
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

A hybrid classical-quantum workflow for natural language processing
To cite this article: Lee J O’Riordan et al 2021 Mach. Learn.: Sci. Technol. 2 015011

View the article online for updates and enhancements.

This content was downloaded from IP address 106.213.19.213 on 30/06/2023 at 08:58

https://doi.org/10.1088/2632-2153/abbd2e

Mach. Learn.: Sci. Technol. 2 (2021) 015011 https://doi.org/10.1088/2632-2153/abbd2e

OPEN ACCESS

RECEIVED

7 May 2020

REVISED

1 September 2020

ACCEPTED FOR PUBLICATION

30 September 2020

PUBLISHED

1 December 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

A hybrid classical-quantum workflow for natural language
processing
Lee J O’Riordan1,2, Myles Doyle1,2, Fabio Baruffa3 and Venkatesh Kannan1,2

1 Irish Centre for High-End Computing, Dublin, Ireland
2 National University of Ireland, Galway, Ireland
3 Intel Deutschland GmbH, Feldkirchen, Germany

E-mail: lee.oriordan@ichec.ie

Keywords: quantum computing, NLP, AI, HPC

Abstract
Natural language processing (NLP) problems are ubiquitous in classical computing, where they
often require significant computational resources to infer sentence meanings. With the appearance
of quantum computing hardware and simulators, it is worth developing methods to examine such
problems on these platforms. In this manuscript we demonstrate the use of quantum computing
models to perform NLP tasks, where we represent corpus meanings, and perform comparisons
between sentences of a given structure. We develop a hybrid workflow for representing small and
large scale corpus data sets to be encoded, processed, and decoded using a quantum circuit model.
In addition, we provide our results showing the efficacy of the method, and release our developed
toolkit as an open software suite.

1. Introduction

Natural language processing (NLP) is an active area of both theoretical and applied research, and covers a
wide variety of topics from computer science, software engineering, and linguistics, amongst others. NLP is
often used to perform tasks such as machine translation, sentiment analysis, relationship extraction, word
sense disambiguation and automatic summary generation [1]. Most traditional NLP algorithms for these
problems are defined to operate over strings of words, and are commonly referred to as the ‘bag of words’
approach [2]. The challenge, and thus limitation, of this approach is that the algorithms analyse sentences in
a corpus based on meanings of the component words, and lack information from the grammatical rules and
nuances of the language. Consequently, the qualities of results from these traditional algorithms are often
unsatisfactory when the complexity of the problem increases.

On the other hand, an alternate approach called ‘compositional semantics’ incorporates the grammatical
structure of sentences from a given language into the analysis algorithms. Compositional semantics
algorithms include the information flows between words in a sentence to determine the meaning of the
whole sentence [3]. One such model in this class is ‘(categorical) distributional compositional semantics’,
known as DisCoCat [4–6], which is based on tensor product composition to give a grammatically informed
algorithm that computes the meaning of sentences and phrases. This algorithm has been noted to potentially
offer improvements to the quality of results, particularly for more complex sentences, in terms of memory
and computational requirements. However, the main challenge in its implementation is the need for large
classical computational resources.

With the advent of quantum computer programming environments, both simulated and physical, a
question may be whether one can exploit the available Hilbert space of such systems to carry out NLP tasks.
The DisCoCat methods have a natural extension to a quantum mechanical representation, allowing for a
problem to be mapped directly to this formalism [5]. Using an oracle-based access pattern, one can bound
the number of accesses required to create the appropriate states for use by the DisCoCat methods [7].
Though, this requires the use of a quantum random access memory, or qRAM [8, 9]. Currently, qRAM
remains unrealised, and expectations are that the resources necessary to realise are as challenging as a fault

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abbd2e
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abbd2e&domain=pdf&date_stamp=2020-12-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6758-9433
https://orcid.org/0000-0001-7889-8357
mailto:lee.oriordan@ichec.ie

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

tolerant quantum computer [10]. As such, it can be useful to examine scenarios where qRAM is not part of
the architectural design of the quantum circuit. This will allow us to examine proof-of-concept methods to
explore and develop use-cases later improved by its existence.

In this paper we examine the process for mapping a corpus to a quantum circuit model, and use the
encoded meaning-space of the corpus to represent fundamental sentence meanings. With this representation
we can examine the mapping of sentences to the encoding space, and additionally compare sentences with
overlapping meaning-spaces. We follow a DisCoCat-inspired formalism to define sentence meaning and
similarity based upon a given compositional sentence structure, and relationships between sentence tokens
determined using a distributional method of token adjacency.

This paper will be laid out as follows. Section 2 will give an introduction to NLP, the application of
quantum models to NLP, and discuss the encoding strategy for a quantum circuit model. Section 3 will
discuss the preparation methods required to enable quantum-assisted encoding and processing of the text
data. Section 4 will demonstrate the proposed methods using our quantum NLP software toolkit [11] sitting
atop Intel Quantum Simulator (IQS) [12]. For this we showcase the methods, and compare results for
corpora of different sizes and complexity. Finally, we conclude in section 5.

2. NLPmethods

One of the main concerns of NLP methods is the extraction of information from a body of text, wherein the
data is not explicitly structured; generally, the text is meant for human, rather than machine,
consumption [13]. As such, explicit methods to infer meaning and understand a body of text are required to
encode such data in a computational model.

Word embedding models, such as word2vec, have grown in popularity due to their success in
representing and comparing data using vectors of real numbers [14]. Additionally, libraries and toolkits such
as NLTK [15] and spaCy [16] offer community developed models and generally incorporate the latest
research methods for NLP. The use of quantummechanical effects for embedding and retrieving information
in NLP has seen much interest in recent years [17–24].

An approach that aims to overcome the ambiguity offered by traditional NLP methods, such as the
bag-of-words model is the categorical distributional-compositional (DisCoCat) model [4, 5]. This method
incorporates semantic structure, where sentences are constructed through a natural tensoring of individual
component words following a set of rules determined from category theory. These rule-sets for which
sentence structures may be composed are largely based on the framework of pre-group grammars [25].

The DisCoCat approach offers a means to employ grammatical structure of sentences with token
relationships in these sentences. Words that appear closer in texts are more likely to be related, and sentence
structures can be determined using pre-group methods. These methods can easily be represented in a
diagrammatic form, and allow for a natural extension to quantum state representation [6]. This
diagrammatic form, akin to a tensor network, allows for calculating the similarity between other sentences.
This similarity measure assumes an encoded quantum state representing the structure of the given corpus,
and an appropriately prepared test state to compare with. This alludes to a tensor-contraction approach to
perform the evaluation.

While this approach has advantages in terms of accuracy and generalisation to complex sentence
structures, state preparation is something we must consider. Given the current lack of qRAM, the specified
access bounds are unrealised [7], and so it is worth considering state preparation as part of the process.
Ensuring an efficient preparation approach will also be important to enable processing on a scale to rival that
of traditional high-performance computing NLP methods.

As such, we aim to provide a simplified model, framework and hybrid workflow for representing textual
data using a quantum circuit model. We draw inspiration from the DisCoCat model to preprocess our data
to a structure easily implementable on a quantum computer. We consider simple sentences of the form
‘noun—verb—noun’ to demonstrate this approach. All quantum circuit simulations and preprocessing is
performed by our quantum NLP toolkit (QNLP), sitting atop the Intel Quantum Simulator (formerly
qHiPSTER) to handle the distributed high-performance quantum circuit workloads [12, 26]. We release our
QNLP toolkit as an open source (Apache 2.0) project, and have made it available on GitHub [11].

3. Methods

3.1. Representing meaning in quantum states
In this section, we discuss the implementation of the algorithms required to enable encoding, processing,
and decoding of our data. We consider a simplified restricted example of the sentence structure

2

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

‘noun—verb—noun’ as the representative encoding format. To represent sentence meanings using this
workflow, we must first consider several steps to prepare our corpus data set for analysis:

(a) Data must be pre-processed to tag tokens with the appropriate grammatical type; stop-words (e.g. ‘the’,
‘a’, ‘at’, etc) and problematic (e.g. non-alphanumeric) characters should be cleaned from the text to ensure
accurate tagging, wherein type information is associated with each word.

(b) The pre-processed data must be represented in an accessible/addressable (classical) memory medium.
(c) Theremust be a bijectivemapping between the pre-processed data and the quantum circuit representation

to allow both encoding and decoding.

Assuming an appropriately prepared dataset, the encoding of classical data into a quantum system can be
mapped to two different approaches: state (digital), or amplitude (analogue) encoding [27, 28]. We aim to
operate in a mixed-mode approach: encoding and representing corpus data using state methods, then
representing and comparing test sentence data through amplitude adjustment, measurement, and overlap.

Our approach to encoding data starts with defining a fundamental language (basis) token set for each
representative token meaning space (subject nouns, verbs, object nouns). The notion of similarity, and hence
orthogonality, with language can be a difficult problem. Do we consider the words ‘stand’ and ‘sit’ to be
completely opposite, or are they similar because of the type of action taken? For this work, we let the degree
of ‘closeness’ be determined by the distributional nature of the terms in the corpus; words further apart in
the corpus are more likely to be opposite.

To efficiently encode the corpus data, we decide to represent the corpus in terms of the nmost
fundamentally common tokens in each meaning space. This draws similarity with the use of a word
embedding model to represent a larger space of tokens in terms of related meanings in a smaller
space [29–31]. This is necessary as representing each token in the corpus matching the sentence structure
type can create a much larger meaning space than is currently representable, given realistic simulation
constraints. However, one can note as we increase the limit of fundamental tokens in our basis, we tend to
the full representative meaning model.

Taking inspiration from the above methods, we implement an encoding strategy that given the basis
tokens, maps the remaining non-basis tokens to these, given some distance cut-off in the corpus. A
generalised representation of each token ti, in their respective meaning spacem would be defined as

ti =
n∑
j

di,jmj, (1)

where di,j defines the distance between the base tokenmj and non-base ti. As such, we obtain a linear
combination of the base tokens with representative weights to describe the mapped tokens.

We have identified the following key steps to effectively pre-process data for encoding:

(a) Tokenise the corpus and record position of occurrence in the text.
(b) Tag tokens with the appropriate meaning space type (e.g. noun, verb, stop-word, etc)
(c) Separate tokens into noun and verb datasets.
(d) Define basis tokens in each set as the Nnouns and Nverbs most frequently occurring tokens.
(e) Map basis tokens in each respective space to a fully connected graph, with edge weights defined by the

minimum distance between each other basis token.
(f) Calculate the shortest Hamiltonian cycle for the above graph. The token order within the cycle is reflective

of the tokens’ separation within the text, and a measure of their similarity.
(g) Map the basis tokens to binary strings, using a given encoding scheme.
(h) Project composite tokens (i.e. non-basis tokens) onto the basis tokens set using representation cut-off

distances for similarity,Wnouns andWverbs.
(i) Form sentences by matching composite NOUN-VERB-NOUN tokens using relative distances and a NOUN-VERB

distance cut-off,Wnv.

After conducting the pre-processing steps, the corpus is represented as a series of binary strings of basis
tokens. At this stage the corpus is considered prepared and can be encoded into a quantum register.

3.2. Token encoding
To ensure the mapping of basis words to encoding patterns is reflective of the underlying distributional
relationships between words in the corpus, it is necessary to choose an encoding scheme such that the
inter-token relationships are preserved. While many more complex schemes can give insightful relationships,

3

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

we choose a cyclical unary encoding scheme where the Hamming distance, dH , between each bit-string is
equal to the distance between the bit-strings in the data set. Given an n-qubit register, we generate Pn, a list of
2n unique bit-patterns represented as integers, as defined by algorithm 1.

Algorithm 1: Generating unique patterns for token-to-state mappings.

Input: Number of qubits, n
Output: List P, with 2n unique patterns

1: function PATTERNS(n)
2: P← []
3: for i← 0 to 2n− 1 do
4: if i≤ n then
5: P[i]= 2i− 1
6: else
7: P[i] = 2n− 2i mod n

8: end if
9: end for
10: return P
11: end function

For 2 and 4-qubit registers respectively, this equates to the patterns,

PATTERNS(2)= [0, 1, 3, 2]10 = [00, 01, 11, 10]2,

PATTERNS(4)= [0, 1, 3, 7, 15, 14, 12, 8]10

= [0000, 0001, 0011, 0111,

1111, 1110, 1100, 1000]2.

where the subscript denotes the base of the specific pattern list. With this encoding scheme, we can show that
the Hamming distances between each pattern and others in the set have a well-defined position-to-distance
relationship.

As an example, let us consider a 4-element basis of tokens given by b={up, down, left, right}. We
define up and down as opposites, and so should preserve the largest Hamming distance between them. This
requires mapping the tokens to either 00,11, or to 10,01 for these pairs. Similarly, we find the same procedure
with the remaining tokens. In this instance, we have mapped the tokens as

up → 00; down → 11; left → 01; right → 10;

which preserves the relationships we have discussed earlier in 3.1.
Once again, it is worth noting that the notion of similarity is complex when considering words, as such is

the concept of orthogonality. It may be argued that the up-down relationship has more similarities than, say,
a left-down relationship, but for the purpose of our example this definition is sufficient. Care ought to be
taken into defining inter-token relationships, requiring some domain expertise of the problem being
investigated. The choice of inter-token relationship taken during preparation will influence the subsequent
token mappings determined later in the process.

For our work we have deemed it sufficient to define these similarities by distance between the tokens in a
text; larger distances between tokens defining a larger respective Hamming distance, and smaller distances a
smaller one. We can similarly extend this method to larger datasets, though the ordering problem requires a
more automated approach.

For the 4-qubit encoding scheme, we must define a strategy to map the tokens to a fully connected graph,
where again the respective positions of the bit-strings reflect the Hamming distance between them, as shown
in figure 1. To effectively map tokens to these bit-strings, we use the following procedure:

(a) Given the chosen basis tokens, and their positions in the text, create a graph where each basis token is a
single node.

(b) Calculate the distances between all (n2−n)/2 token pairings.
(c) For simplicity, choose the minimum distances between each of the pairings, and create edges with this

as the given weight. As an aside, alternative methods can also be used, such as mean, median, etc.
(d) With the given fully-connected graph, find theminimumHamiltonian cycle, and use the returned order-

ing to map the tokens onto the bit-strings.

4

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Figure 1. Graph showing the mapping of tokens (blue) to bit-strings (white). Edge weights between the bit-strings represent the
Hamming distances, dH between connected nodes. By mapping the tokens to the appropriate basis bit-string we can use the
Hamming distances to represent differences between tokens.

For the calculated minimum Hamiltonian cycle, the relationships between each of the tokens will be
preserved, and can effectively be mapped onto the bit-string encoding scheme. It can be noted that
alternative encoding schemes and distance orderings could potentially be investigated, but will remain
beyond the scope of this current work. For our purposes we make use of the networkx package for the
finding the minimum Hamiltonian cycle [32].

3.3. Methods for quantum state encoding
To simplify our encoding procedure, we can assume a binary representation of distance for equation (1),
wherein all tokens within the given cutoff are equally weighted. This allows us to encode the states as an
equal-weighted superposition, and is easily implemented as a quantum circuit [33, 34].

For notational simplicity, we define the following mappings:

Xa : |a〉 → |¬a〉,

CXa,b : |a〉|b〉 → |a〉|a⊕ b〉

nCXa1...anb :|a1〉 . . . |an〉|b〉 →
|a1〉 . . . |an〉|b⊕ (a1 ∧ ·· · ∧ an)〉

where |a〉 and |b〉 are computational basis states, X is the Pauli-X (σx) gate, CX and nCX are the controlled X,
and n-controlled NOT (nCX) operations, respectively. Additionally, we may define controlled operations
using any arbitrary unitary gate using a similar construction of the above.

The goal of this algorithm is to encode a set of bit-strings representing our token meaning-space as an

equal weighted superposition state. For a set of N unique binary patterns p(i) = {p(i)1 , . . . ,p
(i)
n } each of length

n for i= 1, . . . ,N, we require three registers of qubits; a memory register |m〉 of length n, an auxiliary register
|a〉 of length n, and a control register |u〉 of length 2 initialised as |01〉. |m〉 and |a〉 are initialised as
|m〉= |a〉= |0〉⊗n, with the full quantum register initialised as

|ψ0〉= |a〉|u〉|m〉
= |01 . . .0n〉|01〉|01 . . .0n〉. (2)

Each of the binary vectors are encoded sequentially. For each iteration of the encoding algorithm, a new
state is generated in the superposition (excluding the final iteration). The new state generated is termed as
the active state of the next iteration. All other states are said to be inactive. Note, in each iteration of the
algorithm, the active state will always be selected with |u〉= |01〉.

During a single iteration, a binary vector is stored in integer format, which is then serially encoded
bit-wise with Pauli-X gates into the auxiliary register |a〉 resulting in the state |ψ1〉:

|ψ1〉= |a(1)1 . . .a(1)n 〉|01〉|01 . . .0n〉. (3)

5

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

This binary representation is then copied into the memory register |m〉 of the active state by applying a
2CX gate on |ψ1〉:

|ψ2〉=
n∏

j=1

2CXaju2mj |ψ1〉. (4)

Next, we apply a CX followed by a X gate to all qubits in |m〉 using the corresponding qubits in |a〉 as
controls:

|ψ3〉=
n∏

j=1

XmjCXajmj |ψ2〉. (5)

This sets the qubits in |m〉 to 1 if the respective qubit index in both |m〉 and |a〉match, else to 0. Thus, the
state whose register |m〉matches the pattern stored in |a〉 will be set to all 1’s while the other states will have
at least one occurrence of 0 in |m〉.

Now that the state being encoded has been selected, an nCX operation is applied to the first qubit in the
auxiliary register using the qubits in |m〉 as the controls:

|ψ4〉= nCXm1...mnu1 |ψ3〉. (6)

The target qubit whose initial value is 0 will be set to 1 if |m〉 consists of only 1’s. This is the case for the state
in the superposition whose pattern is being encoded (the current active state).

In order to populate a new state into the superposition, it is required to effectively ‘carve-off ’ some
amplitude from the existing states so the new state has a non-zero coefficient. To do this, we apply a
controlled unitary matrix CS(N+ 1− i) to the second auxiliary qubit u2 using the first auxiliary qubit u1 as a
control:

|ψ5〉= CS(N+1−i)
u1u2 |ψ4〉,

where

S(k) =

√ k−1
k

1√
k

− 1√
k

√
k−1
k

= Ry (γ(k)) , (8)

for k ∈ {1, . . . ,N} ⊂ Z+, Ry(θ) = exp(−iθσy/2) and γ(k) =−arccos((k− 2)/k). The newly generated state
will be selected with |u〉= |11〉, while the previous active state used to ‘carve-off ’ this new state selected with
|u〉= |10〉. All other states will be selected with |u〉= |00〉.

To apply the next iteration of the algorithm we uncompute the steps from equations (4)–(6) as

|ψ6〉= nCXm1...mnu1 |ψ5〉, (9)

|ψ7〉=
1∏

j=n

CXajmjXmj |ψ6〉, (10)

|ψ8〉=
1∏

j=n

2CXaju2mj |ψ7〉. (11)

This results in the previous active state now being selected with |u〉= |00〉 while the new state with
|u〉= |01〉, which identifies it as the new active state. The previous active state’s memory register now

contains the pattern {a(i)1 , . . . ,a
(i)
n } while the new active state’s memory register is set to all zeroes.

Finally, the register |a〉 for every state must be set to all zeroes by sequentially applying X gates to each
qubit in |a〉 according to the pattern that was just encoded. The quantum register is now ready for the next
iteration to encode another pattern. Following the encoding of all patterns, our state will be

|ψ〉= |a〉|u〉|m〉

= |01 . . .0n〉|00〉

(
1√
N

N∑
i=1

|p(i)1 . . .p(i)n 〉

)
. (12)

6

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Note, this algorithm assumes that the number of patterns to be encoded is known beforehand, which is
required to generate the set of S(k) matrices and apply them in the correct order. The total number of qubits
used in this algorithm is 2n+ 2, of which n+ 2 are reusable after the implementation since the qubits in |a〉
and |u〉 are all reset to |0〉 upon completion. The additional n+ 2 qubits allows for them to be used as
intermediate scratch to enable the large n-controlled operations during the encoding stages. This ensures
that we can perform the nCX operations with a linear, rather than polynomial, number of two-qubit gate
calls [35]. The above encoding scheme is explicitly demonstrated for both 3 and 4 qubit patterns in
appendix A.

3.4. Representing patterns using encoded data
The purpose of this methodology is to represent a single test pattern using the previously encoded
meaning-space. The relative distance between each meaning-space state pattern and the single test pattern
x= {x1, . . . ,xn} is then encoded into the amplitude of each respective meaning-space state pattern. Thus,
each represented state will have a coefficient proportional to the Hamming distance between itself and the
test pattern. The method we present below calculates the binary difference between the target state’s
bit-string and the test pattern, denoted by dH .

The algorithm assumes that we already have N states of length n encoded into the memory register |m〉.
The subsequent encoding requires 2n+ 1 qubits; n qubits to store the test pattern, a single qubit register
which the rotations will act on, and n qubits for the memory register. As our previously used encoding stage
required 2n+ 2 qubits, we can repurpose the |a〉 and |u〉 registers as the test pattern and rotation registers
respectively. Our meaning-space patterns are encoded in the memory register |m〉, with registers |a〉 and |u〉
initialised as all 0’s. Hence, our initial state is given by equation (12).

Next, the test pattern x= {x1, . . . ,xn} is encoded into the register |a〉 sequentially by applying a X gate to
each qubit whose corresponding classical bit xi is set:

|ψ ′
1〉= |x1 . . .xn〉|00〉

(
1√
N

N∑
i=1

|p(i)1 . . .p(i)n 〉

)
. (13)

Rather than overwriting register |a〉 with the differing bit-values, a two qubit controlled Ry(θ) (2CR
(θ)
y)

gate is applied, such that θ = π
n . This is done by iteratively applying the 2-controlled Ry gate with aj andmj as

control qubits to rotate |u〉 if both control qubits are set for j= 1, . . . ,n. The operation is performed twice,
such that aj = 1,mj = 1 and by appropriately flipping the bits prior to use for aj = 0,mj = 0.

Finally, the test pattern stored in register |a〉 is reset to consist of all 0’s by applying a X gate to each qubit
in |a〉 whose corresponding classical bit is set to 1.

The above process can be written as follows:

|ψ ′
2〉=

n∏
j=1

XajXmj2CR
(π

n)
y;ajmju1 XajXmj2CR

(π
n)

y;ajmju1 |ψ1〉, (14)

where the state after application is given by

|ψ ′〉= |0〉⊗(n+1) 1√
k

k∑
j=1

[
cos
(
ϕj
)
|0〉+ sin

(
ϕj
)
|1〉
]
⊗ |p(j)〉, (15)

with

ϕj =
dH(p(j),x)π

n
=
π

n

n∑
l=1

p(j)l ⊕ xl. (16)

Applying the linear map

P= 1⊗(n+1) ⊗ |1〉〈1| ⊗1⊗n
, (17)

we represent the meaning-space states weighted by the Hamming distance with the test pattern, x. The state
following this is given by

|ψ ′
x〉=

1√
k〈ψ ′|P|ψ ′〉

k∑
j

sin(ϕj)|pj〉, (18)

where qubit registers |a〉= |0〉⊗n and |u〉= |01〉 are left out for brevity.

7

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

With the above method we can examine the similarity between patterns mediated via the meaning space.
While one may directly calculate the Hamming distance between both register states as a measure of
similarity, by doing this we lose distributional meaning discussed from section 3.2. As such, we aim to
represent both patterns in the meaning-space, and examine their resulting similarity using state overlap, with
the result defined by

F(x(0),x(1)) =

∣∣∣∣∣∣ 1

k
√
〈P(0)〉〈P(1)〉

k∑
j=1

sin
(
ϕ
(0)
j

)
sin
(
ϕ
(1)
j

)∣∣∣∣∣∣
2

, (19)

with 〈P(i)〉= 〈x(i)|P|x(i)〉, and x(i) as test pattern i.

4. Results

4.1. Small-scale example
We now demonstrate an example of the method outlined in section 3 for a sample representation and
sentence comparison problem.

We opt for the simplified noun-verb-noun sentence structure, and define sets of words within each of
these spaces, through which we can construct our full meaning space, following the approach outlined in [4].
For nouns, we have: (i) subjects, ns = {ADULT,CHILD, SMITH, SURGEON}; and (ii) objects, no = {OUTSIDE, INSIDE}.
For verbs, we have v= {STAND, SIT,MOVE, SLEEP}. With these sets, we can represent the full meaning-space as
given by

ADULT

CHILD

SMITH

SURGEON

⊗

STAND

SIT

MOVE

SLEEP

⊗

OUTSIDE

INSIDE

 . (20)

Whilst all combinations may exist, subjected to a given training corpus, only certain patterns will be
observed, allowing us to restrict the information in our meaning-space. For simplicity, we can choose our
corpus to be a simple set of sentences: JOHN RESTS INSIDE. MARY WALKS OUTSIDE. To represent these sentences
using the bases given by equation (20), we must determine a mapping between each token in the sentences to
the bases. In this instance, we manually define the mapping by taking the following meanings:

• JOHN IS AN ADULT, AND A SMITH. The state is then given as:
|JOHN〉= 1/

√
2(|ADULT〉+ |SMITH〉), which is a superposition of the number of matched entities from the

basis set.
• MARY IS A CHILD, AND A SURGEON. Similarly, the state is given as:
|MARY〉= 1/

√
2(|CHILD〉+ |SURGEON〉), following the same procedure as above.

We also require meanings for RESTS and WALKS. If we examine synonyms for RESTS and cross-compare with
our chosen vocabulary, we can find SIT and SLEEP. Similarly, for WALKS we can have STAND and MOVE. We can
define the states of these words as |REST〉= 1/

√
2(|SIT〉+ |SLEEP〉) and |WALK〉= 1/

√
2(|STAND〉+ |MOVE〉).

Now that we have a means to define the states in terms of our vocabulary, we can begin constructing states to
encode the data.

We begin by tokenising the respective sentences into the 3 different categories: subject nouns, verbs, and
object nouns. With the sentence tokenised, we next represent them as binary integers, and encode them using
the processes of section 3. The basis tokens are defined in table 1. We define the mapping of ‘John rests
inside, Mary walks outside’ to this basis in table 2.

If we consider the JOHN and MARY sentences separately for the moment, they are respectively given by the
states (1/2)|0〉⊗ (|10〉+ |11〉)⊗ (|00〉+ |10〉) for John, and (1/2)|1〉⊗ (|00〉+ |01〉)⊗ (|01〉+ |11〉) for

8

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Table 1. Basis data.

Dataset Token Bin. Index

ns Adult 00
ns Child 11
ns Smith 10
ns Surgeon 01
v Stand 00
v Move 01
v Sit 11
v Sleep 10
no Inside 0
no Outside 1

Table 2. Sentence data encoding using basis from table 1.

Dataset Token State

ns John (|00⟩+ |10⟩)/
√
2

ns Mary (|01⟩+ |11⟩)/
√
2

v Walk (|00⟩+ |01⟩)/
√
2

v Rest (|10⟩+ |11⟩)/
√
2

no Inside |0⟩
no Outside |1⟩

Mary. Note that we choose a little endian encoding schema, wherein the subject nouns are encoded to the
right of the register and object nouns to the left. Tidying these states up yields

JOHN RESTS INSIDE → |J〉= 1

2
(|01100〉+ |01000〉+ |01110〉+ |01010〉),

MARY WALKS OUTSIDE → |M〉= 1

2
(|10011〉+ |10111〉+ |10001〉+ |10101〉),

where the full meaning is given by |m〉= |J⟩+|M⟩√
2

, which is a superposition of the 8 unique encodings defined

by our meaning-space and sentences.
From here we will next encode a test state to be stored in register |a〉 for representation using the encoded

meaning-space. We use the pattern denoted by ‘ADULT(S) STAND INSIDE’, which is encoded as |a〉= |00000〉.
Constructing our full state in the format of equation (13), we get

|ψ〉= 1

2
√
2
|00000〉⊗ |00〉⊗ (|01100〉+ |01000〉+ |01110〉

+|01010〉+ |10011〉+ |10111〉+ |10001〉+ |10101〉) .

By following the steps outlined in section 3.4, rotating a single qubit from the control register |u〉 based on
the Hamming distance between both registers, and applying the map from equation (17), the state of register
|m〉 encodes a representation of the test pattern in the amplitude of each unique meaning-space state.

Through repeated preparation and measurement of the |m〉 register we can observe the patterns closest to
the test. Figure 2 shows the observed distribution using two different patterns; ADULT, SIT, INSIDE (00000,
orange), and CHILD, MOVE, INSIDE (00111, green) compared with the encoded meaning-space patterns
following equation (12) (blue). An example demonstrator of the above procedure is provided in a Jupyter
notebook as part of the Github repository [11].

Given this ability to represent patterns, we can extend this approach to examine the similarity of different
patterns using equation (19). One can create an additional memory register |m ′〉, and perform a series of
SWAP tests between both encoded patterns, to determine a measure of similarity. For the above example, we
obtain an overlap of F(00000, 00111)= 0.8602, denoting a good degree of similarity, given our chosen
meaning-space.

4.2. Automated large-scale encoding
As the previous example was artificially constructed to showcase the method, an automated workflow that
determines the basis and mapped tokens, and performs the subsequent experiment is beneficial. Here we
perform the same analysis, but using Lewis Carroll’s ‘Alice in Wonderland’ in an end-to-end simulation.

9

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Figure 2. Sentence encoding state distribution taken by multi-shot preparation and measurement of |m⟩ prior to, and post, the
encoding of test patterns. Two distinct patterns are used: 00000→ (ADULT, STAND, INSIDE) (orange) and
00111→ (CHILD, MOVE, INSIDE) (green). The distribution is sampled 5× 104 times, and shows how the Hamming distance
weighting modifies the distribution relative to the k= 8 unweighted meaning-space states (blue).

Figure 3. Relative ordering of an 8-basis set chosen for the noun dataset in ‘Alice in Wonderland’, using the encodings and
ordering given by equation (21). The edge weight between each token shows the Hamming distance between the respective
encoding patterns.

To showcase the basis choice, we will consider the nouns basis set. We define a maximum basis set of 8
nouns (Nnouns = 8), taken by their frequency of occurrence. Following the process outlined in section 3, we
define a graph from these tokens, and use their inter-token distances to determine ordering following a
minimum Hamiltonian cycle calculation. The resulting graph is shown by figure 3. From here we map the
tokens to an appropriate set of encoding bit-strings for quantum state representation, making use of
Alg. (3.2). The resulting set of mappings is

head → |0000〉, turtle → |0001〉,
hatter → |0011〉, king → |0111〉,
queen → |1111〉, time → |1110〉,
thing → |1100〉, alice → |1000〉.

(21)

We can now map the composite tokens onto the chosen basis encoding using a distance cut-off,Wnouns.
Following the inter-word distance calculation approach used to determine basis order, we calculate the
distance between the other corpus tokens and the respective basis set. Taking the set of all nouns in the
corpus as sn, and the noun basis set as bn ⊂ sn, for every token tn in sn we perform

tn : sn 7→ bn.

Tokens that fall outsideWnouns are mapped to the empty set, ∅. This approach is then repeated for verbs, and
lastly inter-dataset distances between noun-verb pairings,Wnv, which are used to discover viable sentences.

10

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Figure 4. The result of measuring |m⟩ states following the encoding of the string pattern ‘hatter say queen’. This example uses a 75
unique pattern basis set, and taking 5× 104 samples to build the distribution. The Hamming distances of the labels are indicated
on the x-axis, and differentiated by colour, where we can see clear distinction between the patterns in each Hamming category.
The data mapping tokens to patterns in each category can be viewed in appendix D.

The mapped composite tokens may then be used to create a compositional sentence structure by tensoring
the respective token states.

Following the previous example, we may examine the automatic encoding and representation of the
string ‘hatter say queen’ to the meaning-space patterns. Given that representing the text in its entirety would
be a substantial challenge, we limit the amount of information to be encoded by controlling the
pre-processing steps as Nnouns = 8, Nverbs = 4,Wnouns = 5,Wverbs = 5 andWvn = 4. Here Nnouns is again the
number of basis nouns in both subject and object datasets, Nverbs the number of basis verbs,Wnouns and
Wverbs the cutoff distances for mapping other nouns and verbs in the corpus nouns to the basis tokens, and
Wvn is the cutoff distance to relate noun and verb tokens.

For the above parameters, the method finds a subset of 75 unique patterns to represent the corpus.
Following section 4.1 one obtains the associated similarity of encoded elements by the resulting likelihood of
occurrence, as indicated by figure 4, where we have prepared and sampled the |m〉 register 5× 104 times to
build the distribution. Clear step-wise distinctions can be observed between the different categories of
Hamming-weighted states, with the full list presented in appendix D table D1. Given the basis encoding
tokens from equation (21), the string ‘hatter say queen’ can be mapped to the value 995 (1111100011 in
binary).

As before, we can also compare patterns mediated via the meaning-space. For the pattern ‘hatter say
queen’, the most similar patterns are ‘hatter say king’ (0111100011), ‘hatter go queen’ (1111110011) and
‘turtle say queen’ (1111100001) with overlaps of 0.974, 0.974 and 0.973 respectively. We include a variety of
other encoded comparisons in the appendix as table E2 to showcase the method.

5. Conclusions

In this paper we have demonstrated methods for encoding corpus data as quantum states. Taking elements
from the categorical distributional compositional semantic formalism, we developed a proof-of-concept
workflow for preparing small and large scale data sets to be encoded, processed, and decoded using a given
quantum register. We showed the preparation, encoding, comparison, and decoding of small and large
datasets using the presented methods.

Recent works have shown the importance of the reduction in classical data to be represented on a
quantum system [36]. The approach defined above follows an analogous procedure, representing the
important elements of the corpus data using a fundamental subset of the full corpus data. Using this subset,
we have shown how to represent meanings, and subsequently the calculation of similarity between different
meaning representations. We have additionally released all of this work as part of an Apache licensed
open-source toolkit [11].

For completeness, it is worth mentioning the circuit depths required to realise the above procedures.
Taking the large scale example, we obtain single and two-qubit gate call counts of 2413 and 33175
respectively to encode the meaning space. This may be difficult to realise on current NISQ generation
quantum systems, where the use of simulators instead allow us to make gains in understanding of applying
these methods to real datasets.

The potential for circuit optimisation through the use of ZX calculus [37], or circuit compilation through
tools such as CQC’s t|ket〉may offer more realistic circuit depths, especially when considering mapping to
physical qubit register topologies [38].

11

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Very recent works on the implementation of the DisCoCat formalism on physical devices without the
need for qRAM, have also emerged [39]. These methods may provide a more generalised approach to
investigate quantum machine learning models in NLP and beyond, and have the potential to overcome the
limitations discussed earlier with data encoding. We imagine the merging of this generalised approach [40]
with the hybrid quantum–classical methods we have devised to allow interesting results and further
development of this field. We leave this to future work.

Acknowledgments

We would like to thank Prof. Bob Coecke and Dr Ross Duncan for discussions and suggestions during the
early stages of this work. The work leading to this publication has received funding from Enterprise Ireland
and the European Union’s Regional Development Fund under grant agreement IP 2018 0751. The opinions,
findings and conclusions or recommendations expressed in this material are those of the authors and neither
Enterprise Ireland nor the European Union are liable for any use that may be made of information contained
herein. The authors also acknowledge funding and support from Intel during the duration of this project.

Appendix A. Encoding examples

A.1. 3 qubits, 4 patterns
Starting with a n= 3 qubit register, we aim to encode the following N = 4 patterns:

P= [001,111,000,110],

which are taken from the set of available patterns from Alg. 3.2 for a 3 qubit data-set. We follow the encoding
procedure as defined by section 3.2, with the initial state defined by equation (2) as

|Ψ0〉= |a〉|u〉|m〉
= |a1a2a3〉|u1u2〉|m1m2m3〉
= |000〉|01〉|000〉.

Starting with i= 1, where i denotes the index of the pattern (i∈ {1, 2, 3, 4}), we aim to encode pattern 001.
We begin by directly encoding our first binary pattern to the auxiliary register |a〉 by applying Pauli-X gates
for the classical bits that are set:

|Ψ1〉= |001〉|01〉|000〉.

Next, we copy the state stored in |a〉 to the memory register |m〉 for the active state (i.e. state with control
register |u〉= |01〉), giving

|Ψ2〉=
n∏

j=1

2CXaj,u2,mj |Ψ1〉

= (2CXa3,u2,m3)(2CXa2,u2,m2)(2CXa1,u2,m1)|001〉|01〉|000〉
= |001〉|01〉|001〉.

We then set the qubits of each state in |m〉 to 1 if the corresponding qubit index in |a〉matches that of the
same index in |m〉. This results in the active state |m〉 set to all 1’s:

|Ψ3〉=
n∏

j=1

XmjCXaj,mj |Ψ2〉

= (Xm3CXa3,m3)(Xm2CXa2,m2)(Xm1CXa1,m1)|001〉|01〉|001〉
= |001〉|01〉|111〉,

12

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Next, the active state has |u〉 set to |11〉:

|Ψ4〉= nCXm1,...,mn,u1 |Ψ3〉
= 3CXm1,m2,m3,u1 |001〉|01〉|111〉
= |001〉|11〉|111〉.

A new state is ‘carved off ’ from the current active state. This new state is then considered the ‘active state’ for
the next iteration:

|Ψ5〉= CS(N+1−i)
u1,u2 |Ψ4〉,

where we require use of equation (8), defined by

S(k) = Ry

(
−cos−1

(
k− 2

k

))
.

As we intend to encode 4 patterns, we require 4 such matrices, defined by the parameters S(N+ 1− i); we
then create matrices for S(4), S(3), S(2) and S(1) as

S(4) =

[√
3
2

1
2

−1
2

√
3
2

]
, S(3) =

√ 2
3

1√
3

−1√
3

√
2
3

 , S(2) = 1√
2

[
1 1
−1 1

]
, S(1) =

[
0 1
−1 0

]
.

Given that we are currently encoding the pattern at index i= 1, we use the S(4) matrix here

|Ψ5〉= CS(N+1−i)
u1,u2 |Ψ4〉

= CS(4)u1,u2 |Ψ4〉

=
1

2
|001〉|10〉|111〉+

√
3

2
|001〉|11〉|111〉.

We now must uncompute our previous operations to repeat the process.

|Ψ6〉= 3CXm1,m2,m3,u1 |Ψ5〉.

=
1

2
|001〉|00〉|111〉+

√
3

2
|001〉|01〉|111〉.

From above, we can see that we have split off the encoded pattern, which is currently selected with |u〉= |00〉.
The memory register selected with |u〉= |01〉 forms the new resource for encoding the next pattern,
following completion of the unencoding steps:

|Ψ7〉=
1∏

j=n

CXaj,mjXmj |Ψ6〉

=
1

2
|001〉|00〉|001〉+

√
3

2
|001〉|01〉|001〉,

|Ψ8〉=
1∏

j=n

2CXaj,u2,mj |Ψ7〉

=
1

2
|001〉|00〉|001〉+

√
3

2
|001〉|01〉|000〉.

We now reset register |a〉 and start fresh for the pattern at index i= 2, 111:

|Ψ′
0〉=

1

2
|000〉|00〉|001〉+

√
3

2
|000〉|01〉|000〉,

where following the same operations and steps as above, we get

|Ψ′
1〉=

1

2
|111〉|00〉|001〉+

√
3

2
|111〉|01〉|000〉,

13

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

|Ψ′
2〉=

n∏
j=1

2CXaj,u2,mj |Ψ′
1〉

=
1

2
|111〉|00〉|001〉+

√
3

2
|111〉|01〉|111〉,

|Ψ′
3〉=

n∏
j=1

XmjCXaj,mj |Ψ′
2〉

=
1

2
|111〉|00〉|001〉+

√
3

2
|111〉|01〉|111〉,

|Ψ′
4〉= 3CXm1,m2,m3,u1 |Ψ′

3〉

=
1

2
|111〉|00〉|001〉+

√
3

2
|111〉|11〉|111〉,

|Ψ′
5〉= CS(N+1−i)

u1,u2 |Ψ′
4〉

= CS(3)u1,u2 |Ψ
′
4〉

=
1

2
(|111〉|00〉|001〉+ |111〉|10〉|111〉)+ 1√

2
|111〉|11〉|111〉,

|Ψ′
6〉= 3CXm1,m2,m3,u1 |Ψ′

5〉

=
1

2
(|111〉|00〉|001〉+ |111〉|00〉|111〉)+ 1√

2
|111〉|01〉|111〉,

|Ψ′
7〉=

1∏
j=n

CXaj,mjXmj |Ψ′
6〉

=
1

2
(|111〉|00〉|001〉+ |111〉|00〉|111〉)+ 1√

2
|111〉|01〉|111〉,

|Ψ′
8〉=

1∏
j=n

2CXaj,u2,mj |Ψ′
7〉

=
1

2
(|111〉|00〉|001〉+ |111〉|00〉|111〉)+ 1√

2
|111〉|01〉|000〉.

As before, we reset register |a〉 for pattern at index i= 3 000 giving

|Ψ′′
0 〉=

1

2
(|000〉|00〉|001〉+ |000〉|00〉|111〉)+ 1√

2
|000〉|01〉|000〉,

|Ψ′′
1 〉=

1

2
(|000〉|00〉|001〉+ |000〉|00〉|111〉)+ 1√

2
|000〉|01〉|000〉,

|Ψ′′
2 〉=

n∏
j=1

2CXaj,u2,mj |Ψ′′
1 〉

=
1

2
(|000〉|00〉|001〉+ |000〉|00〉|111〉)+ 1√

2
|000〉|01〉|000〉,

|Ψ′′
3 〉=

n∏
j=1

XmjCXaj,mj |Ψ′′
2 〉

=
1

2
(|000〉|00〉|110〉+ |000〉|00〉|000〉)+ 1√

2
|000〉|01〉|111〉,

|Ψ′′
4 〉= 3CXm1,m2,m3,u1 |Ψ′′

3 〉

=
1

2
(|000〉|00〉|110〉+ |000〉|00〉|000〉)+ 1√

2
|000〉|11〉|111〉,

14

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

|Ψ′′
5 〉= CS(2)u1,u2 |Ψ

′′
4 〉

=
1

2
(|000〉|00〉|110〉+ |000〉|00〉|000〉+ |000〉|10〉|111〉+ |000〉|11〉|111〉) ,

|Ψ′′
6 〉= 3CSm1,m2,m3,u1 |Ψ′′

5 〉

=
1

2
(|000〉|00〉|110〉+ |000〉|00〉|000〉+ |000〉|00〉|111〉+ |000〉|01〉|111〉) ,

|Ψ′′
7 〉=

1∏
j=n

CXaj,mjXmj |Ψ′′
6 〉

=
1

2
(|000〉|00〉|001〉+ |000〉|00〉|111〉+ |000〉|00〉|000〉+ |000〉|01〉|000〉) ,

|Ψ′′
8 〉=

1∏
j=n

2CXaj,u2,mj |Ψ′′
7 〉

=
1

2
(|000〉|00〉|001〉+ |000〉|00〉|111〉+ |000〉|00〉|000〉+ |000〉|01〉|000〉) .

Finally, we encode the last pattern at index i= 4, 110 giving

|Ψ′′′
0 〉= 1

2
(|000〉|00〉|001〉+ |000〉|00〉|111〉+ |000〉|00〉|000〉+ |000〉|01〉|000〉) ,

|Ψ′′′
1 〉= 1

2
(|110〉|00〉|001〉+ |110〉|00〉|111〉+ |110〉|00〉|000〉+ |110〉|01〉|000〉) ,

|Ψ′′′
2 〉=

n∏
j=1

2CXaj,u2,mj |Ψ′′′
1 〉

=
1

2
(|110〉|00〉|001〉+ |110〉|00〉|111〉+ |110〉|00〉|000〉+ |110〉|01〉|110〉) ,

|Ψ′′′
3 〉=

n∏
j=1

XmjCXaj,mj |Ψ′′′
2 〉

=
1

2
(|110〉|00〉|000〉+ |110〉|00〉|110〉+ |110〉|00〉|001〉+ |110〉|01〉|111〉) ,

|Ψ′′′
4 〉= 3CXm1,m2,m3,u1 |Ψ′′′

3 〉

=
1

2
(|110〉|00〉|000〉+ |110〉|00〉|110〉+ |110〉|00〉|001〉+ |110〉|11〉|111〉) ,

|Ψ′′′
5 〉= CS(1)u1,u2 |Ψ

′′′
4 〉

=
1

2
(|110〉|00〉|000〉+ |110〉|00〉|110〉+ |110〉|00〉|001〉+ |110〉|10〉|111〉) ,

|Ψ′′′
6 〉= 3CXm1,m2,m3,u1 |Ψ′′′

5 〉

=
1

2
(|110〉|00〉|000〉+ |110〉|00〉|110〉+ |110〉|00〉|001〉+ |110〉|00〉|111〉) ,

|Ψ′′′
7 〉=

1∏
j=n

CXaj,mjXmj |Ψ′′′
6 〉

=
1

2
(|110〉|00〉|001〉+ |110〉|00〉|111〉+ |110〉|00〉|000〉+ |110〉|00〉|110〉) ,

15

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

|Ψ′′′
8 〉=

1∏
j=n

2CXaj,u2,mj |Ψ′′′
7 〉

=
1

2
(|110〉|00〉|001〉+ |110〉|00〉|111〉+ |110〉|00〉|000〉+ |110〉|00〉|110〉) .

After unencoding the pattern from |a〉, our final encoded state is

|Ψ〉= 1

2
|0〉⊗5 (|001〉+ |111〉+ |000〉+ |110〉) .

In register |m〉, we now have the bit-patterns encoded with equal amplitudes, and completely separable from
registers |a〉 and |u〉.

A.2. 4 qubits, 3 patterns
As with App. A.1, we follow the encoding procedure from section 3.2. Starting with a n= 4 qubit register, we
aim to encode the following N = 3 patterns:

P= [1111,0001,1100],

which are again taken from the set of available patterns from Alg. 3.2 for a 4 qubit data-set, beginning with
state

|Ψ0〉= |a〉|u〉|m〉
= |a1a2a3a4〉|u1u2〉|m1m2m3m4〉
= |0000〉|01〉|0000〉.

Starting with index i= 1, we will begin with pattern 1111.

|Ψ1〉= |1111〉|01〉|0000〉,

|Ψ2〉=
n∏

j=1

2CXaj,u2,mj |Ψ1〉

= (2CXa4,u2,m4)(2CXa3,u2,m3)(2CXa2,u2,m2)(2CXa1,u2,m1)|1111〉|01〉|0000〉
= |1111〉|01〉|1111〉,

|Ψ3〉=
n∏

j=1

XmjCXaj,mj |Ψ2〉

= (Xm4CXa4,m4)(Xm3CXa3,m3)(Xm2CXa2,m2)(Xm1CXa1,m1)|1111〉|01〉|1111〉
= |1111〉|01〉|1111〉,

|Ψ4〉= nCXm1,...,mn,u1 |Ψ3〉
= 4CXm1,m2,m3,m4,u1 |1111〉|01〉|1111〉
= |1111〉|11〉|1111〉,

|Ψ5〉= CS(N+1−i)
u1,u2 |Ψ4〉,

where we again require use of equation (8). Given that we intend to encode 3 patterns this time, we require 3
such matrices, S(3), S(2) and S(1) as

S(3) =

√ 2
3

1√
3

−1√
3

√
2
3

 , S(2) = 1√
2

[
1 1
−1 1

]
, S(1) =

[
0 1
−1 0

]
.

16

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

For index i= 1, we use the S(3) matrix:

|Ψ5〉= CS(N+1−i)
u1,u2 |Ψ4〉

= CS(3)u1,u2 |Ψ4〉,

=
1√
3
|1111〉|10〉|1111〉+

√
2

3
|1111〉|11〉|1111〉,

|Ψ6〉= 4CXm1,m2,m3,m4,u1 |Ψ5〉

=
1√
3
|1111〉|00〉|1111〉+

√
2

3
|1111〉|01〉|1111〉,

|Ψ7〉=
1∏

j=n

CXaj,mjXmj |Ψ6〉

=
1√
3
|1111〉|00〉|1111〉+

√
2

3
|1111〉|01〉|1111〉,

|Ψ8〉=
1∏

j=n

2CXaj,u2,mj |Ψ7〉

=
1√
3
|1111〉|00〉|1111〉+

√
2

3
|1111〉|01〉|0000〉.

Resetting the register |a〉 for index i= 2, pattern 0001 gives

|Ψ′
0〉=

1√
3
|0000〉|00〉|1111〉+

√
2

3
|0000〉|01〉|0000〉,

|Ψ′
1〉=

1√
3
|0001〉|00〉|1111〉+

√
2

3
|0001〉|01〉|0000〉,

|Ψ′
2〉=

n∏
j=1

2CXaj,u2,mj |Ψ′
1〉

=
1√
3
|0001〉|00〉|1111〉+

√
2

3
|0001〉|01〉|0001〉,

|Ψ′
3〉=

n∏
j=1

XmjCXaj,mj |Ψ′
2〉

=
1√
3
|0001〉|00〉|0001〉+

√
2

3
|0001〉|01〉|1111〉,

|Ψ′
4〉= 4CXm1,m2,m3,m4,u1 |Ψ′

3〉

=
1√
3
|0001〉|00〉|0001〉+

√
2

3
|0001〉|11〉|1111〉.

For i= 2, we use the matrix S(2):

|Ψ′
5〉= CS(N+1−i)

u1,u2 |Ψ′
4〉

= CS(2)u1,u2 |Ψ
′
4〉

=
1√
3
(|0001〉|00〉|0001〉+ |0001〉|10〉|1111〉+ |0001〉|11〉|1111〉) ,

|Ψ′
6〉= 4CXm1,m2,m3,m4,u1 |Ψ′

5〉

=
1√
3
(|0001〉|00〉|0001〉+ |0001〉|00〉|1111〉+ |0001〉|01〉|1111〉) ,

17

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

|Ψ′
7〉=

1∏
j=n

CXaj,mjXmj |Ψ′
6〉

=
1√
3
(|0001〉|00〉|1111〉+ |0001〉|00〉|0001〉+ |0001〉|01〉|0001〉) ,

|Ψ′
8〉=

1∏
j=n

2CXaj,u2,mj |Ψ′
7〉

=
1√
3
(|0001〉|00〉|1111〉+ |0001〉|00〉|0001〉+ |0001〉|01〉|0000〉) .

For the final pattern, we reset |a〉 for index i= 3, pattern 1100, giving:

|Ψ′′
0 〉=

1√
3
(|0000〉|00〉|1111〉+ |0000〉|00〉|0001〉+ |0000〉|01〉|0000〉) ,

|Ψ′′
1 〉=

1√
3
(|1100〉|00〉|1111〉+ |1100〉|00〉|0001〉+ |1100〉|01〉|0000〉) ,

|Ψ′′
2 〉=

n∏
j=1

2CXaj,u2,mj |Ψ′′
1 〉

=
1√
3
(|1100〉|00〉|1111〉+ |1100〉|00〉|0001〉+ |1100〉|01〉|1100〉) ,

|Ψ′′
3 〉=

n∏
j=1

XmjCXaj,mj |Ψ′′
2 〉

=
1√
3
(|1100〉|00〉|1100〉+ |1100〉|00〉|0010〉+ |1100〉|01〉|1111〉) ,

|Ψ′′
4 〉= 4CXm1,m2,m3,m4,u1 |Ψ′′

3 〉

=
1√
3
(|1100〉|00〉|1100〉+ |1100〉|00〉|0010〉+ |1100〉|11〉|1111〉) .

We now use matrix S(1):

|Ψ′′
5 〉= CS(1)u1,u2 |Ψ

′′
4 〉

=
1√
3
(|1100〉|00〉|1100〉+ |1100〉|00〉|0010〉+ |1100〉|10〉|1111〉) ,

|Ψ′′
6 〉= 4CXm1,m2,m3,m4,u1 |Ψ′′

5 〉

=
1√
3
(|1100〉|00〉|1100〉+ |1100〉|00〉|0010〉+ |1100〉|00〉|1111〉) ,

|Ψ′′
7 〉=

1∏
j=n

CXaj,mjXmj |Ψ′′
6 〉

=
1√
3
(|1100〉|00〉|1111〉+ |1100〉|00〉|0001〉+ |1100〉|00〉|1100〉) ,

|Ψ′′
8 〉=

1∏
j=n

2CXaj,u2,mj |Ψ′′
7 〉

=
1√
3
(|1100〉|00〉|1111〉+ |1100〉|00〉|0001〉+ |1100〉|00〉|1100〉) .

18

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

After unencoding the pattern from |a〉, our final encoded state is:

|Ψ〉= 1√
3
|0〉⊗6 (|1111〉+ |0001〉+ |1100〉) .

As with App. A.1, we now have the bit-patterns encoded with equal amplitudes, and completely separable
from registers |a〉 and |u〉.

Appendix B. Corpus preparation

Our QNLP software solution [11] can target most corpora provided that adequate pre-processing is
conducted prior to the main routines of the application, and follows the outline approach from section 3.

This approach has several variables that can be adjusted to control the operation of the pre-processing
stage. The limiting number of top Nnouns and Nverbs are defined with the run-time parameters
NUM_BASIS_NOUN and NUM_BASIS_VERB, and defined as environment variables. The number of
neighbouring nouns,Wnouns, and verbs,Wverbs, to consider when mapping the corpus tokens to basis tokens,
are controlled by the run-time parameters BASIS_NOUN_DIST_CUTOFF and BASIS_VERB_DIST_CUTOFF
respectively, and again defined as environment variables.

Finally, for forming noun-verb-noun sentence structures, the number of neighbouring nouns to consider
for determining the basis verbs,Wvn, are controlled through the environment variable
VERB_NOUN_DIST_CUTOFF. Additionally, the sentence is only valid if the inter-noun distance on a
noun-verb-noun structure is within 2Wvn. To choose appropriate values for these parameters, one must
consider the overall complexity of the corpus, the number of noun-verb-noun sentences, the available qubit
resources, and the intended detail in representing the overall meaning. For the simplified example in
section 4.1, we have a somewhat sparsely encoded set of patterns in the meaning space (8 patterns out of a
possible 32), with a small number of qubits to represent the processing and assist with the encoding. A more
complex text, with a larger basis set will require substantially more resources. For example, choosing
NUM_BASIS_NOUN = 10 and NUM_BASIS_VERB = 10 using the discussed simplified cyclic encoding from
algorithm (1) will require at least 32 qubits. However, depending on the amount of information the
pre-processing stage can extract, this may be an overestimate or underestimate of the required
resources.

Appendix C. Software dependencies

All results in this manuscript were generated using our QNLP toolkit, which is available at [11]. Jupyter
notebooks, packages and scripts exist for all operations described. We made use of the Intel Quantum
Simulator [12] to perform all quantum gate-level simulations, running on Kay, the Irish national
supercomputer. To integrate our C++ work with Python we have made use of the pybind11 suite [41]. All
results obtained were through compilation with IntelR Parallel Studio XE 2019 Update 5 for distributed
workloads (section 4.2), and GCC 9.2 for shared (OpenMP) workloads (section 4.1).

To analyse and prepare the corpus data for encoding into the quantum state-space, we have used the
well-defined classical routines for corpus tokenisation and tagging from the NLTK [15] and spaCy [16]
software suites. For plotting we explicitly used pgfplots/tikz for figure 1, and Matplotlib for all others [42].
We additionally used the Scipy ecosystem and pandas for both the results analysis and preprocessing
stages [43–45].

Appendix D. Encodedmeaning-space data

Table D1 is used to generate figure 4. It encodes data from ‘Alice in Wonderland’ using the preprocessing
control parameters:

• Number of basis elements for state encoding: NUM_BASIS_NOUN = 8 NUM_BASIS_VERB = 4
• Inter-token composite representation distance: BASIS_NOUN_DIST_CUTOFF = 5, BASIS_VERB_DIST_

CUTOFF = 5
• Verb-noun distance cut-off for association: VERB_NOUN_DIST_CUTOFF = 4

19

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Table D1. Results for figure 3 taking 5× 104 samples encoding AIW using the parameters NUM_BASIS_NOUN: 8, NUM_BASIS_VERB:
4, BASIS_NOUN_DIST_CUTOFF: 5, BASIS_VERB_DIST_CUTOFF: 5, VERB_NOUN_DIST_CUTOFF: 4, and comparing with the test
pattern (‘hatter,says,queen’) with binary string 1111100011.

Label Bin. pattern dH Count

king,go,queen 1111110111 2 1260
king,say,time 1110100111 2 1217
time,say,queen 1111101110 3 1165
king,go,time 1110110111 3 1123
queen,go,queen 1111111111 3 1102
hatter,say,alice 1000100011 3 1094
king,would,time 1110000111 3 1088
king,say,hatter 0011100111 3 1087
king,go,king 0111110111 3 1080
head,go,queen 1111110000 3 1075
queen,say,time 1110101111 3 1069
alice,say,king 0111101000 4 940
queen,go,king 0111111111 4 925
alice,go,queen 1111111000 4 924
head,go,king 0111110000 4 922
king,go,hatter 0011110111 4 919
time,go,queen 1111111110 4 913
king,would,hatter 0011000111 4 908
queen,would,time 1110001111 4 908
alice,say,time 1110101000 4 899
time,would,queen 1111001110 4 899
time,say,king 0111101110 4 894
king,say,alice 1000100111 4 894
time,say,time 1110101110 4 893
queen,say,hatter 0011101111 4 889
hatter,would,alice 1000000011 4 885
queen,go,time 1110111111 4 872
king,think,time 1110010111 4 866
hatter,go,alice 1000110011 4 836
thing,say,time 1110101100 5 730
king,think,hatter 0011010111 5 729
queen,say,alice 1000101111 5 712
queen,think,time 1110011111 5 704
time,go,time 1110111110 5 702
time,would,king 0111001110 5 700
alice,go,king 0111111000 5 698
time,would,time 1110001110 5 696
alice,go,time 1110111000 5 689
alice,say,hatter 0011101000 5 681
hatter,think,alice 1000010011 5 681
queen,go,hatter 0011111111 5 680
time,go,king 0111111110 5 662
queen,would,hatter 0011001111 5 658
king,would,alice 1000000111 5 657
thing,go,queen 1111111100 5 657
king,go,alice 1000110111 5 650
alice,would,time 1110001000 5 642
queen,think,hatter 0011011111 6 504
alice,think,time 1110011000 6 490
head,go,alice 1000110000 6 485
thing,would,time 1110001100 6 479
alice,go,hatter 0011111000 6 472
queen,would,alice 1000001111 6 470
alice,say,alice 1000101000 6 456
time,say,alice 1000101110 6 455
thing,go,time 1110111100 6 455
king,think,alice 1000010111 6 449
queen,go,alice 1000111111 6 449
alice,would,hatter 0011001000 6 448

(Continued)

20

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Table D1. (Continued).

Label Bin. pattern dH Count

thing,go,king 0111111100 6 436
time,would,alice 1000001110 7 303
alice,go,alice 1000111000 7 297
alice,say,head 0000101000 7 283
time,go,alice 1000111110 7 269
alice,would,alice 1000001000 7 267
thing,say,alice 1000101100 7 266
queen,think,alice 1000011111 7 259
time,say,head 0000101110 7 254
alice,think,hatter 0011011000 7 239
thing,go,alice 1000111100 8 139
thing,would,alice 1000001100 8 125
alice,think,alice 1000011000 8 123
time,would,head 0000001110 8 117
time,go,head 0000111110 8 113
alice,think,head 0000011000 9 24

Appendix E. Overlap comparison data

Table E1 presents comparison data for the basis-token composed sentence ‘Hatter say Queen’ and and a
variety of other allowed sentence structures. Data is again encoded from ‘Alice in Wonderland’ using the
preprocessing control parameters

• Number of basis elements for state encoding: NUM_BASIS_NOUN = 8 NUM_BASIS_VERB = 4
• Inter-token composite representation distance: BASIS_NOUN_DIST_CUTOFF = 5, BASIS_VERB_DIST_

CUTOFF = 5
• Verb-noun distance cut-off for association: VERB_NOUN_DIST_CUTOFF = 4.

Table E1. The overlap of representative encoding of test pattern ‘hatter,says,queen’ and a variety of other encodable patterns.

Test pattern Bin. pattern Overlap

hatter,go,queen 1111110011 0.974595
hatter,say,king 0111100011 0.974003
turtle,say,queen 1111100001 0.973813
hatter,would,queen 1111000011 0.973788
hatter,go,time 1110110011 0.959719
hatter,think,queen 1111010011 0.955626
turtle,say,time 1110100001 0.950021
turtle,would,queen 1111000001 0.947137
hatter,would,time 1110000011 0.945508
hatter,go,king 0111110011 0.944756
turtle,say,king 0111100001 0.943421
hatter,would,king 0111000011 0.943293
turtle,go,queen 1111110001 0.942680
hatter,say,hatter 0011100011 0.942616
hatter,think,time 1110010011 0.937847
turtle,go,time 1110110001 0.927700
turtle,think,queen 1111010001 0.923638
hatter,think,king 0111010011 0.923143
turtle,would,time 1110000001 0.918514
head,say,queen 1111100000 0.918384
hatter,go,hatter 0011110011 0.917483
turtle,say,hatter 0011100001 0.913042
turtle,would,king 0111000001 0.912276
turtle,go,king 0111110001 0.907574
turtle,think,time 1110010001 0.905863

(Continued)

21

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

Table E1. (Continued).

Test pattern Bin. pattern Overlap

hatter,go,thing 1100110011 0.904857
hatter,would,hatter 0011000011 0.904360
head,say,time 1110100000 0.897983
head,would,queen 1111000000 0.895655
hatter,think,hatter 0011010011 0.891647
turtle,think,king 0111010001 0.886336
turtle,say,thing 1100100001 0.884995
head,go,time 1110110000 0.884820
turtle,go,hatter 0011110001 0.881117
head,think,queen 1111010000 0.881114
head,say,king 0111100000 0.880701
hatter,would,thing 1100000011 0.874690
hatter,think,thing 1100010011 0.874513
turtle,would,hatter 0011000001 0.874446
hatter,say,turtle 0001100011 0.872754
head,would,time 1110000000 0.870438
turtle,go,thing 1100110001 0.867190
head,think,time 1110010000 0.864927
head,say,hatter 0011100000 0.860190
turtle,think,hatter 0011010001 0.856023
head,would,king 0111000000 0.854352
hatter,go,turtle 0001110011 0.851418
hatter,say,head 0000100011 0.849715
turtle,would,thing 1100000001 0.841915
hatter,go,head 0000110011 0.841185
head,go,hatter 0011110000 0.840234
head,think,king 0111010000 0.838609
turtle,say,turtle 0001100001 0.838448
turtle,think,thing 1100010001 0.836987
head,say,thing 1100100000 0.831755
head,would,hatter 0011000000 0.827727
turtle,say,alice 1000100001 0.824155
head,go,thing 1100110000 0.823098
hatter,would,turtle 0001000011 0.821690
head,think,hatter 0011010000 0.818908
hatter,think,turtle 0001010011 0.815651
turtle,say,head 0000100001 0.815175
turtle,go,alice 1000110001 0.814121
turtle,go,turtle 0001110001 0.810484
turtle,go,head 0000110001 0.801212
hatter,think,head 0000010011 0.796473
head,think,thing 1100010000 0.795634
head,would,thing 1100000000 0.794096
head,say,turtle 0001100000 0.790379
head,say,alice 1000100000 0.789465
hatter,would,head 0000000011 0.789114
turtle,would,turtle 0001000001 0.786962
head,say,head 0000100000 0.777728
turtle,think,turtle 0001010001 0.775566
head,go,turtle 0001110000 0.773961
head,go,head 0000110000 0.772277
turtle,think,alice 1000010001 0.770818
turtle,would,alice 1000000001 0.766441
turtle,think,head 0000010001 0.757195
turtle,would,head 0000000001 0.754111
head,think,alice 1000010000 0.748169
head,would,turtle 0001000000 0.746573
head,think,turtle 0001010000 0.743799
head,would,alice 1000000000 0.739083
head,think,head 0000010000 0.733556
head,would,head 0000000000 0.725028

22

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

ORCID iDs

Lee J O’Riordan https://orcid.org/0000-0002-6758-9433
Myles Doyle https://orcid.org/0000-0001-7889-8357

References

[1] Cambria E and White B 2014 Jumping nlp curves: a review of natural language processing research IEEE Comput. Intell. Mag.
9 48–57

[2] Harris Z S 1954 Distributional structureWORD 10 146–62
[3] Zadrozny W 1992 On compositional semantics COLING 1992 Vol 1: The 15th Int. Conf. on Computational Linguistics
[4] Coecke B, Sadrzadeh M and Clark S 2010 Mathematical foundations for a compositional distributional model of meaning

Linguistic Analysis 36 345–84 (arXiv:1003.4394) [cs, math] (www.linguisticanalysis.com/volume-36/)
[5] Zeng W and Coecke B 2016 Quantum algorithms for compositional natural language processing Proc. of SLPCS 221 67–75
[6] Coecke B 2019 The mathematics of text structure (arXiv: 1904.03478)
[7] Wiebe N, Kapoor A and Svore K 2015 Quantum algorithms for nearest-neighbor methods for supervised and unsupervised

learning Quantum Inf. Comput. 15 316–56 (www.rintonpress.com/xxqic15/qic-15-34/0316-0356.pdf)
[8] Giovannetti V, Lloyd S and Maccone L 2008 Quantum random access memory Phys. Rev. Lett. 100 160501
[9] Arunachalam S, Gheorghiu V, Jochym-O’Connor T, Mosca M and Srinivasan P V 2015 On the robustness of bucket brigade

quantum RAM New J. Phys. 17 123010
[10] Di Matteo O, Gheorghiu V and Mosca M 2020 Fault-tolerant resource estimation of quantum random-access memories IEEE

Trans. Quantum Eng. 1 1–13 (https://ieeexplore.ieee.org/document/8962352)
[11] O’Riordan L J, Doyle M, Baruffa F and Kannan V 2020 QNLP: ICHEC quantum NLP toolkit (https:github.com/ICHEC/QNLP

10.5281/zenodo.3743034)
[12] Guerreschi G G, Hogaboam J, Baruffa F and Sawaya N 2020 Intel quantum simulator: a cloud-ready high-performance simulator

of quantum circuits Quantum Science and Technology 5 034007
[13] Nisbet R, Elder J and Miner G 2009 Part ii - the algorithms in data mining and text mining, the organization of the three most

common data mining tools and selected specialized areas using data mining , Handbook of Statistical Analysis and Data Mining
Applications eds R Nisbet, J Elder and G Miner (Boston: Academic Press) pp 119– 20

[14] Mikolov T, Chen K, Corrado G and Dean J 2013 Efficient estimation of word representations in vector space 1st International
Conference on Learning Representations, ICLR, Workshop Track Proceedings May 2–4, 2013 Scottsdale, Arizona, USA (arXiv:
1301.3781)

[15] Bird S, Loper E and Klein E 2009Natural Language Processing With Python (Sebastopol, CA: O’Reilly Media Inc.) (www.oreilly.com/
library/view/natural-language-processing/9780596803346/)

[16] Honnibal M and Montani I et al 2017 spacy 2: Industrial-strength natural language processing (NLP) with Python and Cython
[17] Blacoe W 2015 Semantic composition inspired by quantum measurement Quantum Interaction, eds H Atmanspacher, C Bergomi,

T Filk and K Kitto (Cham: Springer Int. Publishing) QI 2014 June 30 - July 3, 2014. Filzbach, Switzerland
(https://doi.org/10.1007/978-3-319-15931-7_4)

[18] Aerts D, Broekaert J, Sozzo S and Veloz T 2013 Meaning-focused and quantum-inspired information retrieval QI 2013 July 25–27,
2013 Leicester, UK, Springer Berlin Heidelberg 8369 pp 71–83

[19] Wang B 2019 Dynamic content monitoring and exploration using vector spaces Proc. 42nd Int. ACM Conf. on Research and
Development in Information Retrieval SIGIR’19, New York, NY, USA, ACM, 1444

[20] Jaiswal A K, Holdack G, Frommholz I and Liu H 2018 Quantum-like generalization of complex word embedding: a lightweight
approach for textual classification Proc. Conf. Lernen, Wissen, Daten, Analysen August 22–24, 2018 Mannheim, Germany pp 159–168

[21] Tiwari P and Melucci M 2018 Multi-class classification model inspired by quantum detection theory (arXiv: 1810.04491)
[22] Wang B, Buccio E Di and Melucci M 2019 Representing Words in Vector Space and Beyond Representing words in vector space and

beyond Quantum-Like Models for Information Retrieval and Decision-Making (Cham: Springer Int. Publishing) (https://doi.org/
10.1007/978-3-030-25913-6_5)

[23] Wiebe N, Bocharov A, Smolensky P, Troyer M and Svore K M 2019 (arXiv:1902.05162) [quant-ph] Quantum Language Processing
(arXiv: 1902.05162)

[24] Bausch J, Subramanian S and Piddock S 2019 A quantum search decoder for natural language processing arXiv e-prints, (arXiv:
1909.05023)

[25] Lambek J 2008 Pregroup grammars and Chomsky’s earliest examples J. Logic Lang. Inf. 17 141–60
[26] Smelyanskiy M, Sawaya N P D and Aspuru-Guzik A 2016 qhipster: The quantum high performance software testing environment

(arXiv: 1601.07195)
[27] Schuld M 2017 Quantum machine learning for supervised pattern recognition PhD Thesis (https://hdl.handle.net/10413/15748)
[28] Mitarai K, Kitagawa M and Fujii K 2019 Quantum analog-digital conversion Phys. Rev. A 99 012301
[29] Levy O and Goldberg Y 2014 Linguistic regularities in sparse and explicit word representations Proc. 18th Conf. on Computational

Natural Language Learning (Ann Arbor, Michigan Association for Computational Linguistics), pp 171–80
[30] Socher R, Bauer J, Manning C D and Ng A Y 2013 Parsing with compositional vector grammars Proc. 51st Annual Meeting of the

Association for Computational Linguistics (vol 1: Long Papers) pp 455–65 (www.aclweb.org/anthology/P13-1045)
[31] Mikolov T, Sutskever I, Chen K, Corrado G and Dean J 2013 Distributed representations of words and phrases and their

compositionality Proc. 26th Int. Conf. on Neural Information Processing Systems—vol 2, NIPS’13, Dec 5 –10, 2013 Lake Tahoe, NV
Curran Associates Inc. pp 3111–3119

[32] Hagberg A A, Schult D A and Swart P J 2008 Exploring network structure, dynamics and function using networkx Proc. 7th Python
in Conf. (SciPy2008) Aug 19–24, 2008 Caltech, Pasadena, CA, USA, eds G Varoquaux, T Vaught and J Millman pp 11–16
(https://conference.scipy.org/proceedings/scipy2008/paper_2)

[33] Trugenberger C A 2001 Probabilistic quantum memories Phys. Rev. Lett. 87 067901
[34] Trugenberger C A 2002 Quantum pattern recognition Quantum Inf. Process. 1 471–93
[35] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Elementary

gates for quantum computation Phys. Rev. A 52 3457–67
[36] Harrow AW 2020 Small quantum computers and large classical data sets (arXiv:2004.00026)

23

https://orcid.org/0000-0002-6758-9433
https://orcid.org/0000-0002-6758-9433
https://orcid.org/0000-0001-7889-8357
https://orcid.org/0000-0001-7889-8357
https://doi.org/10.1109/MCI.2014.2307227
https://doi.org/10.1109/MCI.2014.2307227
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://www.linguisticanalysis.com/volume-36/
https://doi.org/10.4204/EPTCS.221.8
https://doi.org/10.4204/EPTCS.221.8
https://arxiv.org/abs/1904.03478
https://www.rintonpress.com/xxqic15/qic-15-34/0316-0356.pdf
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1088/1367-2630/17/12/123010
https://doi.org/10.1088/1367-2630/17/12/123010
https://ieeexplore.ieee.org/document/8962352
https://github.com/ICHEC/QNLP 10.5281/zenodo.3743034
https://github.com/ICHEC/QNLP 10.5281/zenodo.3743034
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.1016/B978-0-12-374765-5.X0001-0
https://arxiv.org/abs/1301.3781
https://www.oreilly.com/library/view/natural-language-processing/9780596803346/
https://www.oreilly.com/library/view/natural-language-processing/9780596803346/
https://doi.org/10.1007/978-3-319-15931-7_4
https://doi.org/10.1007/978-3-642-54943-4_7
https://doi.org/10.1007/978-3-642-54943-4_7
https://doi.org/10.1145/3331184.3331412
https://arxiv.org/abs/1810.04491
https://doi.org/10.1007/978-3-030-25913-6_5
https://doi.org/10.1007/978-3-030-25913-6_5
https://arxiv.org/abs/1902.05162
https://arxiv.org/abs/1909.05023
https://doi.org/10.1007/s10849-007-9053-2
https://doi.org/10.1007/s10849-007-9053-2
https://arxiv.org/abs/1601.07195
https://hdl.handle.net/10413/15748
https://doi.org/10.1103/PhysRevA.99.012301
https://doi.org/10.1103/PhysRevA.99.012301
https://doi.org/10.3115/v1/W14-1618
https://www.aclweb.org/anthology/P13-1045
https://doi.org/10.5555/2999792.2999959
https://conference.scipy.org/proceedings/scipy2008/paper_2
https://doi.org/10.1103/PhysRevLett.87.067901
https://doi.org/10.1103/PhysRevLett.87.067901
https://doi.org/10.1023/A:1024022632303
https://doi.org/10.1023/A:1024022632303
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevA.52.3457

Mach. Learn.: Sci. Technol. 2 (2021) 015011 L J O’Riordan et al

[37] Coecke B and Duncan R 2011 Interacting quantum observables: categorical algebra and diagrammatics New J. Phys. 13 043016
[38] Cowtan A, Dilkes S, Duncan R, Krajenbrink A, Simmons W and Sivarajah S 2019 On the qubit routing problem 14th Conf. on the

Theory of Quantum Computation, Communication and Cryptography (TQC 2019), vol 135 of Leibniz Int. Proc. in Informatics
(LIPIcs) Jun 3 – 5, 2019 Maryland, USA, eds W van Dam and L Mancinska, pp 5:1–32

[39] Coecke B, de Felice G, Meichanetzidis K and Toumi A 2020 Quantum natural language processing (16 April 2020)
(https://medium.com/cambridge-quantum-computing/quantum-natural-language-processing-748d6f27b31d)

[40] de Felice G, Toumi A and Coecke B 2020 DisCoPy: Monoidal categories in Python p 2020 (arXiv: 2005.02975)
[41] Jakob W, Rhinelander J and Moldovan D 2017 (pybind11—seamless operability between C++11 and Python)

(https://github.com/pybind/pybind11)
[42] Hunter J D 2007 Matplotlib: A 2d graphics environment Comput. Sci. Eng. 9 90–5
[43] van der Walt S, Chris Colbert S and Varoquaux G 2011 The numpy array: a structure for efficient numerical computation Comput.

Sci. Eng. 13 22–30
[44] Virtanen P et al 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods 17 261–72
[45] McKinney Wes 2010 Data structures for statistical computing in Python 9th Python in Science Conference June 28 – July 3, 2010

Austin, Texas (https://doi.org/10.25080/Majora-92bf1922-012)

24

https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://medium.com/cambridge-quantum-computing/quantum-natural-language-processing-748d6f27b31d
https://arxiv.org/abs/2005.02975
https://github.com/pybind/pybind11
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.25080/Majora-92bf1922-012

	A hybrid classical-quantum workflow for natural language processing
	1. Introduction
	2. NLP methods
	3. Methods
	3.1. Representing meaning in quantum states
	3.2. Token encoding
	3.3. Methods for quantum state encoding
	3.4. Representing patterns using encoded data

	4. Results
	4.1. Small-scale example
	4.2. Automated large-scale encoding

	5. Conclusions
	Acknowledgments
	References

