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Abstract

By using the sine-cosine method, the extended tanh-method,uay &t(2+1)-dimensional
generalized Kadomtsov-Petviashvili-Benjamin-Bona-Mahony equatitinis shown that thig
class gives compactons solutions, solitary patterns solutr@hpexiodic solutions. The change
of the physical structure of the solutions is causedvéayation of the exponents and the
coefficients of the derivatives.

Keywords: Solitary patterns solution, compactons, perisdiation, the (2+1)-dimensional GKP-
BBM equation.

1 Introduction

Recently, Tang et al. [1] considered the following (2+1)atisional generalized Kadomtsov-
Petviashvili-Benjamin-Bona-Mahony (GKP-BBM) equation:

[(U), * (), ~a(u™), b)), +K(U),, = On>m1, an

wherea b,k are constants,m are positive integers. Specially, when n = 2,m = lesyst
(1.1) becomes the standard KP-BBM equation [2]. With the deveopof soliton theory, there
exist many different approaches to search for exdcttisns of nonlinear partial differential

equations, such as mapping method [3], the trigonometric fimsgéries method [4EG%;) -

expansionmethod [5], improved Fan subequation method [6], the bifurcatiothodeand
gualitative theory of dynamical systems method[7,8] and sdPoactically, there is no unified
technique that can be employed to handle all types ofneanl differential equations.

The sine-cosine and the extended tanh algorithms, that pravslesematic framework for many
nonlinear dispersive equations, which will be employed td hge our analysis to determine
solitary traveling wave solution, compactons , spfitpattern traveling wave solution and
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periodic traveling wave solution.
Letu(X, y,t) = ¢(x+y—ct) = ¢(&) , where cis the wave speed. Then (1.1) becomes to

[A-c)(¢) —a(@™) +bd(¢)™] +k(¢)" =0, (1.2)

Where “” is the derivative with respect & .

Integrating twice and using the constants of integratidse zero we find
(k+1-c)¢f ~ag™™* +beri(n-1¢’ + @] =0, 3

The paper is organized as follows: In section 2, the sisgre method and the tanh method are
briefly discussed. In Section 3, represents exact analwaations of (1.1) by using the tanh
method and the extended tanh method. In Section 4, representsuaigtital solutions of (1.1)
by using the sine-cosine method. In the last sectioncarelude the paper and give some
discussions.

2 Analysis of the Two M ethods

The sine-cosine method, the tanh method and the exteadlednethod have been applied for a
wide variety of nonlinear problems. The main features oftéie methods will be reviewed
briefly.

For both methods, we first use the wave varighle X+ y—ct to carry a PDE in two
independent variables

P(Uvut'ux'uy'uxx'uxy’uyy""): 0’ (2.1)
into an ODE
Q(U,U',U”,U”’,---) = 0, (22)

Eqg. (2.2) is then integrated as long as all terms con&imalives where integration constants are
considered zeros.

2.1 The Sine-Cosine Method Admits the Use of the Solution in the Form or in
the Form

Acod (uf), |#E|<g

0, otherwise,

u(x, y,t) =

(2.3)

or into the form
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Asinf(ué),  |pélkm

u(x, y,t) = { o
0, otherwise, 2.4)

where/, tiand [ are parameters that will be determined.

We substitute (2.3) or (2.4) into the reduced ordinary wifféal equation obtained above in (2.2),
balancing the terms of the cosin functions when (2.3) is usdehlancing the terms of the sine
functions when (2.4) is used, and solving the resulting systexiyebraic equations by using the

computerized symbolic calculations to obtain all possibleegof the parameterd, i and 3.
2.2 The Tanh Method and the Extended Tanh M ethod

The standard tanh method introduced in [9,10] where the tanhdsagse new variable, since all
derivatives of a tanh are represented by a tanh itselfu$®¥ a new independent variable

Y =tanh(ué),

(2.5)
that leads to the change of derivatives:
d 2 d
= 1—Y _
ae HA=Y) S
2 2
= a2y L+ =)
dé dy dy*" 26)
We then apply the following finite expansion:
M
u(ué) =S(Y) =Y aY,
k=0 (2.7)
and
< K, k
u(ué) =S(Y) =3 aY*  + 3 bY™,
k=0 k=1 (2.8)

where M is a positive integer that will be determinedi¢oive a closed form analytic solution.
However, if M is not an integer, a transformation formislaisually used. Substituting (2.5) and
(2.6) into the simplified ODE (2.2) results in an equation awgrs of Y. To determine the
parameter M, we usually balance the linear terms of higheer in the resulting equation with
the highest order nonlinear terms. With M determinedcalkect all coefficients of powers of Y
in the resulting equation where these coefficients haveatosh. This will give a system of
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algebraic equations involving the parametésh,,/andc .Having determined these

parameters, knowing that M is a positive integer in mosts;and using (2.7) or (2.8) we obtain
an analytic solutioru(x,t) in a closed form.

3 Using the Sine-Cosine M ethod

Substituting (2.3) into (1.3) yields

—aA™ co$™V? (ué) + (k +1-c—berf 12 B7) A" co? (ué) + ben” A" B(nS - 1) cos?2(ué) = 0. 3.1)
Eq. (3.1) is satisfied only if the following system ofelbraic equations holds:
nBz1LnB-2=(m+1B,k+1-c=bcr?S%,al™ =bcr’A"B(nSB - 1). (32)
Solving the system (3.2) gives

-2
p= =

(k+1-c)(m-n+1)° = 2an
m-n+1 4ber?

’ (k+1-c)(m+n+1) (33)

The results (3.3) can be easily obtained if we alsohessihe method (2.4). Combining (3.3) with
(2.3) and (2.4), the following compacton solutions [11,12]:

2an 2m-n+l k+l-c 1
Lo 2 | pe CHYT

/ bc
={|x+y—-ct ,n—-m-1=2,10Z",abe
W=qlxty- |<m—n+1 k+1-c a

Q otherwise (3.4)
[ 2an ]Cogm—n+1 k+1- C(x+y g
ki-9mn+D > | b

U= |x+y- ct|<m_n+1 k+b1°_ n-m-1=2 +1| (0Z',alfk+1-¢) >Q
Q otherwise (3.5)

and
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Z2an m—n+1 [kK+1-c
i Iﬁ X C nrn—l
[(k+1—c)(rr‘rl-n+])]S P \/ (cry=cpI™
bc
=JIx+v—ct n-m-1=2,10Z",abc
=Xy |<m—n+1\/I o
Q otherwise (3.6)
Z2an m—n+1 [K+1-c
Slﬁ X C nm—l
[(k+1—c)(m+n+])] 2 \/ (ry=cpr™
bc
=J|x+y—ct ,n—-m-1=2+110Z",alfk +1-c) >
U, =qIx+y- |<mn+1k+1_ 1 K )>Q
Q0 otherwise (3.7)

However, forbc(k +1—-¢) <0, we obtain the following solitary patterns solutions:

o = 4] 2an ]cosﬁm_n+l\/k+l C (x4 y—c) ]
(k+1-c)(m+n+1) 2n b
n-m-1=2,10Z%,ak+1-c)>0, (3.8)
0 = 2an ]coshzm_n+1\/k+1_c(x+y—ct)]"-lm-l
(k+1-c)(m+n+1) 2n bc
n-m-1=2+110Z" (3.9)
and
—-2an . ,m-n+1 [k+1-c
u, =+ sink? \/ X+y-ct)]
= o maneD) 2n pe Ty
n-m-1=2,10Z%,ak+1-c)>0, (3.10)
—-2an . ,m-n+1 [k+1-c
Uy = sinh? X+y-ct)]
ey — 2n \/ be Tyl
n-m-1=2+110Z", (3.11)
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4 Using the Extended Tanh Method

Second In Eq.(1.3), balancing™ ""*with @' we find

so that

M =L,m—n+1¢0.
m-n+1 (4.2)

To get a closed form analytic solution, the parameteshiduld be an integer. A transformation
formula
1

wzwm—ml’ (4,3)
should be used to achieve our goal. This in turn tramsfdq.(1.3) to
(k+1_c)w2_aw3+bcn(2n—m—21)w,2+ bcn oy =
(m-n+1) m-n+1 (4.4)

Balancing (p3andz//z//"givesM = 2.The tanh method allows us to use the substitution

A& =a,+ay +ay?+hy by, @5

Substituting (4.5) into (4.4), collecting the coecieoft®ach power of Y, and solve the resulting
system of algebraic equations to find the following theets of solutions:

A=B =B,=0, A=-A = (k+1—c)(m+n+1)1

2an
c? =2 quz_(k+1—c)(m—n+1)2
’ 4bCf’2 ’ (4.6)
e A _ _(k+1-c)(m+n+1)
=B =A,=0, A =-B, = ,
A=B =A=0 A=-B, S
c? =2 quz_(k+1—c)(m—n+1)2
’ 4bcr? ’ 4.7
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o - 1, (k+1l-¢c)(m+n+)
- _Ol _B___ - 3
A=B=0A=B,=-2A o
_ _ 2
czzcz,uzz—(kJrl c)(m2n+1) ,
1€bcr (4.8)

1
Noting that @=¢/™ " for bc(k +1-c) <0, we obtain the following solitary patterns

solutions

1

u, ={A*[1- tanhz(Ql(x +y—ct))]} ™,

(4.9)
1
Ulo = { A* [1_ COch(Ql(X + y - Ct))]} m—n+l, (410)
and
LAY 1 -
Uy, ={—[1-=(tanif Q,(x + y —ct) + coth? Q,(x + y — ct))]} ™,
2 2 (4.11)
where A+ = (k+1-c)(m+n+1) Q= m-n+1 /—(k+1—c) .
2an 2n bc
However, fobc(k +1 - c) > 0, we obtain the following periodic solutions
1
U, ={A* [L-tar’(Q,(x + y - ct))]} ™™, (4.12)
1
U, ={ A* [L-cot’(Q,(x + y —ct))]} ™1, (4.13)
And
AL —
Uy ={ - [+ (tar? Q,(x+ y — ct) + CoP Q, (x + y — ct)]} ™,
2 2 (4.14)

_m-n+1 [k+1-c
where Q, = an e
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5 Conclusions

The sine-cosine method and the extended tanh method weretausedestigate the (2+1)-
dimensional GKP-BBM equation. The study revealed congpactsolitary patterns solutions and
periodic traveling wave solutions for some examinedavas. The study emphasized the fact that
the two methods are reliable in handling nonlinear problehie obtained results clearly
demonstrate the efficiency of the two methods used inviloik. Moreover, the methods are
capable of greatly minimizing the size of computatiomerk compared to other existing
techniques. This emphasizes the fact that the two methredapplicable to a wide variety of
nonlinear problems.
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