5 ds dx +

∫
Ω

f 2 ϕ dx. (47)
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Taking the real part on the left side of the above equality and using the hypotheses (14) on g, our
conclusion follows.

Lemma 2. For any ε > 0, there exists a positive constant Kε such that

β0

∫
Ω
|∇u|2 dx +

∫
Ω
|∇v|2 dx + α

∫
Ω
(uv + vu) dx

≤
∫

Ω
|ϕ|2 dx +

∫
Ω
|ψ|2 dx + ε

∫
Ω
|∇u|2 dx + Kε|λ|2||U||H||F||H + K||U||H||F||H

where K is a positive constant.

Proof. Multiplying the equalities (39) and (41) by u and v, respectively, integrating by parts on Ω and summing
up the result, we get

iλ
∫

Ω
ϕu dx︸ ︷︷ ︸

:=I4

+β0

∫
Ω
|∇u|2 dx + α

∫
Ω

vu dx +
∫

Ω

∫ ∞

0
g(s) ∇η(s) · ∇u ds dx

+ iλ
∫

Ω
ψv dx︸ ︷︷ ︸

:=I5

+
∫

Ω
|∇v|2 dx + α

∫
Ω

uv dx =
∫

Ω
f 2u dx +

∫
Ω

f 4v dx. (48)

Substituting iλu given in (38) into I4 and iλv given in (40) into I5, we find

β0

∫
Ω
|∇u|2 dx +

∫
Ω
|∇v|2 dx + α

∫
Ω
(uv + vu) dx =

∫
Ω
(|ϕ|2 + |ψ|2) dx−

∫ ∞

0
g(s)

∫
Ω
∇η · ∇u dx

+
∫

Ω
ϕ f 1 dx +

∫
Ω

f 2u dx +
∫

Ω
ψ f 3 dx +

∫
Ω

f 4v dx. (49)

Now, using Poincaré and Young inequalities, we have

β0

∫
Ω
|∇u|2 dx +

∫
Ω
|∇v|2 dx + α

∫
Ω
(uv + vu) dx

≤
∫

Ω
(|ϕ|2 + |ψ|2) dx + ε

∫
Ω
|∇u|2 dx + Kε||η||2L2

g(R+ ;H1
0 (Ω))

+ K||U||H||F||H. (50)

Using the Lemma 1, our conclusion follows.

Lemma 3. Under the conditions of the previous lemma, we have

b0

2

∫
Ω
|ϕ|2 dx ≤ ε

∫
Ω
(|∇u|2 + |∇v|2) dx + Kε|λ|2||U||H||F||H + K||U||H||F||H

and (
1
2
− K
|λ|2

) ∫
Ω
|ψ|2 dx ≤ Kε|λ|2||U||H||F||H + K||U||H||F||H

with |λ| > 1 large enough.

Proof. Multiplying the equation (42) by
∫ ∞

0 g(s) dsϕ and integrating on Ω, we find

iλ
∫ ∞

0
g(s)

∫
Ω

η(s)ϕ dx ds︸ ︷︷ ︸
:=I6

−b0

∫
Ω
|ϕ|2 dx +

∫ ∞

0
g(s)

∫
Ω

ηs(s)ϕ dx ds =
∫ ∞

0
g(s)

∫ ∞

0
f 5(s)ϕ dx ds

where b0 =
∫ ∞

0 g(s) ds. On the other hand, noting that∫ ∞

0
g(s)

∫
Ω

ηs(s)ϕ dx ds = −
∫ ∞

0
g′(s)

∫
Ω

η(s)ϕ dx ds
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and substituting iλϕ given in (39) into I6, we get

b0

∫
Ω
|ϕ|2 dx = −β0

∫ ∞

0
g(s)

∫
Ω

η(s)∆u dx ds + α
∫ ∞

0
g(s)

∫
Ω

η(s)v dx ds− α
∫

Ω

(∫ ∞

0
g(s)η(s) ds

)
×
(∫ ∞

0
g(s)∆η(s) ds

)
+
∫ ∞

0
g′(s)

∫
Ω

η(s)ϕ dx ds−
∫ ∞

0
g(s)

∫
Ω

η(s) f 2 dx ds. (51)

Using the hypotheses on g given in (14) and taking into account the Poincaré and Young inequalities, we
have

b0

2

∫
Ω
|ϕ|2 dx ≤ ε

∫
Ω
(|∇u|2 + |∇v|2) dx + Kε||η||2L2

g(R+ ;H1
0 (Ω))

+ K||U||H||F||H.

Using the Lemma 1, follows the first inequality.
To show the second inequality, we substitute the equation (38) into (42). This gives,

iλη − iλu + ηs = f 5 − f 1. (52)

Now, we substitute u given in (41) into (52). Then, we obtain,

iλαη − λ2ψ− iλ∆v + αηs = α( f 5 − f 1) + iλ f 4. (53)

Multiplying the equation (53) by
∫ ∞ g(s)ψ, integrating by parts on Ω and proceeding as to obtain the first

estimate, we have

1
2

∫
Ω
|ψ|2 dx ≤ K

|λ|2
∫

Ω
|ψ|2 dx + K|λ|2||U||H||F||H + K||F||2H.

From where follows the second inequality. The proof is now complete.

Now, we are in the position the main result of this paper.

Theorem 4. The semigroup associated to the system (7)-(13) is polynomially stable and

||S(t)U0||H ≤
K√

t
||U0||D(A).

Moreover, this result is optimal.

Proof. From Lemmas 1, 2 and 3, choosing ε > 0 small enough and for |λ| > 1 large enough, we have

||U||2H ≤ K|λ|2||U||H||F||H + K||F||2H.

From where it follows that
||U||2H ≤ K|λ|4||F||2H

that can be written as

||(λI −A)−1|| ≤ K|λ|2,

that is

||(λI −A)−1|| = KO(|λ|2), λ→ ∞. (54)

Then using the Theorem of A. Borichev and Y. Tomilov, (see [15], Theorem 2.4), the condition (54) is
equivalent to

||S(t)A−1|| = KO(t−
1
2 )⇒ ||S(t)A−1F||H ≤

K√
t
||F||H, t→ ∞.
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Then taking AU0 = F, we get

||S(t)U0||H ≤
K√

t
||U0||D(A).

Therefore the solution decays polynomially.
To prove that the rate of decay is optimal, we will argue by contradiction. Suppose that the rate t−

1
2 can

be improved; for example that the rate is t−
1

2−ε for some 0 < ε < 2. From Theorem 5.3 in [20], the operator

|λ|
−2 +

ε

2 ||(λI −A)−1||

should be limited, but this does not happen. For this, let us suppose that there exist a sequence (λµ) ⊂ R with
limµ→∞ |λµ| = ∞ and (Uµ) ⊂ D(A) for (Fµ) ⊂ H such that

(iλµ I −A)Uµ = Fµ

is bounded inH and

lim
µ→∞

|λµ|
−2 +

ε

2 ||Uµ||H = ∞.

So, following the same steps as in the proof of Theorem 3 we can conclude that

|λµ|
−2 +

ε

2 ||Uµ||H ≥ O

µ

ε

2

→ ∞, as µ→ ∞.

Therefore the rate cannot be improved. The proof is now complete.
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