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Abstract
We formulate the control over quantum matter, so as to perform arbitrary quantum computation,
as an optimization problem. We then provide a schematic machine learning algorithm for its
solution. Imagine a long strip of ‘quantum stuff ’, endowed with certain assumed physical
properties, and equipped with regularly spaced wires to provide input settings and to read off
outcomes. After showing how the corresponding map from settings to outcomes can be construed
as a quantum circuit, we provide a machine learning framework to tomographically ‘learn’ which
settings implement the members of a universal gate set. To that end, we devise a loss function
measuring how badly a proposed encoding has failed to implement a given circuit, and prove the
existence of ‘tomographically complete’ circuit sets: should a given encoding minimize the loss
function for each member of such a set, it also will for an arbitrary circuit. At optimum, arbitrary
quantum gates, and thus arbitrary quantum programs, can be implemented using the stuff.

1. Introduction

Imagine we have some ‘stuff ’ with quantum properties. Can we use it as a quantum computer? Join us in
picturing a long strip of Plasticine-like stuff, whose unknown properties are accessible only via regularly
spaced setting and outcome wires. By appropriate choices of settings, followed by correct interpretations of
outcomes, is it possible to implement quantum computation?

The answer is clearly yes in at least some cases. Most obviously, it is clearly yes if the stuff secretly contains
matter known in advance to be capable of quantum computation. Suppose, for example, that the setting wires
were to manipulate the local magnetic field and the timing of measurements, with results transmitted by the
outcome wires. Any given quantum program could then be implemented, given knowledge of the details.

We consider, as a somewhat lopsided means to achieve quantum computation, the determination of
these details. Normally, one would first decide upon a fixed such correspondence between logical and
physical operations – Boolean logic to transistor states, say – and then engineer a computer to respect it.
Here, we discuss the reverse task, that of mapping arbitrary quantum computation onto the fixed physics of
initially uncharacterized matter: stuff.

Our iterative approach to this problem begins with a hypothesized map between physical and logical
operations. For example, we might guess that feeding first 2 and then 3 to the first input wire implements the
quantum CNOT gate. This guess is likely to be wrong, but, given a few assumptions about the stuff ’s internal
dynamics, we will illustrate how to determine just how wrong.

In principle, one could then converge towards a correct guess by gradient descent, applied to a bespoke
set of neural networks. In practice the optimization is likely to be quite difficult, and to depend upon
additional assumptions about the stuff than we impose here. In this work, we formulate the problem and a
schematic solution in general terms, to be iterated upon later by the study of additional assumptions,
algorithmic improvements, and empirical feedback.

The essential problem we are concerned with, the determination of the unknown quantum dynamics of a
black box system (in our case, the arbitrary length strip of stuff), might be viewed as a slight generalization of
so-called ‘quantum process tomography’ [1–6]. We are aware of two major differences. First, we assume no
ability to interact with the quantum stuff except via the classical settings and outcomes on the wires. In
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Figure 1. On the left we see a section of a length of stuff with input and output wires placed at regular intervals. A time-gated
sequence of inputs is fed into the input wires and a similar time-gated sequence of outputs is read off the wires. We represent the
input/output at position x and time t by a dot as shown. On the right we see the same figure with the dots divided up into
octagons and squares. Points lying on the boundary between octagons are assigned to the upper octagon.

particular, we do not presume advance knowledge of how to prepare or to measure states. This echoes
previous work on randomized gate benchmarking [7–10], self-consistent quantum process tomography [11,
12], and especially operational process tomography [13].

Second, we will never explicitly represent the full dynamics of the stuff, but only the ability to map
chosen quantum circuits onto it. One might presume the weights of any successfully optimized neural
networks would need to form at least a partial such representations, but we make no effort to characterize it.
This situates our work within the rapidly developing field of ‘quantum machine learning’ [14, 15], and, more
specifically, within the subfield concerned with machine-learning-based quantum tomography [16–21].

In section 2 to follow, we introduce the essential ideas required to construe operations upon quantum
stuff as a user-defined circuit mapped onto spacetime. These ideas are then refined and formulated precisely
in section 4. The iterative process of determining which operations correspond to which circuit, or
‘bootstrap tomography’, is formulated in section 5. Finally, in section 7, we sketch out a machine learning
framework to realize this tomographic process.

2. Quantum stuff and computation

Picture a strip length-L strip of stuff. Fix two wires at each site xl = l∆X, l= (0, 1, 2,…), one to send in
classical settings, and another to read off classical outcomes. Binning the duration of these interactions into
discrete time intervals centred at times tn = n∆T, n= (0, 1, 2,…) defines a discrete set of spacetime points,
x= (x, t) = (l∆x,n∆t), each labelling a setting-outcome pair. We refer this structure of setting-outcome
pairs at discrete events as the computational lattice.

The physical dynamics of the stuff might be viewed as a map from sequences of settings to probability
distributions over sequences of outcomes. To use the stuff as a quantum computer, we need to know the
pertinent aspects of that mapping, construed as one between known mathematical objects. This knowledge
can be usefully decomposed into that of two functions: an encoder to translate a given program – the ‘logical
input’ – into physical settings, and a decoder to translate probability distributions over physical outcomes
into mathematical objects, the ‘logical output’. The encoder/decoder pair has functioned correctly if and only
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Table 1. A set of gates that is universal with respect to the given lattice. H stands for the Hadamard gate, P stands for the phase gate

which acts as

(
1 0
0 i

)
, and R stands for the π

8
gate on the left which acts as

(
1 0

0 e
π
8

)
. We divide the set into three ‘subsets’ to

emphasize the distinction from a traditional UGS. Subset 1 consists of the unitaries in a UGS. Subset 2 is formed from gates that move
information without operating upon it. Subset 3 consists of projective measurements with a defined result. Note that universal sets
could easily be devised from POVMs mixing unitary and ‘measurement’ behaviour, and which thus would not respect this classification.

Subset 1

Subset 2

Subset 3

if the emitted logical output is, accounting for the probabilistic nature of the physical outcomes, indeed that
dictated by the logical input.

Suppose, for example, we wish to perform the computation qout = 2qin. Then the encoder must map
from the logical input ‘2× qin’ to some sequence of physical settings. The decoder, in turn, must map the
corresponding sequence of physical outcomes into the logical output qout. The encoder/decoder pair is
correct, in this case, when the emitted qout approaches 2qin, having smoothed out any probabilistic
fluctuations.

One might reasonably expect the discovery of a correct encoder/decoder pair to be a fairly daunting task.
However, in this case and, as we will see, in general, checking whether a given encoder/decoder pair is correct
is quite simple. Furthermore, one can easily construct a smooth measure, or loss function, of how far from
correct a given encoder/decoder pair is: the RMS error between qout and 2qin, for example, or some
monotonic function of it1. A correct encoder/decoder pair will minimize this loss function.

Later, we will detail a means to accomplish this functional minimization automatically on a classical
computer, via neural network parameterizations of the encoder and decoder. It is again to be emphasized
that the protocol we present is intended as schematic, with the practical solution of the minimization
problem left for further refinement in light of additional assumptions placed upon the stuff.

3. Gates, circuits, and tesselations

We would like to implement arbitrary quantum computations, not just multiplication by 2. It is well known
that arbitrary quantum computations can be decomposed into elementary quantum gates forming a
‘universal gate set’ (UGS). It would thus be sufficient for our encoder/decoder pair to correctly implement
each member of some UGS.

Quantum gates, however, map between quantum states, not classical information. By assumption, we do
not have direct access to the internal quantum dynamics of the stuff. We will thus instead concern ourselves
with quantum circuits, wiringstogether of quantum gates that are entirely characterized by classical settings
and outcomes.

Any quantum computation may be expressed as a quantum circuit, and doing so further refines the
formulation of our task. The logical input thus becomes the classical settings and gate labels defining a
particular quantum circuit. The logical output is that circuit’s theoretical outcome distribution. The
encoder/decoder pair has functioned correctly if the emitted outcome distribution matches the theoretical
one. The loss function can be any of various distance metrics between those distributions.

Later we will demonstrate that, given a few physical assumptions about the stuff, there exist
‘tomographically complete’ sets of quantum circuits. If an encoder/decoder pair, acting upon stuff with the
assumed properties, correctly implements all the circuits in a tomographically complete circuit set, it
correctly implements all the gates in a UGS. The combination of encoder, stuff, and decoder in that case
forms a universal computer. The degree by which it fails to do so can be taken, most primitively, as the
summed losses of all the circuits in the set.

1The loss function will, strictly speaking, be a functional of the encoder/decoder pair. These will eventually be represented as neural
networks, however, parameterized a finite set of weights. The loss will be a plain old function of these.
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Figure 2. On the left we see an example of a circuit built with gates from our universal gate set. Note that the circuit is closed off
from external influences because, at the bottom, input signals are absorbed by the identity measurement and, at the sides,
quantum information coming into the circuit is shunted back out. On the right we see how gates can be assigned to octagons. The
gates in this circuit occupy a subset, X of the full set, Xoctagons, of octagons in the tessellation.

We want the stuff not only to implement an arbitrary computation, but to do so via a restricted number
of setting/outcome retrievals. To achieve this, we will require the encoder’s implementation of each
individual gate to occupy only a finite volume of spacetime. Specifically, we group together events in the
computational lattice x= (l∆x,x∆t), depicted in the left panel of figure 1, into a tesselation of octagons and
squares, depicted in the right panel of figure 1.

Each octagon, or tessel, will be used to implement one of a universal set of two qubit gates. The qubits for
these gates will, under this implementation, be input at the lower slanted edges, and output at the upper
slanted edges. Octagons are convenient because they adjoin to form causal-diamond-like structures. The
squares appear by geometric necessity and will implement a fixed ‘do nothing’ gate, different from the
identity. We will eventually view the encoder and decoder as neural networks to be trained by a machine
learning algorithm. One failure mode of this algorithm will occur if the tesselation encloses too few events
per gate to implement the UGS properly. In that case, we can uniformly scale up the tesselation and try again.

We label each octagon by its midpoint, x. Let Xoctagons be the set of octagon positions we consider in some
given tessellation over the length L and some time duration, T.

The two qubit gates situated on the octagons will form a regular lattice which we will call the gate lattice.
A universal gate set (UGS) must include enough gates to do universal quantum computation with respect to
the gate lattice. An example of a universal set of gates, complete with respect to this lattice is given in table 1.
Each of the gates in the table is a two-qubit gate. The first subset of gates are the usual gates included in a
UGS adapted for the lattice.

Because we assume control over the stuff only through the classical settings, we need to include two more
subsets of gates not usually mentioned as part of a UGS. The second subset are the identity and swap gates
which allow us to transport qubits around the circuit. The third subset of gates are the preparation and
measurement gates. These gates are non-unitary. The first gate in subset 3 performs the identity measurement
on the incoming qubits and then prepares two qubits, each in the 0 state. The second gate in subset 3 projects
the left qubit onto the 0 basis while leaving the right qubit unchanged. We have similar notation for the other
gates. Unlike the other gates in the table, these measurement gates have outcomes associated with them.

It is necessary to include the second and third subsets of gates in our UGS because we need to train our
stuff to implement them the same as any other gate. They do not come for free.

We can connect gates together to form what we will call a fragment (denoted by F). Whenever we build a
fragment, there must be some gates having one or two open inputs. We will call such gates initial gates. A
circuit, C, is a special case of a fragment for which all initial gates are of the type that ignore any open inputs.
The gates in the table provide two ways to do this. First, the preparation gate in subset 3 simply absorbs
incoming quantum systems so they do not affect probabilities for the circuit. Second, any gates that include
an identity map can be used to shunt quantum information coming through an open input back out through
an open output so probabilities for the circuit are not affected. The circuit in figure 2 contains examples of
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both types. We can calculate a probability for a circuit using the rules of quantum theory. A fragment that is
not a circuit is subject to outside influences and so will not necessarily have a probability associated with it.

We will choose some particular UGS, call it G, to proceed. It does not have to be the one described here,
and there might UGS’s that are more suited to this project. However, the gate set must have elements that
enable us to close off in the manner just described. There must also be some gates with outcomes, so we can
read off the results of the computation.

4. Building circuits

In this section, we describe how sequences of operations upon the stuff may be arranged in such a way to
permit comparison with a given quantum circuit.

Thus, within each octagon of the tesselation, we will encode (by inputting an appropriate sequence of
signals into the setting wires attached to the stuff) and decode (by selecting on an appropriate sequence of
output signals from the outcome wires attached to the stuff) in an attempt to implement a putative element
of the UGS, G. Initially we do not know what the appropriate encoding and decoding are. Thus we start with
some initial choice and then, through the machine learning algorithm, train until we settle on encodings and
decodings that minimize the loss function.

Let the putative encoding (decoding) for gate g ∈G be denoted En[x,g] (Dn[x,g]) for the nth iterative step
in the training for the octagon at x. We write Yn[x,g] = (En[x,g],Dn[x,g]). We are, then, admitting the
possibility that the same gate might require different encodings and decodings in different regions of
spacetime. One could imagine eventually adjusting the machine learning algorithm to be introduced to
exploit any assumed homogeneity, but we will not explore this issue further. At the nth step we will have a
particular encoding and decoding scheme for every gate for every octagon:

{(x,Yn[x,g]) : forall x ∈ Xoctagons, forall g ∈ G}. (1)

This specifies an encoding for every element of G for every octagon. We will attempt to implement various
quantum circuits using this encoding. Then, using the machine learning algorithm trained upon the
resulting empirical information, we will iterate the encoding and decoding scheme, obtaining a new one to
be used during the (n+ 1)th step.

We consider a fragment, F (as described in section 3), made from the gates, g, in our UGS with locations
assigned to the positions of some of the octagons in some octagon square tessellation. The fragment F is
specified by

F = {(x,g) : forallx ∈ X⊆ Xoctagons}

where X is the set of octagon positions in the tessellation which contain a gate. A circuit, C, is a special case of
a fragment in which every initial gate is of the type that ignores any open inputs into it. The attempted
implementation of circuit C during the nth step is now given by

Yn[C] = {(x,Yn[x,g]) : forallx ∈ X} (2)

in the octagons. Actually, this is not entirely sufficient, since we must also specify what happens operationally
in regions of spacetime outside the given octogons (tessels). We will return to this point at the end of this
section. Each gate g in C maps quantum information to classical outcomes with various probabilities. The
full circuit, however, fixes this internal quantum information (by incuding state preparation and
measurement ‘gates’, for example), and is thus characterized by a single probability pC for a specific set of
classical outcomes to be observed. Quantum mechanics can be formulated [22] as an assignment of a pC to
every possible circuit C.

In the next section, we will show that under certain assumptions, the converse is also true. That is, if each
circuit within a tomographically complete circuit set indeed occurs with its predicted pC , the underlying
operationalmap is indeed that specified by the relevant sequence of gates.

In order to certify that the computation within the stuff is indeed quantum mechanical, we thus seek
encoder/decoder pairs that perform this same assignment via the stuff. That is, the theoretical map, from
circuit settings and gate labels C to outcome probabilities pC , is also the operational one, from the tesselation
of C and a given Yn[C] to the observed outcome probability pnC .

We can then define one of several loss functions measuring how closely Yn[C] indeed implements some C,

L[Yn[C],C] = err(pnC ,pC), (3)
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where err(x,y) is some convenient positive function with a global minimum at x= y, for example
err= |x2 − y2|.

Now suppose we have fixed a set S of circuits that we wish to simultaneously implement, for example
because they form a tomographically complete circuit set. A loss function over the full set can then be written
as

L[Yn,S] =
∑
C∈S

L[Yn[C],C]. (4)

Since the internal quantum information of the stuff might depend upon occurrences outside the spacetime
region we have identified with our circuit, for this to work in practice we must also specify what happens at
the spacetime points, X̄, that are not in the octagons labelled by x ∈ X. This includes those in the squares and
those that occur elsewhere.

One strategy out of potentially many is to choose a ‘null’ encoding E0 at each ‘external’ spacetime point,
and to simply ignore signals on the outcome wires there, so that we need not specify any decoding. The null
encoding might also be iterated (‘trained’) in order to, for example, appropriately ‘zero out’ quantum
information in the external regions; in that case it would be denoted En0 . Similar considerations apply to the
squares. We do not need to concern ourselves with the encoding for spacetime points in the future of the
circuit, C, via the causal assumption that influences cannot travel backwards in time.

5. Bootstrap tomography

Now let us discuss the construction of so-called ‘tomographically complete circuit sets’.
If the loss function, L[Yn,S], is minimized when summed over a big enough set of test circuits, we would

like it to be the case that any circuit gives the correct probabilities (to within some small error). In this
section we state a theorem (proven in appendix A) that if the empirical probabilities, pnC , are exactly equal to
the ideal probabilities, pC (so the loss function (4) is minimized), for a certain set of circuits, Stom, then this is
true for all circuits. The circuits in Stom have the property that they are bounded in size. We conjecture that a
robust version of this theorem also holds - namely that the loss function (4) over Stom bounds the loss
function for a a fraction of 1−κ of circuits for any κ> 0.

We will need the important notion of a bounded fragment (or circuit). This is one that fits inside a box of
some constant size,∆L and∆T, where this box size does not increase in size as we increase L and T.

It is shown in appendix A that we can associate a vector, rnX[F ], with any fragment in region X. This
vector linearly relates the given fragment to a tomographically complete set of fragments for the given region.
In the case of quantum theory, the vector rX[F ] is linearly related to the superoperator associated with the
fragment. The vectors, rnX[F ], are used to calculate the probabilities for circuits.

We can determine the vectors, rX[F ], by doing tomography on a set of circuits F ∪ F̄ for different F̄ . We
say we have fragment tomography boundedness if we can do tomography on a bounded set of fragments
(pertaining to X) by means of a bounded set of circuits.

In appendix A we define a composition tomograph,ΛX1,X2,...
X which tells us how to combine r vectors

pertaining to non-overlapping (though possibly adjacent) regions X1, X2, … to obtain the tomographic
information pertaining to the region X= X1 ∪X2 ∪ . . . .

We say we have composition tomography boundedness if the composition tomograph for a composite
region formed from any number of regions can be determined from the composition tomographs for
composites that fit inside bounded boxes. In other words, we can do the calculation for any circuit from
calculations pertaining to smaller bounded parts of that circuit.

In appendix A the following theorem is proven.

Theorem 1. If we have fragment tomography boundedness and composition tomography
boundedness, then there exists a bounded set of circuits Stom such that if, at iteration ñ, we
have

pñC = pC forallC ∈ Stom

then pñC = pC for any C ∈ Scircuits.

Stom is then called a ‘tomographically complete circuit set’.
We conjecture (but do not prove) that a robust version of this theorem holds. For this we need the notion

of a locally determined measure over the set of all circuits of some given size. We consider ‘rectangular’ circuits
formed from templates having N octagons in the horizontal (spacial) direction and T octagons in the vertical
(temporal) direction. For each position in this template we choose gates randomly with some position
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dependent weights. For positions on the boundary these weights are non-zero only for gates that close the
circuit appropriately. For positions on the interior, we demand that all the weights are non-zero. In this way
we generate the complete set of circuits for the given template, each having some probability which provides
the locally determined measure.

Conjecture 1. If we have fragment tomography boundedness and composition tomography
boundedness, then there exists a bounded set of circuits S tom

κ such that for all N and T and for
any κ such that 0 <κ≤ 1, at iteration ñ we have

err(pñC ,pC)≤ L[Yñ,S tom
κ ]f(N,T)

for a fraction 1−κ of circuits, C, with respect to a locally determined measure over the set
circuits that fit inside a rectangular template of dimensions N and T. Here f (N,T) is a finite
order polynomial function of N and T.

The motivation for this conjecture is that the tomography process will fix the parameters in the gates to
some error and this will bound the error for an arbitrary circuit (as quantified by κ, ϵκ, and f (N,T)). If we
enlarge the set, S tom

κ , we can expect to get a better bound on the error since we then collect more
information. Conjecture 1 only guarantees that the fraction 1−κ of circuits agree with the ideal case to
within some error. One possible problem is that it remains possible then that the interesting circuits (i.e. the
ones used to do non-trivial quantum computation) fall into the set of circuits whose error is not bounded.
This problem deserves more attention.

The causaloid framework [23–26] is used to prove Theorem 1. This framework was originally developed
as a framework for modelling indefinite causal structure in the context of Quantum Gravity. These theorems
mean that we can rely on the quantum stuff to implement an arbitrary circuit as long as the measured
probabilities for circuits in Stom are close enough to the ideal probabilities calculated from Quantum Theory.
This is good because it would not be practical to measure the probabilities for all C ∈ Scircuits since the rank of
this set grows very rapidly with L and T.

For the two tomographic boundedness properties to hold requires in each case that (i) that a
mathematical prerequisite holds and then (ii) that the physics of the stuff accords. The mathematical
prerequisite is that the properties hold for ideal circuits constructed on the given lattice from the given
universal gate set. To check this requires a mathematical calculation. Since we have a universal gate set, it is
immediately clear that this mathematical prerequisite holds for fragment tomography boundedness (as we
can use the UGS to construct a tomographically complete set of fragments that are bounded). We conjecture
in appendix A that the mathematical prerequisite holds for composition tomography boundedness for any
UGS. If the mathematical prerequisites hold, then we can consider whether the physical properties accord.
This will, most likely, be settled through working with the stuff. However, we can always cook up situations
in which the stuff fails to have the properties. For example, the properties will fail if the stuff has hidden
signalling between far separated locations. For example, the bit of the stuff at xmight send a radio frequency
signal to the bit of stuff at some x ′ in the deep future outside any bounding box where this radio signal
cannot tomographically probed by circuits that live in a bounding box.

While it would be satisfying to prove Conjecture 1 mathematically, it is possibly more useful to test it
empirically. The conjecture does, in any case, necessarily involve assuming the boundedness properties which
are, themselves, in need of empirical investigation. We test the conjecture empirically by determining the
extent to which minimizing the loss function on various bounded sets of circuits allows us to reproduce the
probabilities for sets of larger circuits.

6. Random circuit sampling

In the preceding sections we have illustrated that minimization of the loss function (4) by an implementation
Yn[C], acting upon the stuff with respect to a tomographically complete set of quantum circuits Stom, certifies
that each individual gate in a UGS has also been correctly implemented by Yn[C]. The loss function (4) is
inconvenient to use directly, however, because (a) computing a probability for every circuit in Stom for every
training iteration is likely to be expensive and (b) the differing contributions to the overall gradients by the
(possibly many) terms in the sum over Stom are expected to confound gradient descent optimization.

We will instead operate upon randomly constructed circuits, with each training iteration acting upon
either a single example or perhaps a small minibatch of them. Random circuits can be constructed in various
ways. For example, we could start by randomly assigning gates from the UGS to a few positions, resulting in a
fragment. Next, we can identify the locations of open wires, and close the circuit by assigning random
preparation measurement gates to each. Alternatively, one could begin with the preparation gates, randomly
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add gates from the UGS capable of receiving inputs from those already present, and at some also-random
point close the construction with a measurement gate, repeating the process from scratch if it has failed to
deliver a circuit. Any such random constructions will be controlled by some parameters which dictate the
average size of the circuits.

Consider a set (minibatch), Srand, of circuits generated randomly by some such technique. We make the
following random sampling assumption

Assump: Random circuit sampling. There exists a bounded set of circuits Srand
κ such that for

all N and T and for any κ such that 0 <κ≤ 1, at iteration ñ we have

err(pñC ,pC)≤ L[Yñ,Srand
κ ]g(N,T) (5)

for a fraction 1−κ of circuits, C, with respect to a locally determined measure over the set
circuits that fit inside a rectangular template of dimensions N and T. Here g(N,T) is a finite
order polynomial function of N and T.

Whether such a sampling process actually exists is a physical hypothesis about the stuff. We motivate this
hypothesis by illustrating a random sampling process upon a simple numerical circuit model in appendix B.
Since a qualifying Srand is also a robust Stom in the sense of Conjecture 1, this model motivates Conjecture 1
as well.

A practical loss function is thus

Lrand[Y
n,Stom] =

∑
Srand⊂Stom

∑
C∈Srand

L[Yn[C],C], (6)

where Srand is a randomly constructed subset of Stom. Since Srand would canonically contain only one or a few
elements, the interior sum is much simpler than that of (4). In addition, by virtue of the random circuit
sampling assumption, the outer sum can be treated by individually optimizing each of its summands. In
other words, repeatedly optimizing L[Yn[C],C] with respect to randomly constructed C from Stom also
optimizes (6) and, by assumption, (4).

7. Machine learning proposal

7.1. Neural network implementation of encoder/decoder
We have repeatedly alluded to our intention to view the encoder/decoder pair as neural networks to be
trained by a machine learning algorithm. In this section we present a schematic realization of this process.

Recall that in the preceding sections we have formulated the problem of translating arbitrary quantum
programs into operations upon the stuff as bootstrap tomography: the functional minimization of the loss
function (4) (in practice (6)) obtained by comparing the observed and predicted outcome distributions with
respect to the encoder/decoder pair at training iteration n, En[x,g] and Dn[x,g]. Here g= g(t, x) is the gate
label assigned to the point x= (t,x) by the tesselation of the given circuit.

The problem of automatically varying a function to optimize a loss function is the central concern of
machine learning, whose subfield of deep learning [27, 28] has become explosively popular in the past decade
or so. Deep learning becomes especially useful relative to other approaches when the function to be
optimized represents, or depends upon, a complicated probability distribution, as one might expect the
encoder/decoder pair to.

A deep learning optimization, or ‘training’, begins by representing the target function as a linear
composition of smooth activation functions called a neural network. Different network structures are defined
by different arrangements of activation functions, with ‘deep’ learning being somewhat vaguely defined by its
focus upon network structures formed of ‘many’ successive layers. The activation functions themselves are
parameterized by their weights θ so that different functions decompose into a given network structure by
different choices of weights.

Every function theoretically has some neural network representation [28]. While this in itself is not
especially impressive, the linearity and smoothness of a neural network’s activation functions permit
functional derivatives with respect to the full network to be expressed as sums of partial derivatives of the
weights, essentially via the chain rule. The gradient of the full function with respect to some loss can then by
efficiently descended by descending those of the individual activation functions, a process known as
backpropagation [28–30].

Precisely how backpropagation is best applied in a given situation is somewhat problem-dependent. We
will save detailed consideration of this matter in future studies, when we implement bootstrap tomography
on a small, classically simulated spin chain.
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Figure 3. Depiction of the simulation algorithm. Circuit Simulation: The user decides on a program (circuit), which via the
tesselation assigns a gate label to each spacetime event. Each spatial point is assigned an encoder, mapping these gate labels to
inputs to the stuff. Output from the stuff is then processed by the decoder into simulated logical output from the program. The
decoder receives the gate label g and the central spatial point of the tessel x in addition to its depicted input. Training: by choosing
circuits from a tomographically complete circuit set, the comparison between predicted and actual output from each can be used
as a loss function for the encoder and decoder, such that all circuits are correctly implemented at optimum. This is achieved by
representing the encoder and decoder as neural networks, and varying their weights to reach this optimum, using randomly
constructed circuits as input.

Algorithm 1 Schematized optimization of the encoders and decoder.

1: procedureOptimize(
{
θEx
}
,θD)

2: fornumber of training iterationsdo
3: Circuit← a randomly generated circuit.
4: LogicalOutput← a batch ofm calls to SIMULATECIRCUIT(

{
θEx
}
,θD, circuit).

5: PredictedOutput←m predicted circuit outcomes.
6: Loss← distance metric between LogicalOutput and PredictedOutput per (3).
7: Vary

{
θEx
}
and θD to minimize Loss, as dictated by the chosen optimization strategy.

8: end for
9: end procedure

For now we will instead depict the problem at the more abstract level depicted in figure 3. We will denote
the neural network representation of the decoder asD[θD;x,g], so that

Dn[x,g] =D[θD;x,g]. (7)

The network representationD itself is fixed for all n. Training updates are instead implemented by varying
the weights θD between training iterations; they are otherwise fixed.

The encoder En[x,g] controls the internal quantum information of the stuff, and thus unlike the decoder
must interact with it in real time. It nevertheless needs to share information within tessels in order to track
that quantum information’s flow. This point will be elaborated upon in the upcoming subsection B. For now
we briefly note that we handle this problem by representing En[x,g] with a ‘fleet’ of ‘recurrent’ neural
networks, one at each spatial point x. We denote the encoder weights at some x as θEx , and the full set of
weights over all spatial points as

{
θEx
}
. Thus

En[x,g] = E [
{
θEx
}
,M;x,g]. (8)

The network representation E is again fixed for all training iterations n, with variation between iterations
instead implemented by manipulations of the weights

{
θEx
}
. The output of the network additionally depends

upon amemory vector M. This vector is passed between different θEx within a tessel, allowing encoders
following different constant-x ‘worldlines’ to communicate. We will elaborate upon this point in Subsection
B. Let us now follow the logic of figure 3 in words. The user selects a program, which is mapped by the
tesselation into a field of gate labels g(t, x). Each gate label at x is passed along with the appropriate memory
vectorM to the encoder at that same x, E [θEx ,M;x,g]. This yields a raw input signal, to be sent to the setting
wire at x. Once an entire tessel has been implemented, the corresponding ‘raw’ outcome settings from the
stuff are passed into the decoder, which maps them into ‘logical’ output.

If the weights θD and
{
θEx
}
are optimal, as indicated by the loss function (6) reaching its global

minimum, the logical output may be interpreted as the correct result of the program. Otherwise, the
gradients of the weights in the direction of decreasing (6) can be calculated, as by the ‘optimizer’ in figure 3,

9
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Figure 4. Top left: each point (t, x) in spacetime is assigned a gate label g by the tesselation. g is constant within each tessel, and
takes a uniform ‘null’ value outside of a tessel. Bottom left: each spatial point x is assigned a recurrent neural network (RNN)
‘Encoder’, mapping g and a ‘memory’ vectorM to the input to the stuff, along with a newMn+1 (note this n paramaterizes
subsequent RNN calls, not training iterations). The map is governed by ‘weights’ θEx , local to x and held fixed except during
training. Topmiddle, top right: the stuff advances through time, receiving encoded input dictated by the gate labels. Its raw
outputsO(t,x) at each point in each tessel are collected into a vector, and then fed along with the gate label g to the decoder. The
decoder, another neural network with weights θD, emits the simulated ‘logical output’ of the gate. Bottommiddle, bottom right:
two strategies to allow the encoder RNNs to collaborate over a region of spacetime. Rasterized memory (bottom middle) involves
passingMn in left-right order throughout a tessel. Causal memory (bottom right) involves passing it forward within each
encoder’s future light cone, achieving, per the locality assumption, the same end in a shorter timescale.

and descended along to obtain new, better optimized weights. In machine learning parlance, this process is
called ‘training’ the networks. Note the gradients of course cannot be directly backpropagated through the
stuff, but the loss can still be descended per a variety of algorithm genres, such as reinforcement learning.
The next iteration operates upon a new randomly constructed circuit, and the process is repeated until a
desired convergence threshold is reached. Illustrative pseudocode is provided as Algorithm 1. From a
technical perspective, of course, the bulk of the difficulty would reside in the choice of a practical
optimization procedure, which in this work we do not consider.

7.2. RNN fleet implementation of encoder
As discussed previously, the encoder En[x,g] and decoder Dn[x,g] have differing relationships with the real
time behaviour of the stuff, which suggests a particular network implementation for the encoder that we call
an ‘RNN fleet’. We will elaborate upon this point here.

Figure 4 depicts several aspects of the behaviour of the encoder/decoder algorithm in spacetime. In the
top left panel, we see a single tessel, assigned to a gate labelled g. The top middle panel depicts this same
tessel, implemented as operations upon the encoders and thus upon the stuff. As the stuff proceeds through
time, the gate label g is fed to the encoder at each (t, x) in the tessel. As we see in the top right panel, the
output from the tessel is collected into a vector. Once all of it has been collected, it is sent to the decoder,
which produces the logical output of the gate.

Since nothing in this procedure depends upon the logical output directly, the precise time at which the
decoder Dn[x,g] operates is not especially important, within reason. The encoder En[x,g], on the other hand,
controls the internal quantum information of the stuff. The order in which its inputs are processed therefore
critical. In addition, it must be synchronized within a tessel.

10
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The problem of processing ‘time series’ with a specific temporal ordering occurs repeatedly in machine
learning. The prototypical example is machine translation, since correct translations depend upon prior
context. A genre of network structures known as ‘recurrent neural networks’, or RNNs [28, 29, 31, 32], are
adapted to remember such context. In addition to their weights, which are fixed except during training, such
networks maintain a ‘memory’ vectorM. The output of the RNN depends on the memory as well as upon
the weights and the input. But unlike the weights, the memory is modified between successive function calls,
allowing it to represent contextual information: which contextual information to record is in turn
determined by the weights.

We thus implement the encoder En[x,g] at each separate spatial point x as an RNN= E [θEx ,M;x,g]. as
depicted in the bottom left panel of figure 4. Each E [θEx ,M;x,g] follows a particular constant-x worldline
through the tesselation, partly motivating the term ‘RNN fleet’.

Additional motivation for the term comes from the need of the various RNNs to be synchronized within
a tessel. Thus, the memory vectorMn is not simply passed forward along a worldline, but is instead shared
within each tessel between networks of different weights. Consequently, we need to synchronize the
processing of several time series at different spatial points.

The bottom middle and bottom right panels depict two strategies for synchronizing within tessels. We
call the first and simplest strategy, in the bottom middle panel of 4, rasterized memory. In this paradigm,
encoders E [θEx ,M;x,g] are called sequentially at each timestep from left to right. Starting from a fixed null
value, memory is thus passed within the zig-zagging ‘spacelike’ lines depicted in the bottom middle panel of
figure 4, which resemble the ‘rasterized’ beam path of a cathode ray tube television. Circuit simulation using
the rasterized strategy is illustrated by the pseudocode of Algorithm 2.

The illusion of motion created by such televisions relies upon the time required for the beam to traverse
the screen being much shorter than the processing time of the eye. The ability of the rasterized memory
strategy to effectively synchronize encoders within a tessel correspondingly depends upon the processing
time of the encoders being much shorter than that between simulation timesteps.

The causal memory strategy depicted in the bottom right of figure 4 relaxes this assumption. It is based
on the assumption that the error incurred by sending encoder input out of sequence falls off with the
spacetime distance between the disordered events.

Instead of passing memory sideways between every event in the tessel, we thus pass it forward in
spacetime within a fixed ‘light cone’ of predetermined width s, unless doing so would cross a tessel. Given
locality, this should synchronize just as well as the rasterized strategy, without putting impositions upon the
relative timescales of the encoder and the simulations. Circuit simulation using the causal strategy is
illustrated by the pseudocode of Algorithm 3.

The introduction of a concrete network structure raises the issue of its practicality. In the fully general
case of completely inhomogeneous matter, a different set of weights is required for each gate at each
spacetime point, which might be expected to fairly quickly exhaust computational resources. This is a
symptom of the weak assumptions placed here on the stuff: temporally homogeneous stuff, for example,
would require only one set of weights per gate (in the computationally complete set) per spatial point, and
spatiotemporal homogeneity only one set of weights per gate. We leave the interesting question of what
algorithmic economies can be derived from similar, but weaker, assumptions for future study.

Algorithm 2 Circuit simulation using rasterizedmemory, passed sequentially between each point in each tessel.

1: procedureSimulateCircuitRasterizedMemory(
{
θEx
}
,θD, circuit)

2: g(t,x)← the gate labels assigned to each spacetime point by the tesselation of circuit.
3: nT← a separate point counter for each tessel T with fixed g.
4:MT

nT ← a separate memory vector for each T.
5: fort in the tesselation do
6: forx in the tesselation do
7: Determine which tessel T the point (t, x) inhabits.
8: Retrieve this g, nT , andMT

nT .
9: InputSignal,MT

nT+1← output mapped from g andMT
nT by encoder at x with weights θ

E
x .

10: RawOutput[nT]← the corresponding output from stuff at x.
11: nT← nT + 1.
12: end for
13: if this is the last point in a tessel then
14: LogicalOutput[T]← output mapped from RawOutput, g, and x by decoder with weights θD.
15: end if
16: end for
17: returnLogicalOutput
18: end procedure
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Algorithm 3 Circuit simulation using causalmemory, passed within forward lightcones, confined by tessels.

1: procedureSimulateCircuitCausalMemory(
{
θEx
}
,θD, circuit, light cone width s.)

2: g(t,x)← the gate labels assigned to each spacetime point by the tesselation of circuit.
3: nT← a separate point counter for each tessel T with fixed g.
4:Mt=0,x← a separate memory vector for each spatial point x.
5: fort in the tesselation do
6: forx in the tesselation do
7: Retrieve g(t, x) andMt−s,x−s:x+s, the memories between x− s and x+ s.
8: M̃t,x← pointwise multiplication ofMt−s,x−s:x+s within the same tessel as (t, x).
9: InputSignal,Mt,x← output mapped from g and M̃t,x by encoder at x with weights θ

E
x .

10: RawOutput[nT]← the corresponding output from stuff at x.
11: nT← nT + 1.
12: end for
13: if this is the last point in a tessel then
14: LogicalOutput[T]← output mapped from RawOutput, g, and x by decoder with weights θD.
15: end if
16: end for
17: returnLogicalOutput
18: end procedure

8. Final thoughts

In the preceding work, we introduced the concept of quantum stuff, Plasticene-like matter whose unknown
internally-quantum dynamics are to be controlled by purely classical settings and monitored by purely
classical outcomes. We next mapped quantum gates and circuits onto these settings and outcomes via a
tesselated spacetime structure, and presented a loss function whose optimization certifies the correct
implementation of these gates. Finally, we proposed a neural-network-based framework to optimize this loss
function.

Numerous future directions are possible. Most obvious is the development of a concrete implementation.
To this end one might consider adjustments of the framework yielding practical improvements. For example,
as currently suggested, members of a tomographically complete circuit set would need to be run very many
times in order to converge to their empirical probability, at each step of the iteration. We might consider
iterating after each run of the circuit, or after some smaller finite number of runs. One way to proceed would
be to consider tomographically complete circuit sets whose members have probability equal to zero. We can
then start to run the circuits in the set. Every time we obtain the outcome associated with one of these
circuits (which are supposed to have probability zero), we iterate. Even if the probability was nonzero, but
less than 1

2 , we could consider batches of r runs of the circuit and iterate if s runs show a positive result for the
circuit. For appropriate choices of r and s, the probability would be very small.

The bigger picture here is that we use machine learning implemented on a less powerful computer to
train some stuff with unknown properties to implement a much more powerful computer. In the example
above we have considered using a classical computer (implementing a neural network) to train quantum
stuff to implement a quantum computer. The type of protocol we have described might work in other cases.
For example, if we had some classical stuff that was complex in the right kind of way then it might be
advantageous to use machine learning to train it to do classical computation that takes advantage of this
complexity.

The viewpoint in the present paper is that the settings influence variables in the stuff (perhaps by tuning
parameters in the Hamiltonian). The training process consists of finding the right settings to implement
quantum computation. We could take a more radical viewpoint in which the training process corresponds to
the physical assembly of a quantum computer by automated trial and error. This would be self assembly
quantum computation. Self assembly is a rich subject. Examples of self assembly can be found at all scales
[33]. One example is the self assembly of quantum dots [34]. According to [33], self assembly is ‘the
autonomous organization of components into patterns or structures without human intervention’. However,
if we were to implement a machine learning approach then we would have a kind of human intervention in
the training process. This might lead to a system better suited to quantum computation. We might also
consider self assembly classical computing. One might even imagine a sequence of increasingly powerful
computers, each assembled in this way by its ancestor.
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Appendix A. Proof of theorem 1

In this appendix we provide definitions of fragment tomography boundedness and composition tomography
boundedness and we prove Theorem 1. The idea is to consider tomography on fragments. We consider two
types of tomography. First, we have fragment tomography, whereby we obtain a mathematical object (rX[F ]
below) associated with the fragment. Second, we consider composition tomography whereby we obtain the
rule for composing these mathematical objects for composite regions such as X1 ∪X2 ∪X3. If the
tomography boundedness properties hold then we only need to consider fragment tomography for
fragments up to a certain size and composition tomography for composites up to a certain size. To do
tomography on these fragments and composite fragments are completed into circuits. Hence it follows that
we only need to consider circuits smaller than a certain size. This provides our set, Stom ⊂ Scircuits of circuits.
We will prove a theorem (Theorem 1) saying that if we obtain probabilities pnC = pC for C ∈ Stom then it
follows that pnC = pC for all circuits.

For a circuit, C = F ∪ F̄ we can always write the probability as

pnF∪F̄ = rnX[F ] · pnX[F̄ ] (A1)

where we define the ordered set

pn[F̄ ] = (pnF k∪F̄ : for k ∈ ΩX) (A2)

where k∈ΩX labels the elements, F k, of some tomographic set, T tom
X ⊆ TX of minimal possible rank. Here

TX is the set of all possible fragments in X. In general, the choice of tomographic set, T tom
X , is not unique. We

can always write (A1) because, in the worst case, we can choose T tom
X = TX and then the vector rnX[F ] is just a

list of 0’s except with a 1 at position k. In general, however, there will be some linear relationships between
these probabilities so that we can use a proper subset, T tom

X ⊂ TX. We can think of pnX[F̄ ] as the generalized
state prepared by F̄ for region X. And we can think of rnX[F ] as the generalized effect associated with fragment
F performed in region X. The choice of tomographic set, T tom

X , must be good for calculating the probability
for any circuit in any region X∪ X̄ (that is for any X̄ associated with a fragment F̄).

Using simple linear algebra [35] we can obtain the set {rnX[F ] : forall F ∈ TX} if we are given enough
empirical information in the form of pnC for C ∈ StomX . The set, StomX , has to be big enough to make this
possible—namely it has to generate ΩX linearly independent pnX[F̄ ] vectors. In this case we will say StomX is
tomographically complete for X. We can be sure this is true simply by choosing S tom

X to be the set of all circuits
in Sall circuits having elements at positions in X. This is not very useful however as this set grows very rapidly
with L and T.

To obtain a more useful notion we define a bounded set of circuits or fragments as one for which each
element fits inside a box with bounded spatial and temporal dimensions which do not scale with L and T.
Consider the following property.

Fragment tomography boundedness. We say we have fragment tomography boundedness if,
for any bounded set of fragments, there exists a bounded and tomographically complete set of
circuits.

We can motivate the assumption that this property holds by finiteness and locality. First, note that the
operationally accessed part of the Hilbert space associated with the inputs and outputs for any F ∈ T should
be finite so only require a finite number of circuits for tomography. Furthermore, by locality we should be
able to do tomography on this Hilbert space by means of circuits that are not too much bigger than the
fragments.

Consider a composite region, X1 ∪X2 (where X1 and X2 are disjoint). Then, for the circuit
C = F1 ∪F2 ∪ F̄ , we can write the probability as

pnF1∪F2∪F̄ = rnX1∪X2
[F1 ∪F2] · pnX1∪X2

[F̄ ] (A3)
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where

pnX1∪X2
[F̄ ] = (pnF k1∪F k2∪F̄ : for k ∈ ΩX1∪X2). (A4)

It can be shown [23] that for the composite region X1 ∪X2 we can choose a tomographic set of fragments of
the form F k1 ∪F k2 where

ΩX1∪X2 ⊆ ΩX1 ×ΩX2 (A5)

and, correspondingly, that

rnX1∪X2
[F1 ∪F2] =ΛX1,X2

X1∪X2
(rnX1

[F1]⊗ rnX2
[F2]) (A6)

whereΛX1,X2
X1∪X2

(which we called a composition tomogram in section 5) linearly projects vectors,
rnX1

[F ]⊗ rnX2
[F ] living in a space of dimension |ΩX1 ×ΩX2 | down to the vectors rnX1∪X2

[F1 ∪F2] living in a
space of dimension |ΩX1∪X2 |. If we do fragment tomography to obtain rnX1

[F1], rnX2
[F2], and rnX1∪X2

[F1 ∪F2]

then we can find an appropriate ΩX1∪X2 set and solve forΛ
X1,X2
X1∪X2

. This last step completes the composition
tomography for X1 ∪X2.

Composition tomography extends in the obvious way to more than two regions. Thus, we can obtain
ΛX1,X2,X3

X1∪X2∪X3
,ΛX1,X2,X3,X4

X1∪X2∪X3∪X4
, and so on. It turns out that theseΛ’s are related by mathematical identities if the Ω

sets associated with the X’s have certain relationships with one another (see section 23 of [23]). Consider the
following property.

Composition tomography boundedness. We will say we have composition tomography
boundedness for circuits formed on a given lattice using a given gate set, G, if we can obtain
ΛX1,X2,...

X for any X from mathematical identities concerning only Λ’s pertaining to boxes
bounded by some constant size (∆Lbounded,∆Tbounded) (which do not increase with L and T).

Here we say thatΛX1,X2,...,XM
X1∪X2∪···∪XM

pertains to a box bounded by (∆Lbounded,∆Tbounded) if X1 ∪X2 ∪ ·· · ∪XM

fits inside such a box. From the results in section 29 of [23] it is clear this conjecture is true for a specific gate
set, G, consisting of gates for which the associated operators span the full space of operators acting on the
Hilbert space associated with two qubits. In this case, |G|= 256. The gate set illustrated in the above table has
only |G|= 14. We conjecture that circuits formed on the above lattice with this gate set also have the
property of composition tomography boundedness. More generally, we conjecture that circuits formed with
respect to any lattice with any universal gate set have this property.

We can calculate the probability for any circuit, C, using only r vectors in the following way. First we
consider

pnF∪F̄ = rnX[F ] · pnX[F̄ ] (A7)

where X is the region for fragment F , and F̄ is another fragment. Also consider

prob(F̄ |Tchoice) =
∑
l

pnF [l]∪F̄ =
∑
l

rnX[F [l]] · pnX[F̄ ] (A8)

where F = F [1] and Tchoice = {F [l] : foralll} are a set of fragments for X with mutually exclusive and
exhaustive set of outcomes so that their probabilities must add to one. We denote this set with the subscript
‘choice’ because it represents the choice we make in X (a different choice would correspond to a different
mutually exclusive and exhaustive set). The vector pX[F̄ ] depends on F̄ and is independent of F [l] in region
X. By Bayes rule

probn(F|F̄ ,Tchoice) =
rnX[F ] · pnX[F̄ ]∑
l r

n
X[F [l]] · pnX[F̄ ]

(A9)

Hence, iff

rnX[F ] is proportional to
∑
l

rnX[F [l]] (A10)

then probn(F|F̄ ,Tchoice) is independent of F̄ . We denote this probability by pnF|Tchoice
and it is given by

rnX[F ] = pnF|Tchoice

∑
l

rnX[F [l]]. (A11)
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We can apply this approach to the case where F and F̄ are circuits. If we have ideal circuits then it is true in
quantum theory (and circuit theories in general [36]) that

pC∪C̄ = pCpC̄ . (A12)

From this property it can be proven that the proportionality condition in (A10) must hold and hence the
probability for a circuit is given by

rX[C] = pC
∑
l

rX[C[l]]. (A13)

Here we have dropped the possible dependence of pC on the choice of mutually exclusive circuit set (it is
possible to prove that there is no such dependence). For non-ideal circuits, however, the proportionality
condition of (A10) may fail even when F is a circuit because we have not fully trained it to behave like a
circuit. Nevertheless, if the proportionality condition holds approximately, then we can bound the
probability [26].

We now prove the following theorem.

Theorem 1. If we have fragment tomography boundedness and composition tomography
boundedness, then there exists a bounded set of circuits Stom such that if, at some iteration
n= ñ, we have

pñC = pC forallC ∈ Stom

then pñC = pC for any C ∈ Scircuits.

Recall that pC are the probabilities for idealised circuits when the gates g are actually those in our UGS, G.
We can obtain these probabilities by calculation using Quantum Theory. To calculate pñC for an arbitrary
circuit we need to be able to calculate the rnX vectors for the region associated with C. We can do this in the
following way. If we haveΛX1,X2,...

X where X1, X2, … live inside bounded boxes and we can also calculate rX1 ,
rX2 , … for these same bounded boxes and then we can calculate rX vectors for region X, and from these we
can calculate pC . We can obtain these rXi vectors from probabilities for bounded circuits by fragment
tomography boundedness. If we have composition tomography boundedness then we can obtainΛX1,X2,...

X

fromΛ’s that pertain to bounded boxes. Furthermore, we can determine theseΛ’s that live in bounded boxes
by constructing circuits that live in bigger, but still bounded, boxes by fragment tomographic locality. Thus,
all the circuits we need to do tomography live in bounded boxes. If we obtain the probabilities pñC = pC for
this set of circuits then, by the above argument, we will obtain rnX[F ] = rX[F ] for any X and F . We can
calculate the probability for any circuit using these r vectors and hence this proves the theorem.

Appendix B. Numerical motivation of random sampling assumption

In this appendix we motivate the random circuit sampling assumption (the text surrounding (5)) by way of a
simple numerical model. We imagine an experimenter with access to a quantum computer composed of Nq

qubits. The computer is able to implement the Cliford gate set, CNOT,H,T,S and I, subject to noise
modelled by a noise vector δ = (δx, δy, δz). The actually-implemented single-site gates differ from the
experimenter’s choice by a phase rotation about each axis of the Bloch sphere. The magnitude of each
rotation is drawn from a Gaussian distribution about 0 whose standard deviation is given by its respective
component of δ.

The experimenter seeks to construct random circuits Srand such that the loss function (5) – the RMS
error between batches of observed and actual circuit measurement probabilities – computed on small circuits
places a bound on finite percentiles of those which would be computed for arbitrarily large circuits via (5).
The idea is to motivate that knowledge of how to implement random small circuits grants knowledge of how
to implement arbitrary circuits, including much larger ones. In fact Theorem 1 proves this, so that the goal of
the experiment is to motivate that the results persist despite error in the quantum circuit.

The experimenter constructs their Srand as follows. A ‘small’ circuit size of N s qubits and Ts timesteps is
selected. The qubits are initialized in the |0⟩ state. At each timestep either a CNOT or an identity gate is
applied to each qubit pair. One of I, H, S, or T gates, along with the Gaussian noise, is also randomly selected
and applied with equal probability. The squared modulus of the resulting wavefunction then yields the
probability vector Pactual for measurements of thise circuit in the computational basis. A second circuit,
identical except that δ = 0, is generated to yield a corresponding Pexpected.
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Figure B1. Results of a Cirq simulation of the experiment described in appendix B, demonstrating a linear relationship between
the loss L computed upon randomly generated circuits of small size N s = 6, Ts = 4 and the error err thresholded by a given κ
computed on larger circuits with N= 8, T= 8 (crosses) and N= 10, T= 16 (dots). The x axis shows, for noise vectors δ whose
components are each taken from five even increments between 0 and 0.03 radians, the mean of errors (B14) computed on
sufficiently large batches of small circuits to yield at worst 10 percent error compared to the same computation on half the batch.
The y axis shows the 1−κth percentile of (B14) over identical noises on the bigger circuits, converged according to the same
restriction. Each point thus compares the smaller and large computation with the same noise. The loss computed on the small
circuits is seen to bound the error on the larger ones.

The error ei of the ith run is then estimated as the L2 norm of the difference between Pactual and Pexpected:

ei = norm|Pactual − Pexpected|. (B14)

We then estimate the loss L computed on the small circuit for a given noise vector δ as the mean of all ei
computed on some batch. This batch is expanded by increments of 100 until the mean of the batch and of
half the batch disagree at most by 10 percent.

A ‘large’ circuit size (N,T) is then chosen, and batches of ei computed upon these for the same various δ
as used on the small one. We then choose a few values of the κ appearing in the random circuit sampling
assumption, and compute the 1−κth percentile of the ei’s on the batch. The batch is again expanded until
each percentile disagrees with that computed upon half the batch by at most 10 percent. We use this
computation as an estimate of the error err in (5) for the given κ.

We consider the random circuit sampling assumption to have been falsified if a predictable relationship
between L and err fails to develop having computed the two for each of various δ. But in figure B1, which
presents the results of a simulation of the experiment detailed here conducted using Google’s Cirq
framework, we instead see a clearly linear relationship, indicating that study of the smaller circuit in fact
yields information about the larger one despite the error.
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