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Abstract 
 
The paper presents a framework for the construction of an elementary proof of the infinitude of 
twin primes. It starts from the fact that all positive integers can be divided into numbers that can 
lead directly to a pair of twin primes (called twin ranks) and numbers (called non-ranks) that do 
not have this property. While the twin ranks cannot be directly calculated, the non-ranks can be 
easily calculated with a simple equation based on ordinary primes. They present a series of 
properties that once rigorously proven make the finiteness of twin prime an impossibility. 
Foremost among these properties is the fact that they can be arranged in an infinite number of 
sets called groups and super-groups. These sets have a built-in symmetry, a precise interval 
length and a well-defined number of terms. Another important property is that the depletion of 
twin primes via non-ranks goes in steps from one “basic” interval to another. As one goes higher 
up in the number series, these intervals grow larger and larger while the prime numbers required 
for their depletion become more and more sparse. 
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1 Introduction 
 
Two prime numbers jP and 1jP + are called twin primes if 1 2j jP P+ − = . Because they have a 

tendency to thin out compared with the usual primes as one goes higher up in the number series, 
for many years the set of twin primes was considered to be most likely finite. Although nowadays 
there is a strong consensus that there are infinitely many twin primes, a formal proof of this 
conjecture (called the Twin Prime Conjecture [1]) was not found yet. The main difficulty is the 
fact that probabilistic events for consecutive primes are not truly independent [2]. 
 
In this paper we look at the problem from a different perspective and show that once the 
interdependence of the twin primes with the other primes is understood, it is hard to see how their 
number can be finite. This is because, as one goes higher up in the number series, the prime 
numbers which play a key role in their depletion become more and more sparse [3], while the 
intervals that have to be covered by a single prime grow larger and larger.  
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2 Basic Properties 
 
We begin by showing that with regard to the twin primes all positive integers can be divided into 
two and only two categories: twin ranks and non-ranks. These two concepts were introduced and 
discussed in a previous paper [4], but in order to facilitate the exposition we recall here some of 
the characteristics that are essential in understanding their role in the formation of the twin primes.  
 
One can associate to each pair of twin primes P and 2P+  a “twin index” 1K P= +   
representing the number between them. Since all twin primes with the exception of 3 and 5 are of 

the form 6 1P n= ±  (where n is a positive integer) all twin indices except 4 are of the form

6K n= . For reasons that will become apparent shortly, one can define a “twin rank”  as a 

number of the form * / 6k K= and work with twin ranks instead of twin indices.  All twin ranks 

lead to a twin index (and hence to a pair of twin primes) by a single algebraic operation: 

multiplication by 6. Since ( )2 1 2K P P− = +  is divisible only by P and  P + 2, it follows that 

that if a number ( ) ( )( )2
6 1 6 1 6 1n n n− = + − is not divisible by any prime 6 1P n≤ + , 

then *n k=  is a twin rank and   *6 1k ±  are twin primes. Conversely, all numbers k that satisfy 

one of the two variants of the following equation 
 

[ ]/ 6k nP P= ±         (1) 

 
where [x] means the nearest integer to x, cannot lead to a pair of twin primes by a single algebraic 
operation. They were called “non-ranks”. As shown, there are no other numbers in the set of 
positive integers besides twin ranks and non-ranks [4]. With the above formula one can find all 

non-ranks smaller than ( )2
1 1 1 / 6j jM P+ += −  by using all primes5 jP P≤ ≤ . By subtracting 

these non-ranks from the set of positive integers( )2
1 1 / 6jn P+< −  one obtains all twin ranks 

( )2
* 1 1 / 6jk P+< −   and, hence, all twin primes with indices 2

1 1jK P +< − . (Note: Because the 

reminder from the division of a number a by a number b can be equal to 0.5, the expression “the 
nearest integer to a / b“ is usually avoided in number theory. Nonetheless, we are using it here 
because the reminder from the division of a prime number 5P ≥  by 6 is either 1 / 6 or 5 / 6). 
 

It is important to realize that while many of the non-ranks jk
 
determined with (1) using a prime 

jP  can be found with the help of primes smaller thanjP , none of them can be found using primes 

larger than jP . This property is very important because it ensures that once a number was shown 

to be a twin rank by using in (1) all primes up to a certain prime jP  , that number is not going to 

be “covered” (i.e. shown to be a non-rank) by primes larger than jP . In other words, while the 

covering process started by a prime at the points [ ]/ 6P P±  goes forward to infinity, it does not 

go backward. 
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3 The Case for the Infinity of Twin Primes 
 
Let us examine the set of natural numbers and see how the twin ranks arise as a consequence of 
the fact that there are not enough primes to cover all positive integers. The first characteristic we 

notice is that there are two non-ranks associated to a prime P in each interval of length n P∆ =  

starting with [ ]/ 6P P± . They are symmetrically distributed at equal distances [ ]/ 6P   from all 

numbers that are a multiple of P. One can associate, therefore, to each non-rank a “parent prime” 
defined as the smallest prime required by (1) to find it.  Example: Here are the first 10 non-ranks 

of parent prime 17 59P = :  777, 1013, 1052, 1288, 1347, 1603, 1642, 1760, 1937, 1957. All of 

them are of the form [ ]17 59 59 / 6k n= ± .  

 

Starting with 4, the smallest non-rank, all non-ranks jk  of the same parent prime jP  form an 

infinite number of consecutive groups of length
3

j

j i
i

L P
=

= ∏ , each of them containing jG   terms. 

The totality of non-ranks of parent primes  5 i jP P≤ ≤
 
form an infinite number of consecutive 

super-groups of equal interval lengthsjL , each of them containing  jS  terms. (Note: Although

jL , jG  and jS are whole numbers, for simplicity in the following we will also use them to 

designate the corresponding intervals, groups or super-groups. The same is true for jR , a set of 

numbers to be defined shortly). Because jL is divisible by all primes 5 i jP P≤ ≤ , each super-

group jS  has an integer number of groups iG  with i j≤ , and the gaps between its terms will 

come out in the same order regardless from which side of the interval one starts to count them. 
This makes the distribution of gaps symmetric with respect to a central gap between the numbers  

( )1 3 / 2c jL L= −  and ( )2 3 / 2c jL L= + .  It also has as a consequence the fact that the sum of 

two non-ranks situated at equal distances from the central gap equals jL . Obviously, the size of 

the gaps and their distribution will be the same in all the other super-groups obtained by adding to 

each term in the first super-group the number jL multiplied by an integer.  As shown in [4] one 

has 

( )
1

3

2 2
j

j i
i

G P
−

=

= −∏          (2) 

 

3

2
1

j
i

j j
i i

P
S L

P=

 −= − 
 

∏         (3) 
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As mentioned, the number of terms in a super-group is the sum of the number of terms in the 

constituent groups. However, this does not mean that jS  is given by 
3

j

i
i

G
=
∑  with jG  as in (2). In 

order to arrive at (3), one has to take into account the fact that in each super-group of order j there 

are nested ( )/ij j i iG L L G=   groups of order 3 i j≤ ≤ . (Note that all these numbers are exact 

integers).  
 
Although per the fundamental theorem of arithmetic all natural numbers are multiples of a prime 
P, this does not guaranty that one can associate a prime to every number according to (1). The 
number 10 for example is a multiple of 2 and 5, but there is no number n that allows it to be 

written as either [ ]/ 6nP P+  or [ ]/ 6nP P− . Consequently, 10 is a twin rank. It gives the 

twin index 60 when multiplied by 6.  
 
 As we go further up in the natural number series, we notice that the covering process is not 

monotonous. It goes in steps from one “basic” interval ( )2 2
1 / 6j j jM P P+∆ = −  to the next basic 

interval ( )2 2
1 2 1 / 6j j jM P P+ + +∆ = − . Any time one covers a basic interval jM∆  and goes to the 

next interval 1jM +∆ , one needs a larger prime to cover the numbers in that interval left uncovered 

by previous primes. And here is an important aspect of the problem:  Not only a prime P cannot 

cover more than about a fraction  2/ P  of the remnants in a basic interval, but very often there is 
no number n which together with P can satisfy (1) for that interval. In this case all the remnants 
are twin ranks.  
 

As an example, let us start from the number ( )2
17 17 1 / 6M P= −  (where 17 59P =  is the 17th 

prime) and let us apply eq. (1) with 5 59P≤ ≤  to the basic interval situated between 

( )2
17 59 1 / 6 580M = − =  and ( )2

18 61 1 / 6 620M = − = . We obtain the non-ranks: 580, 

581, 582, 583, 584, 585, 586, 587, 589, 591, 592, 594, 595, 596, 598, 599, 600, 601, 602, 603, 
604, 605, 606, 607, 608, 609, 610, 611, 613, 614, 615, 616, 617, 618, 619. After subtracting these 
non-ranks from the set of positive integers in the interval, we obtain the remnants: 588, 590, 593, 
597, 612. As expected (because we used all required parent primes) all these remnants are twin 
ranks. They correspond to the following pairs of twin primes: (3527, 3529); (3539, 3541); (3557, 
3559); (3581, 3583) and (3671, 3673). Now, if we apply the procedure to the next basic interval 

situated between ( )2
18 61 1 / 6 620M = − =  and ( )2

19 67 1 / 6 748M = − =  using the same 

primes as before, we obtain all non-ranks in the interval (starting with 620) except one: 742. In 

order to cover this number we have to use the prime next to17P , i.e. 18 61P = . Indeed, 

742 12 61 10= × + in accordance with eq. (1). In the next interval situated between 

( )2
19 67 1 / 6 748M = − =  and ( )2

20 71 1 / 6 840M = − =  the new prime 19 67P =  manages 

to cover two more remnants 793 12 67 11= × −  and 815 12 67 11= × + , but in the succeeding 

three intervals the primes 20 71P = , 21 73P = , and 22 79P =  are not able to cover any remnants 
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because there are no numbers  n that together with these primes can satisfy eq. (1) for the 
corresponding intervals. Consequently, all remnants in these intervals are twin ranks. What one 
sees is the following: On one hand, as one goes further up in the number series, one has at one’s 
disposal more and more primes that can be used to cover the remnants in the incoming intervals. 
On the other hand, the primes needed for the covering process become more and more sparse and 
the basic intervals which have to be covered by a single prime grow larger and larger.  The main 
questions are:  
 

- If zP  is the zth prime, is it possible to have all integers larger than ( )2
1 1 1 / 6z zM P+ += −  in a 

super-group  
3

z

z i
i

L P
=

= ∏   covered by primes smaller than  1zP +  ?  (Recall that the covering 

process started by a prime at the points [ ]/ 6P P±  goes forward to infinity). 

 

- If the answer to the first question is “no”, are the remaining primes 1 6 1z zP P L+ ≤ ≤ +   

able to cover all the subsequent remnants in the super-group?   
 

In order to answer the first question we notice that the interval zL  contains a number zS  of non-

ranks of parent primes 5 i zP P≤ ≤  given by the same equation (3) regardless of the value of z. 

Because  z zL S>   there will always be in zL  a number zR  of remnants not included in zS . 

One has   

( )
3

2
z

z z z i
i

R L S P
=

= − = −∏        (4) 

 

The uniform distribution of terms in zL  allows the symmetry in zS  with respect to the central 

gap to be preserved after the subtraction of its terms from zL . Consequently, the gaps between 

consecutive terms in zR  are symmetrically distributed with respect to the central gap. (This is 

valid for any remnant jR ). All remnants smaller than  ( )2
1 1 1 / 6z zM P+ += −  are twin ranks 

because the non-ranks smaller than 1zM +  were covered by the primes 5 i zP P≤ ≤  and are not in 

zR . 

Let us assume there are no twin ranks after 1zM +  because they have been covered by primes 

smaller than 1zP + . This means that all numbers in zR  after 1zM +  are non-ranks. These non-ranks 

must be of parent primes larger than zP  because if they were smaller they would have been 

included in zS  and no numbers would have been left for the interval between 1zM +  and zL . If 

this would be the case, the number of remnants would be much smaller than the value given in (4) 
and there would be no symmetry. Since this negates the basic properties of non-ranks, we 
conclude that:  
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Given an arbitrary prime 1zP +  and a super-group of length 
3

z

z i
i

L P
=

= ∏ , the primes smaller than 

1zP +  cannot cover all numbers in the super-group larger than ( )2
1 1 1 / 6z zM P+ += − . 

 
In order to answer the second question we recall that the gaps between consecutive terms in any 

remnant jR  are symmetrically distributed on each side of the central gap. This means the fraction 

of remnants in two intervals of equal length situated at equal distances from the central gap are 
equal, and the fraction of remnants at the beginning does not differ too much from the fraction at 
the end, with both of them not significantly different from the average value 
 

3

2j
j i

j
ij i

R P
x

L P=

−= = ∏          (5) 

 

Example: Let 7j = . One has 17jP = , 85085jL = , and ( )1 3 / 2 42541c jL L= − = . If one 

divides the interval between 541 and 42541 in 42 intervals of equal length and measures the 
fraction of remnants in each of them, one obtains the following values: 0.265, 0.261, 0.263, 0.257, 
0.262, 0,261 ,0.262, 0.259, 0.257, 0.264, 0.259, 0.264, 0.257, 0.261, 0.265, 0.257, 0.261, 0.266, 
0.260, 0.259, 0.261, 0.264, 0.259, 0.257, 0.261, 0.259, 0.263, 0.263, 0.255, 0.262, 0.259, 0.267, 
0.260, 0.259, 0.266, 0.259, 0.260, 0.266, 0.254, 0.263, 0.257, 0.264. The mean value for the whole 

interval jL  is 0.2618jx = . Due to the central symmetry, one obtains the same numbers in 

reverse order for the interval between ( )2 3 / 2 42544c jL L= + =  and 541 84544jL − = . 

Therefore, one can approximate the numberjΛ  of remnants in a basic interval 1jM +∆  inside jL   

as a fraction jx  of its length. One has   

 

1 1
3

2j
i

j j j j
i i

P
x M M

P+ +
=

−Λ ≅ ∆ = ∆ ∏        (6) 

 
It is important to realize that what matters here is not the exact number of uncovered terms in the 
interval, but the fraction of them that can be covered by a single prime. In this case the prime is  

1jP +  and the interval is ( )2 2
1 2 1 / 6j j jM P P+ + +∆ = − . The approximate number of terms covered 

by 1jP +  is then 

 
2 2

1 2 1
1

31

2
2

3

j
j j j j i

j
ij i

x M P P P
N

P P
+ + +

+
=+

∆ − −≅ = ∏      (7) 

 
It follows that the number of terms remained uncovered, all of them twin ranks, is on the order of 
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( )11 2 /j j jT P+≅ Λ −         (8) 

 
Theorem: The number of remnants in a basic interval is larger than the gap between the primes 
that determine the length of the interval. 
  

Proof: For any prime  iP  one has 12i iP P−− ≥ . This allows one to write (6) as 

 

( )( )2 1 2 13

2
j j j j

j j
j j

P P P P
M

P P

+ + + ++ −
Λ ≥ ∆ ≥      (9) 

 

With  2 1 2j j jP P P+ ++ >   one has 2 1j j jP P+ +Λ > − . This completes the proof.  

Based on the above properties, we conclude that:  

Given an arbitrary prime 1zP +  and a super-group of length 
3

z

z i
i

L P
=

= ∏ , the primes larger than 

1zP +  cannot cover all remnants in the super-group larger than ( )2
1 1 1 / 6z zM P+ += −  . 

 

4 Concluding Remarks 
 
Many years ago Euclid gave an elementary but elegant proof that there are an infinite number of 
primes [5]. Now, after more than 2000 years, mathematicians, while still struggling to find a proof 
for the infinity of twin primes using complex analysis, do not even mention the possibility of an 
elementary proof. Based on the above analysis, we present here a possible framework for the 
construction of such a proof. The line of reasoning is as follows: 
 

a) There is a one to one correspondence between twin primes and twin ranks; 
b) Any positive integer is either a twin rank or a non-rank; 
c) While the twin ranks cannot be directly calculated, the non-ranks can be easily 

calculated with a simple equation based on ordinary primes; 
d) All positive integers that fail to satisfy that equation after using all corresponding 

primes and numerical coefficients are twin ranks;  
e) The non-ranks can be arranged in an infinite number of groups and super-groups 

with a built-in symmetry a precise interval length and a well-defined number of 
terms; 

f) Because of the built-in symmetry, if there were no twin ranks after a certain 
number, the number of remnants in the interval occupied by a super-group 
containing that number would be much smaller, and there would be no 
symmetry; 

g) In a super-group the primes smaller than a given prime cannot cover all terms 
larger than a certain number on the order of the square of that prime divided by 
6; 
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h) The depletion of twin primes in an interval is directly dependent of the ability of 
the ordinary primes to “cover” all positive integers in that interval; 

i) The covering process goes in steps from one “basic” interval to another, with a 
prime P unable to cover more than about a fraction  2/ P   of the numbers in the 
interval; 

j) If the primes smaller than a given prime cannot cover all terms in a super-group 
larger than a certain number, the uncovered terms cannot be entirely covered by 
larger primes; 

k) The propositions (g) and (j) imply that there will always be twin ranks in a super-
group because, regardless of its size, it is impossible to cover all the constituent 
terms by the available primes;  

l) Since there are infinitely many super-groups, it follows that there are infinitely 
many twin ranks and hence infinitely many twin primes. 

 

Competing Interests 
 
Author has declared that no competing interests exist. 
 

References 
 
[1] Guy RK. Unsolved problems in number theory. New York: Springer-Verlag; 2004.  

 
[2] Hardy GH, Wright EM. An introduction to the theory of numbers. Oxford; 1979. 

 
[3] Hardy GH, Littlewood JE. Contributions to the theory of the Riemann zeta-

function and the theory of the distribution of primes. Acta Mathematica 
1916;41:119-196. 
 

[4] Dinculescu A. On some infinite series related to the twin primes. The Open 
Mathematics Journal. 2012;5:8-14. 
 

[5] [5] Tietze H. Famous problems of mathematics: Solved and unsolved mathematics 
problems from antiquity to modern times. New York: Graylock Press; 1965. 

_______________________________________________________________________________ 
© 2013 Dinculescu; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
www.sciencedomain.org/review-history.php?iid=240&id=6&aid=1790 


