
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Detecting symmetries with neural networks
To cite this article: Sven Krippendorf and Marc Syvaeri 2021 Mach. Learn.: Sci. Technol. 2 015010

 

View the article online for updates and enhancements.

This content was downloaded from IP address 106.213.19.213 on 30/06/2023 at 08:58

https://doi.org/10.1088/2632-2153/abbd2d


Mach. Learn.: Sci. Technol. 2 (2021) 015010 https://doi.org/10.1088/2632-2153/abbd2d

OPEN ACCESS

RECEIVED

14 April 2020

REVISED

8 September 2020

ACCEPTED FOR PUBLICATION

30 September 2020

PUBLISHED

1 December 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Detecting symmetries with neural networks
Sven Krippendorf1 and Marc Syvaeri1,2

1 Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstraß e 37, 80333 München, Germany
2 Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany

E-mail: sven.krippendorf@physik.uni-muenchen.de

Keywords: Calabi-Yau manifolds, symmetries, machine learning

Abstract
Identifying symmetries in data sets is generally difficult, but knowledge about them is crucial for
efficient data handling. Here we present a method how neural networks can be used to identify
symmetries. We make extensive use of the structure in the embedding layer of the neural network
which allows us to identify whether a symmetry is present and to identify orbits of the symmetry in
the input. To determine which continuous or discrete symmetry group is present we analyse the
invariant orbits in the input. We present examples based on rotation groups SO(n) and the unitary
group SU(2). Further we find that this method is useful for the classification of complete
intersection Calabi-Yau manifolds where it is crucial to identify discrete symmetries on the input
space. For this example we present a novel data representation in terms of graphs.

1. Introduction

One ubiquitous feature in nature is the presence of symmetries, ranging from the ultra-small captured by the
symmetries underlying the Standard Model of Particle Physics to the isotropy and homogeneity of our
Universe on cosmological scales; and in every day life when one wants to identify objects in a picture with a
neural network. The question we pursue in this paper is: Can we use neural networks to detect symmetries in
an underlying data product?

We present a method which is suitable for data questions where we have samples of a function of the
input variables f(xinput). This situation is present in supervised learning. The presence of a symmetry is
simply the statement that inputs which are transformed under some symmetry transformation
xinput → S(xinput) lead to the same output f(S(xinput)) = f(xinput).

The key idea which we utilise to find symmetries, is the fact that objects which are invariant under
symmetries are clustered together in the embedding space (i.e. the second to last layer in our neural
networks). As a first step, this reveals the presence of symmetries. Effectively, this is rather similar to word
embeddings found in word2vec [1], which has also been utilised to identify similarities between chemical
elements [2]. By analysing the relation of the points in the input space we are then able to identify the nature
of the symmetry, i.e. we determine the generators of the associated Lie algebra of the continuous symmetry
group.

We test this method on artificial datasets with an underlying rotational group SO(2) and SO(3), and
show how we can identify the generators of the Lie algebra L(SU(2)) and distinguish it from larger Lie
algebras such as L(SO(4)). To show the applicability of the identification of generators in
higher-dimensional datasets (e.g. images), we discuss how we can identify the generators of L(SO(2)) in the
context of rotated MNIST data.

We use this method in the context of the classification of consistent vacua in string theory. Finding
distinct ways to obtain string vacua is a crucial step in improving our understanding of string theory as a
theory of quantum gravity. One aspect is the classification of consistent string backgrounds, in particular
Calabi-Yau manifolds (CYs). To obtain a classification one needs to remove redundancies arising from
multiple representations of the same manifold. We apply our method to the case of complete intersection
Calabi-Yau manifolds (CICYs). Utilising a novel representation using graphs, we perform the supervised
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classification task for two topological invariants, the Hodge numbers h1,1 and h1,2. When analysing the
embedding layer, we are able to re-identify the known identities in the dataset.

The rest of the paper is organised as follows. In section 2 we describe how symmetries can be found in the
embedding layer. We then examine the orbits in the input layer to identify the underlying symmetry in
section 3, before presenting our conclusions.

2. Finding symmetries

In this section we present a method of how to identify previously ‘unknown’ symmetries in a dataset by
examining the clustering behaviour in the embedding layer. We study this method on two types of
examples—continuous and discrete symmetries.

In the first part, we discuss two examples based on real and complex-valued functions. For this we take
the Mexican hat potential in two dimensions which features an SO(2)-symmetry, and an SU(2) invariant
superpotential (holomorphic function). The procedure to find symmetries is as follows: Within these
potentials, we define classes which are defined by a respective value of the potential. This enables us to
construct a classification problem3. We train our network to address this classification task and examine the
representation in the embedding layer. This reveals that the representation distinguishes between points
connected via the symmetry and points not connected but still in the same class. Coarsely speaking, the
network clusters symmetry invariant points and there is a gap in the embedding layer to the other points in
the class.

In the second part, we study discrete symmetries in the context of classification of CICYs in three
dimensions. We take multiple representatives of each manifold, and train the network to classify some
topological invariants, the Hodge numbers h1,1 and h1,2. Again, by analysing the structure of the embedding
layer, we are able to identify finer grained classes compared to the trained classes. These finer grained classes
are comprised of different representatives of the respective CICY manifold. The neural network must use
other quantities which it is not trained on.

Depending on the dimension of the embedding space, we use a dimensional reduction with t-distributed
stochastic neighbor embedding (TSNE) [3] to be able to plot the data points and to visualise its structures.

This identification of a symmetry in the dataset is then used in a second step to construct the generators
associated with this symmetry. This is discussed in section 3 and this step allows us to identify the underlying
symmetry.

2.1. Continuous symmetries
Mexican-hat-potential
We start with a two-dimensional function with an underlying SO(2)-symmetry:

V(x,y) =−a · (x2 + y2)+ (x2 + y2)2 =−a · r2 + r4 , (1)

where we use a= 2.3 for our numerical experiments. Here, two types of points appear: Points with the same
value for the potential (1) which are related by a symmetry transformation and points which are not related
by a symmetry. Examples of such points can be found in the plot of the potential shown in the right panel of
figure 1.

We formulate our classification problem as follows: we define 11 classes for the function where the values
of these classes are as follows: [

k

5
− 10−3,

k

5
+ 10−3

]
k=−5, . . . ,5 . (2)

Then we sample points by randomly picking values for x and y, and checking whether they belong to one of
the classes. For training, we use balanced training sets with∼1000 representatives per class. We train a simple
network consisting of 7 dense layers with 80 hidden units with ReLU-activation and a final layer with
11-dimensional softmax output activation4. We use categorical crossentropy with Adam optimiser5. We train
our network on this classification task to a reasonable training accuracy (above 95%)6. We then visualise the
representation on the embedding layer by applying TSNE on this 80-dimensional data set which can be
found in figure 1.

3In our experiments, we find that regression does not expose symmetries in the same way.
4We use tensorflow with keras backend. For PCA and TSNE implementations we use [4].
5Our results do not require large hyperparameter tuning.
6We only define a training dataset because we are only interested in correctly classified data points. At this stage there is no necessity to
construct a test or validation set.
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Figure 1. Left: This shows the TSNE-representation (perplexity of 50) of the embedding layer. Each colour represents one class.
For several classes, we can directly see two distinct point clouds. Right: This shows the plot of the Mexican hat potential where we
highlight the classes using the same color coding as on the left panel. Here, we can directly match points with multiple clusters
and disconnected TSNE components.

Looking at a specific class, one can directly see that the separating property is the norm of the point. To
be precise, points bigger than the norm of the minimum of the potential at r=

√
a/2 are separated by points

with smaller norm. In figure 1 we can identify for multiple of these classes that they clearly split in two
regions whereas for classes with elements from only ‘one’ radius they are not split.

Superpotential
We now demonstrate the method on an example with an SU(2)-symmetry. To do this we examine the
following complex valued function

W(x,y) = (x1y2 − x2y1)+
1

2
(x1y2 − x2y1)

2 , (3)

where x= (x1,x2),y= (y1,y2) ∈ C2 and transform in the fundamental and anti-fundamental representation
of SU(2), respectively. Such holomorphic functions appear for instance in supersymmetric field theories and
are referred to as superpotentials. Here we are interested in finding the symmetries in this superpotential. In
addition to the SU(2)−symmetry, this superpotential has two independent scaling symmetries:

x1 → ax1

y2 →
1

a
y2

x2 → bx2

y1 →
1

b
y1 ,

(4)

where a, b ̸= 0. However, we check that orbits of these symmetries are not present in our datasets.
Proceeding as before, we firstly sample points for the superpotential and categorise them regarding their

outputs. We have one classification with 11 class labels for the real part and one classification for the
imaginary part. We choose the following numerical ranges, which are symmetric around zero:

[
k− 10−2,k+ 10−2

]
k=−5, . . . ,5 . (5)

With this classification we cover the entire output range in the open subset Re(z), Im(z)∈(−5., 5.). Again, we
sample the points by randomly picking values for x and y, and checking whether their real and imaginary
part both belong to one of these classes. As in the previous case, we trained one simple network consisting of
7 dense layers with 60 neurons and ReLU-activation, followed by two 11-dimensional dense layers with
softmax activation. Note that the output layers share the same embedding layer. As before, we use categorical
crossentropy for each of these output layers with an Adam optimiser. For training we used a balanced set
with∼1000 representatives per class and we terminated training at an accuracy of slightly above 95%. Again,
we visualise the structure of the 60-dimensional embedding layer by applying TSNE and show the resulting
two-dimensional space in figure 2.

In this projection, it is tedious to find different regions as a consequence of having 121 different classes.
We highlight some examples of the separation in the point clouds in figure 2 with one and two distinct SU(2)
representatives, respectively. This can be seen by computing the invariant quantity of SU(2) ϵijxiyj (where
ϵij =−ϵji and ε12 = 1) and find that there are two different values for most of our classes. Once again, the
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Figure 2. Left: This is a TSNE-projection of the 60-dimensional embedding space (perplexity 40). The coloured dots mark the
same classes as highlighted on the right hand side. Grey dots denote the other points in the embedding. Right: SU(2) invariant
quantity x1 · y2 − x2 · y1.Most classes have two distinct representatives but some only have one. For instance, the yellow and light
orange class have a single SU(2) invariant. In the embedding layer there are no distinct clusters for these points unlike for the
other points.

latent representation reveals the symmetry structure of the problem. As a consistency check we find that no
such structure is observed on the input data.

2.2. Discrete Case: identifying distinct string theory vacua
After these warm-up exercises we now discuss an example where finding the symmetries in a dataset is
crucial to answer a question in mathematical physics: How many distinct vacua of string theory can be
constructed in a particular class of string models?

Knowing the distinct ways of how one can obtain string vacua is a crucial question in our understanding
of string theory as a theory of quantum gravity. One sub-question is associated to classifying consistent
background geometries for string theory, in particular CY-manifolds [5].

CICYs provide an interesting class of such backgrounds: their classification has been achieved in three
and partially in four dimensions [6, 7] and models on such spaces are among the most realistic string vacua
constructions to date [8, 9]. The initial enumeration features many representations which are related by a
priori unknown symmetries. Although they have been identified in a heroic effort for three and four
dimensions, it is unknown what the symmetries are in higher dimensions. The knowledge of these
symmetries is necessary in order to tackle the combinatorial complexity of the initial enumeration which
renders a classification in higher dimensions currently unfeasible.

CICYs are realized as complete intersections in products of complex projective spaces whose classical
description we now review (cf [10] for more details).

Construction—classical description
A CICY can be described by its configuration matrix which, for instance, can look like this

 1 1 1
2 1 2
3 0 4

 .

The notation is to be understood as follows: The first column of the matrix denotes the dimension of the
projective space, here our space is the product space P1 ×P2 ×P3. The other columns encode the
information on the polynomials which define the hypersurface in the ambient product space. The entries in a
given column refer to the multi-degrees in the corresponding projective space. The CICY is defined as the
zeros of these polynomials. To write the polynomials explicitly for this example, we have to define the
coordinates of each space: P1 is denoted with xa, were a= 0, 1, the P2 coordinates by yi with i= 0, 1, 2, and
for P3 we have zm withm= 0, 1, 2, 3. The polynomials can be written as (before imposing any scaling of the
projective spaces):
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p1 =
∑
a=0,1
i=0,1,2

caix
ayi = c00x

0y0 + c01x
0y1 + c02x

0y2 + c10x
1y0 + c11x

1y1 + c12x
1y2 ,

p2 =
∑
a=0,1

i,j=0,1,2
m,...,q=0,...,3

daijmnpqx
ayiyjzmznzpzq ,

where cai and daijmnpq are complex coefficients. Therefore, the configuration matrix describes a family of
CICYs parametrised by the space of the coefficients. Many basic properties do not depend on the explicit
form of the polynomials, but only on the configuration matrix (so for example the Euler characteristic
depends on the configuration matrix rather than on the explicit polynomials). This feature is the strength of
this notation, and one of the motivations to introduce it. For the hypersurface to be a CY-manifold, the rows
have to satisfy the following relation between the degree of the projective factor and its appearance in all
polynomials:

n+ 1=
∑
α

qαn . (6)

Restricting to manifolds of fixed complex dimension d leads to the constraint on the number of
projective components ∑

r

nr = k+ d , (7)

where k denotes the number of equations. In combination with the observation that a P1 factor with a
quadratic constraint is redundant, it can then be shown that there is only a finite number of such
configuration matrices [11]. In [6] 7890 of such matrices were singled out for the case of threefolds, utilising
some additional identities which are discussed below. This dataset can be found online [12]. In [13] it was
pointed out that 435 of these matrices are redundant and describe the same CICY. For fourfolds 921 497
configuration matrices were obtained in [7] and in higher dimensions the corresponding sets of
configuration matrices are unknown. In the following we focus on the case of three-folds.

Identities—discrete symmetries
The simplest identities which leave the underlying CICYs unchanged are permutations of rows and columns
in the configuration matrices.

Beyond this, there are several further identities how configuration matrices are linked to each other
which can be checked explicitly for small configuration matrices and the identities can then be applied in
general [6]. To obtain the classification one can choose one of these respective representations. They can be
summarised as follows:[

2 2 a
n 0 q

]
=

[
1 2a
n q

]
,

 1 1 a
1 1 b
n 0 q

=

[
1 a+ b
n q

]
,

[
3 2 c
n 0 q

]
=

 1 c
1 c
n q

 ,

 1 2 0
2 1 c
n 0 q

=

 1 c
1 c
n q

 ,

 2 2 1 0
2 1 1 a
n 0 0 q

=

 1 2 0
2 2 a
n 0 q

 .

(8)

Here n denotes a vector containing the dimensions of ‘arbitrary’ projective spaces. a, b denote vectors
containing zeros everywhere but in one entry which equals one. c denotes an arbitrary vector where the sum
of its components is two. q are appropriate matrices to render the configuration matrix consistent.

CICYs as graphs—new data representation
The representation in terms of configuration matrices is not permutation invariant, although we are
interested in properties which are insensitive to the choice of permutation. This can be achieved when
considering a graph representation of the configuration matrix. Such mappings to graphs have shown
improved performance such as in classifying properties of molecules [14].

For this novel representation of CICYs we mapped the right part of the configuration matrix (which is
sufficient to reconstruct the whole matrix) to a graph. An example of such a graph is shown in figure 3. We
assign different weights to connections in rows and columns, respectively. This representation has the
advantage that our notation of CICYs is invariant under the permutation of rows and columns.
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Configuration matrix Graph representation Next neighbours

⎡
⎣

1 1 1
2 1 2
3 0 4

⎤
⎦

1

4

1 2

1

W1

W1

W1W1

W2

W2

Vertex horizontal vertical

1 1 1
1 1 2, 4
1 2 1
2 1 1, 4
4 − 1, 2

Figure 3. Different representation of one CICY. Left: The classic configuration matrix.Middle: A graph visualisation with two
distinct weights. Right: Nearest neighbours of the graph.

Table 1. Neural network architecture for Hodge number classification. The embedding layer is the layer before the output layers. We use
categorical crossentropy as the loss on both output layers.

Type Dimension Activation Initializer Regularization

Input 315
Dense 315 ReLU glorot_uniform
Dense 315 ReLU glorot_uniform l2(10−5)
BatchNormalization
Dense 100 ReLU glorot_uniform
Dense 100 glorot_uniform l2(10−3)
Output 1: Dense 102 softmax
Output 2: Dense 20 softmax

As the next step, we have to prepare the data in such a way that we can feed the graphs in our network.
Therefore, we have to translate the properties of the graphs into a numerical description. We use the next
neighbours of each point which are shown for our example in figure 3 on the right side. We calculated these
features for all CICYs and hence obtained a dictionary for all types of points in this dataset, finding 285
types. This naturally gives a 285-dimensional feature vector with integer entries. As these feature vectors do
not uniquely identify a CICY we also use the eigenvalues of the adjacency matrix of the graph as input. In
summary, we took the feature vector which has a fixed length consisting of integers and the eigenvalues of the
adjacency matrix, padded with additional zeros as input for our network. This leads to a 315-dimensional
input vector. Note that the identities correspond to local operations on our graphs.

Training of the network
Our target output data are the topological invariants h1,1 and h1,2 which were obtained in [15]. For this
supervised learning task, we now proceed as in the continuous case, in particular as in the SU(2) case with
two output classification layers, one for h1,1 and one for h1,2.

We started from the classified input–output pairs, and constructed 500 random representatives of each
class using identities from (8) (if applicable) and permutations. In the next step, we constructed the
315-dimensional input vector as previously described. We note that in this representation each class has a
different number of representatives, depending on the number of identities which can be applied. For
example the so called quintic hypersurface [

4 5
]

(9)

just has one representative because no identities can be applied here. However for other CICYs we obtain
between 100 and 300 representatives. We end up with around 600 000 different input vectors. The clear
advantage of this input is that we can be sure that two different data-points always describe two distinct
matrices which are not related via permutations. To balance the discrepancy of different number of
representatives we keep several copies of CICYs with low number of representatives in our training dataset.
For evaluation of the classification we only use unique input vectors.

The network we use is a simple multilayer-perceptron with ReLU-activation functions and two
softmax-classifications as the final layer, details can be found in table 1. Again we stop training when the
network achieves above 95% accuracy in both classifications. For the analysis of the results, we only use the
correctly classified data-points.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0
2 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 1 0 0 1 1 0
2 1 0 1 0 0 0 0 0 0 1
3 0 1 0 1 0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0
1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 2 0
2 0 0 0 0 0 1 0 1 1 0
2 1 0 0 0 0 0 1 0 1 0
2 0 1 0 0 1 0 0 0 0 1
2 0 0 1 1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 4.We show the Euclidean distance of the 250 nearest neighbours in the embedding layer to two fixed CICYs (blue). In
yellow we show the difference between these distances for points i and i+ 1. In red we highlight the largest difference. Below is the
respective CICY configuration matrix from the original list.

Figure 5. Performance of our method on CICY dataset. Left: The distribution of performance for all 686 464 data points. Right:
The distribution of performance on the subset of CICYs with Hodge-numbers h1,1 = 10 and h1,2 = 20. The analysis of finding
nearest neighbours is still performed with all data points.

Analysis of the results
As we face a situation with too many classes we utilise a different method to analyse the nearest neighbours in
the embedding layer. For a given input configuration, we look at distances of its nearest neighbours in the
embedding layer. We identify a sufficient threshold and compare the class labels of the points closer than the
threshold7.

As a first step, we pick one data point in the embedding space and find the 250 nearest neighbours with
respect to their Euclidean distance. A plot of these distances are shown in blue in figure 4. Two generic
features are several plateaus in the distance curve and several big jumps between two points which are shown
in yellow in figure 4. We are interested in the biggest jump, and we use this as our threshold to distinguish
manifolds. The red line in figure 4 is the location of the threshold. The prediction is that points closer than
the point at the threshold all belong to one class. We require that we are looking at least at one neighbour.
This prediction is quite successful given the fact that the network is just trained with the Hodge numbers,
and has no training on the CICY labels. Figure 5 summarises the performance of our method with respect to

7There is no obstruction to apply this procedure also in the previous situations.
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the CICY labels and we find that for the vast majority of data points the neighbours are correctly classified
(for 86.6% of CICY labels we find an accuracy above 95%). Outliers arise for CICYs with one or two existing
representatives which is expected from this method. Focusing on the Hodge pair with h1,1 = 10 and h1,2 = 20,
there are 292 distinct CICYs. Again (cf figure 5 right panel), we find that the majority of the CICYs are
correctly classified with our method—noting only a small drop to 80.6% compared to the performance on
the entire dataset. Such a drop is expected because the entire dataset contains many cases where we have just
one class of CICYs for a specific combination of Hodge numbers.

The surprising part is that as far as we know there is no straightforward way to see whether two
manifolds are inequivalent due to the basis dependence of the intersection numbers. Therefore, more
analysis is in order to understand why networks are able to distinguish distinct matrices, and find a sufficient
basis to distinguish between CICYs. We plan to return to this question whether the neural network has
learned Wall’s theorem [10]8.

3. Finding generators

Having identified the presence of symmetries, the next step, which we discuss now, is to identify the
generators of the associated Lie algebra. We concentrate here on continuous symmetries and assume that in
the first step we have already established by looking at the point-cloud pattern whether we should proceed
with the analysis for continuous groups9. Our starting point is a pointcloud on the input space which has
been identified in the previous step to be related via a symmetry due to the closeness in the embedding layer.
To establish a numerical method to perform this analysis we start with a noisy pointcloud. First, we describe
our algorithm and apply it then in examples for several symmetry groups in various dimensions. Finally we
exemplify how this algorithm can be utilised on images.

3.1. Algorithm
The idea behind the algorithm is to extract the information about the Lie algebra of the associated symmetry
group when considering a pointcloud P which has been found to be related by some symmetry group.
Infinitesimally, points are connected as follows:

p ′ = p+ ϵaT
ap , (10)

where εa are some small numbers selecting by how much the point is transformed with the respective

generator Ta. The symmetry group is characterised by the generators Ta of the Lie algebra in standard way
via exponentiation. Here want to obtain the information about the Lie algebra generators from the
pointcloud. In particular the structure of the nearest neighbours carries the information about the
generators. To extract them efficiently, one needs to find an appropriate regression setup where all
components of the generators Ta are constrained. For instance, considering just a single point in
n-dimensions gives via equation (10) n conditions on the components. However, by appropriately utilising
multiple points the generators can be completely identified. We find the generators as follows:

(a) If our dataset features several redundant dimensions or the inputs are not centered around the origin
we pre-process the dataset by performing appropriate dimensional reduction and centering around the
origin (e.g. via PCA).

(b) We generate an orthonormal basis (b1, . . . ,bn) as follows.We pick a point p1∈P at random. The first basis
vector is given by its associated normalised vector b1 = p1/||p1||.We then pick a further vector at random
in the pointcloud P, and the second basis vector is given by the normalised version of p2 − (p2 · b1)b1.
We then complete the remaining orthonormal vectors in the remaining directions.

(c) The next step is to filter out points which are close enough to the hyperplane H spanned by b1 and b2.
This is the hyperplane in which the generator acts. As condition we use

|p · bi|< δ for 2< i≤ n . (11)

8We thank Per Berglund and Andre Lukas for stressing this observation to us.
9Strictly speaking, as highlighted by the referee, there is a potential ambiguity between large discrete and continuous groups in this
approach. This is due to the finiteness of the pointclouds we are considering. For our physics examples, which we focus on in this paper,
this caveat seems not relevant and we ignore it for the rest of the paper.

8



Mach. Learn.: Sci. Technol. 2 (2021) 015010 S Krippendorf and M Syvaeri

The more data points we have the smaller we can choose δ. Points in this ‘thick’ hyperplane feature
neighbours in the direction of interest and points in the orthogonal direction. The contribution of these
latter points to our regression problem is removed later with condition (15). Note that too large a δ
will include all points—in particular also points close to the fixed points 10 of the generators (if they
exist)—which leads to a drop in performance.

(d) Within this points we now identify all pairs of points p,p ′ ∈H which are close to each other:

||p− p ′||< ϵ for ∀p,p ′ ∈H . (12)

This choice allows us to keep multiple point pairs and not just the nearest neighbour.

(e) Each of these neighbouring point pairs (p,p ′) provides constraints relevant for determining one com-
bination of the generators in equation (10). At linear order this is given as

p ′ − p=
σH(p,p ′)

∥p∥
∥p ′ − p∥ Tp , (13)

where T denotes the generator we determine. The normalisation factor 1/∥p∥ ensures the correct

numerical prefactors. σH(p,p ′) denotes the sign which contains the appropriate directional information
of the points (p,p ′) for this hyperplane and is calculated by

σH(p,p
′) = sign((p · b1)(p ′ · b2)− (p · b2)(p ′ · b1)) . (14)

The necessity of σ can be understood by considering the example of identifying the generator of SO(2)

and considering point pairs in different quadrants. Each of these point pairs constrains up to n compon-
ents of the n× n-components of T. Additional components are constrained by demanding that

T bi = 0 for i> 2 . (15)

(f) Using the above constraints in equations (14) and (15) we now can constrain all components of the
generator using linear regression. In practice we weigh the constraints arising from (15) stronger than
constraints from (14), ensuring that (15) is definitely satisfied. This also removes incorrect directional
information arising from point pairs arising due to the thickness of our hyperplane. This information
occurs for point pairs which are not perfectly aligned with the hyperplane.

(g) By applying steps 2–5 multiple times we obtain generators for ‘all’ directional combinations. On the res-
ulting generator candidates we perform principal component analysis. By analysing the standard devi-
ation in these components we identify the relevant number of generators for the underlying pointcloud.
The associated principal components to these generators reveal the algebra structure of these generators.
Hence we determine the underlying symmetry group.

(h) To distinguish unitary from orthogonal groups such as in the example below where we distinguish
between SU(2) and SO(4) additional care is needed in setting up the regression problem. The necessity
arises as follows: Consider the orbit of a point on a unit sphere S3. The entire orbit which is generated
by both symmetries is given by S3 and hence one cannot distinguish with just one pointcloud11. How-
ever realistic situations such as the example with the SU(2) superpotential (cf section 2) feature multiple
orbits, one for each field. We can utilise this situation as we are equipped with two point pairs which
are connected with the same transformation (neglecting for the moment that they can be in different
representations). Here one can distinguish the transformations from SU(2) and SO(4) as the action on
the first point pair fixes the SU(2) generator completely, whereas for SO(4) not all generators are fixed
by the first transformation. Utilising both point pairs in our regression doubles the constraints arising
from (14) and allows us to distinguish for instance SU(2) and SO(4).

Below, we discuss some numerical examples of these generators.

10Fixed points are points mapped onto itself under a transformation. For instance, this can correspond to the poles of the sphere.
11In other words, every point of the sphere S3 can be mapped to the point (1,0,0,0), both with SO(4) and SU(2) transformations,
respectively. Therefore, one cannot distinguish between the point clouds by just looking at one point pair and one always has to use pairs
of point clouds to see the difference between both symmetries.
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1

1

G =
[ −0.13 −1.15

0.81 −0.03

]

1

1

G =
[ −0.07 1.01

−0.98 −0.08

]

1

1

G =
[

0.00 −1.00
1.00 0.01

]

Figure 6. Three examples of pointclouds for SO(2) with varying number of points and different noise where the respective
parameters are shown in the plot title. The respective generator corresponds to the first PCA component which is singled out by
our algorithm.

Figure 7. Left: The standard deviation of the PCA components for the example of SO(3). Right: The results for the standard
deviation of the PCA components of the SO(4) example.

3.2. Examples
We design our examples in increasing complexity and capture various embeddings of symmetries to check
the performance of our algorithm. The first warm-up example is that of a pointcloud generated by SO(2),
i.e. points on a circle.

To test the stability of our algorithm we perform experiments with varying number of points and we add
some Gaussian noise to the radius. Results for several examples are shown in figure 6. Even for pointclouds
with few points and large noise we find very good results for the generators. The large difference in the
standard deviation from the first to the remaining components shows that this pointcloud is only connected
with one generator. For the analysis shown here we use δ= 0.5.

The next examples we discuss are SO(3) and SO(4). Again we train pointclouds with varying total
number of points and different levels of noise. For several choices of hyperparameters we show the standard
deviations of the PCA-components in figure 7. In both setups we again find consistently a steep decline in the
standard deviation after three and six components, respectively. For the SO(3) experiment shown as the red
curve in figure 7 we obtain the following generators:

G1 =

 −0.00 0.04 0.59
−0.06 0.01 0.78
−0.59 −0.82 −0.01

 , G2 =

 −0.01 −0.98 −0.13
0.98 0.04 0.14
0.16 −0.18 0.01

 ,

G3 =

 0.00 0.21 −0.81
−0.21 0.00 0.55
0.78 −0.61 −0.03

 . (16)
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For the SO(4) experiment we obtain the following generators

G1 =


0.02 0.50 −0.11 0.25
−0.52 −0.00 0.39 0.60
0.10 −0.41 −0.00 −0.38
−0.28 −0.59 0.38 −0.02

 , G2 =


0.00 0.08 0.41 −0.07
−0.09 −0.00 −0.31 −0.29
−0.48 0.24 −0.02 −0.78
0.06 0.29 0.81 0.02

 ,

G3 =


0.02 0.13 0.42 −0.29
−0.09 0.04 0.78 −0.32
−0.45 −0.76 −0.02 0.13
0.31 0.33 −0.13 −0.03

 , G4 =


0.03 0.55 0.50 0.42
−0.57 −0.00 −0.30 −0.08
−0.45 0.31 0.02 0.44
−0.40 0.12 −0.43 −0.03

 , (17)

G5 =


0.01 0.63 −0.48 −0.50
−0.64 0.01 −0.16 −0.29
0.48 0.14 −0.00 0.03
0.51 0.32 0.02 −0.01

 , G6 =


−0.02 −0.01 −0.37 0.62
0.01 0.02 0.24 −0.61
0.40 −0.24 −0.03 −0.13
−0.67 0.59 0.14 0.02

 .

Next we turn to the discussion of SU(2) and SO(2)×SO(2) acting on four real dimensions. Our method
should reveal three and two generators, respectively, rather than all six generators of SO(4). Again we test our
method on pointclouds with varying number of points and different noise. We provide an overview of our
findings in figure 8. For the SU(2) case, the dominant generators found by our algorithm are given:

G1 =


−0.01 0.52 0.47 −0.11
−0.52 0.00 0.08 0.49
−0.47 −0.08 0.01 −0.50
0.12 −0.48 0.50 0.00

 , G2 =


−0.00 −0.24 0.43 0.46
0.26 0.00 −0.52 0.39
−0.43 0.51 −0.00 0.35
−0.45 −0.39 −0.34 −0.01

 ,

G3 =


0.00 −0.39 0.30 −0.50
0.37 0.01 0.51 0.32
−0.31 −0.50 0.01 0.39
0.49 −0.31 −0.40 0.00

 , (18)

where these results correspond to the run with 5000 points shown in red in figure 8. Note that to distinguish
SU(2) from SO(4) it was necessary to utilise two pointclouds as described in bullet point of our algorithm.
For SO(2)×SO(2) we find, for instance in the case of the run associated to the parameters of the black curve
in figure 8

G1 =


−0.03 0.14 0.03 −0.01
−0.31 0.01 0.03 0.01
0.04 0.01 −0.01 0.95
−0.1 −0.06 −0.98 0.04

 , G2 =


0.00 −1.13 0.09 0.01
0.78 −0.04 −0.03 −0.03
0.03 0.04 −0.02 0.19
0.08 −0.02 −0.23 −0.00

 . (19)

Application to Mexican-hat potential and superpotential
To illustrate that this algorithm for determining the generators also works for pointclouds obtained from
neural networks which we described in section 2, we apply it to the pointclouds obtained for the Mexican-hat
potential and the Superpotential example from section 2.1.

For this check we picked the class associated to the radius r= 1.45 and took 497 points for our analysis.
As shown in figure 9 on the left, the pointcloud corresponds to points on a circle with less noise than the ones
used earlier in this section. Hence, as expected, we find one dominating generator associated to SO(2), which
can be seen in figure 9 in the middle.

We proceed in the same fashion for the superpotential example and identify the pointclouds for the
individual classes, utilising∼10 000 points per class. For each class we determine the generators with linear
regression. We apply the PCA on the generator candidates for all classes. The results of the standard deviation
of the PCA components is shown in figure 9. They are of similar quality as the results previously found for
the SU(2) pointclouds. Also the inspection of the final generators shows the characteristic SU(2) generators
as before.

Hence we find that the combination of both parts works straightforwardly.
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Figure 8. Left: The standard deviation of the PCA components for the example of SU(2). Right: The results for the standard
deviation of the PCA components of the SO(2)×SO(2) example.

Figure 9. Left: The pointcloud obtained from the Mexican-hat potential analysis.Middle: The results for the standard deviation
of the PCA components of the Mexican-hat example. Right: The results for the standard deviation of the PCA components of the
superpotential example.

3.3. RotatedMNIST
The final example we discuss is the application of our algorithm on images. To do this we want to re-identify
SO(2) from the rotated MNIST dataset Dall.

12 In contrast to our previous examples we now want to identify
the generators on a 28× 28= 784-dimensional space. However, as previously described, we can
dimensionally reduce this space, for instance via PCA.

Our analysis proceeds as follows: We consider a subset of the rotated MNIST dataset, consisting of 2000
images of 8 and their rotated versions D8. Note that such a subset of the dataset easily emerges when doing a
classification task. On the entire rotated MNIST dataset Dall we perform PCA and consider the first three
components. We apply this PCA transformation on the datasets containing only several rotated images of a
single digit, e.g. D8. A visualisation of the orbits associated to several digits eight can be seen in figure 10. On
this pointcloud of digits eight, we now perform the remaining steps of our algorithms and find that the
dominant generator is given by an SO(2) rotation:

G=

 −0.06 −0.00 −0.07
0.01 −0.01 1.00
0.08 −0.99 0.04

 . (20)

The respective standard deviations can be found in figure 10 on the right. We clearly identify the generator of
SO(2) as the dominant generator.

3.4. Discrete symmetries—CICYs
To conclude this section we briefly return to the example of CICYs discussed in section 2.2. Per construction
the symmetries acting are discrete rather than continuous. To identify underlying symmetries—earlier
referred to as identities (cf (8))—one needs to match identical transformations in different orbits acting on

12Our rotated MNIST dataset consists of the first 200 original images in the MNIST dataset and 100 rotated versions of these images,
totalling 20 000 images. The rotation angles are chosen at random.
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Figure 10. Left: Pointcloud of first three PCA components of our rotated MNIST dataset. Highlighted in orange are the orbits of
multiple digits eight. Grey points correspond to the other digits present in this dataset. Right: The standard deviation on the
generators identified from this pointcloud for the digit eight.

the input space. As our input dataset is precisely generated by these identities and such different
representations are mapped to the same cluster in the embedding layer, our network does identify these
identities. It will be interesting to analyse whether the network finds additional symmetries and identities
which are yet unknown. However, this would require a different training approach with differently prepared
datasets which we leave for future work.

4. Conclusions

Detecting symmetries in an automated fashion removes the necessity for domain knowledge associated to a
particular data product. Such domain knowledge often might not be available or has been the outcome of
scientific efforts such as in the development of the quark model [16]. In this article we introduced a method
on how to detect symmetries with only very limited domain knowledge. The required domain knowledge
was to be able to perform a ‘simple’ classification task which we think is often a realistic starting point.

We have discussed examples of basic symmetries appearing in physics such as rotational groups and
SU(2). The structure in the embedding layer does reveal these symmetries and hence provides orbits on the
input space which are generated by these symmetries. In a second step we were able to pinpoint the nature of
these continuous symmetries by identifying the generators of the Lie algebra through our regression
algorithm. Beyond rotational groups and SU(2) we find that the embedding layer can be used to identify
classes CICY-manifolds. It remains to be seen whether these methods can establish new identities in the case
of the classification of n-folds which is unknown to this date. For this analysis, we introduced a novel graph
representation for CICYs which removes several redundancies of the matrix representation used up to now.
In passing we note that this provides the first application of utilising the graph data structure for Calabi-Yau
compactifications in string theory. We have not yet explored the full potential on other ML work on this
dataset with this representation (cf [17–22] for other ML applications on the CICY dataset).

Another observation which appeared in this analysis is that the neural network has found a way to
calculate topological invariants as required by Wall’s theorem which formalises how complex manifolds are
completely characterised. We have not yet investigated this avenue but want to highlight that it will be
exciting to compare these two complimentary approaches to classification. In which situations does a neural
network obtain such mathematically rigorous ways of classification?

We have seen that an important ingredient in our analysis are dimensional reduction tools—here in
particular TSNE [3]. It remains to be seen in the future which additional structures TSNE and other
techniques can reveal on datasets in mathematical physics, similar to structures seen in autoencoders [23].

Putting this method into perspective, we can find that our results can be improved with augmenting the
pointclouds. Additional points can be obtained if an equation generating these orbits is known. In this
context it might be useful to utilise the techniques recently described in [24]. This augmentation will also
enable a clearer distinction between (large) discrete symmetry groups and continuous groups for which our
algorithm cannot clearly distinguish. Furthermore, our technique of identifying symmetries is useful to
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determine which symmetry equivariant architecture (cf [25]) promises to be efficient for more sophisticated
classification tasks. Beyond classification, another application in machine learning for utilising symmetries
which has recently been proposed is in the context of reinforcement learning [26]. In either case, it promises
to be extremely interesting to see which other symmetries can be found in every day and scientific datasets,
going beyond a standard rotational invariance such as we discussed in the context of MNIST.

This is a proof of concept paper presenting several ways of identifying underlying symmetries in the data.
Further scrutiny of these methods for other symmetries is in order. Now, it is even more tantalising to find
out the underlying symmetry structures neural networks are dynamically using to achieve their remarkable
performance.
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