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Abstract 
 
By using the sine-cosine method, the extended tanh-method, we study a (2+1)-dimensional 
generalized Kadomtsov-Petviashvili-Benjamin-Bona-Mahony equation.  It is shown that this 
class gives compactons solutions, solitary patterns solutions and periodic solutions. The change 
of the physical structure of the solutions is caused by variation of the exponents and the 
coefficients of the derivatives. 

Keywords: Solitary patterns solution, compactons, periodic solution, the (2+1)-dimensional GKP-
BBM equation. 

 

1 Introduction 
 
Recently, Tang et al. [1] considered the following (2+1)-dimensional generalized Kadomtsov-
Petviashvili-Benjamin-Bona-Mahony (GKP-BBM) equation: 
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where kba , ,  are constants, mn ,  are positive integers. Specially, when n = 2,m = 1,system 
(1.1) becomes the standard KP-BBM equation [2]. With the development of soliton theory, there 
exist many different approaches to search for exact solutions of nonlinear partial differential 

equations, such as mapping method [3], the trigonometric function series method [4], ）（ G
G′ -

expansion method [5], improved Fan subequation method [6], the bifurcation method and 
qualitative theory of dynamical systems method[7,8] and so on. Practically, there is no unified 
technique that can be employed to handle all types of nonlinear differential equations. 
 
The sine-cosine and the extended tanh algorithms, that provides a systematic framework for many 
nonlinear dispersive equations, which will be employed to back up our analysis to determine 
solitary traveling wave solution, compactons , solitary pattern traveling wave solution and 
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periodic traveling wave solution. 
Let )()(),,( ξφφ =−+= ctyxtyxu  , where c is the wave speed. Then (1.1) becomes to 
 

, 0)(])()())(1[( 1 =′′+′+′−′− + nmnmn kbcac φφφφ                 (1.2) 
Where “’” is the derivative with respect to ξ  . 
 
Integrating twice and using the constants of integration to be zero we find 
 

.0])1[()1( 232 =′′+′−+−−+ +− φφφφφ nbcnack nm

              (1.3) 
 
The paper is organized as follows: In section 2, the sine-cosine method and the tanh method are 
briefly discussed. In Section 3, represents exact analytical solutions of (1.1) by using the tanh 
method and the extended tanh method. In Section 4, represents exact analytical solutions of (1.1) 
by using the sine-cosine method. In the last section, we conclude the paper and give some 
discussions. 
 

2 Analysis of the Two Methods 
 
The sine-cosine method, the tanh method and the extended tanh method have been applied for a 
wide variety of nonlinear problems. The main features of the two methods will be reviewed 
briefly. 
 
For both methods, we first use the wave variable ctyx −+=ξ  to carry a PDE in two 
independent variables 
 

, 0,...),,,,,,( =yyxyxxyxt uuuuuuuP
                        (2.1) 

into an ODE 
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Eq. (2.2) is then integrated as long as all terms contain derivatives where integration constants are 
considered zeros. 
 
2.1 The Sine-Cosine Method Admits the Use of the Solution in the Form or in 

the Form 
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or into the form  
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where µλ, and β are parameters that will be determined. 
 
We substitute (2.3) or (2.4) into the reduced ordinary differential equation obtained above in (2.2), 
balancing the terms of the cosin functions when (2.3) is used, or balancing the terms of the sine 
functions when (2.4) is used, and solving the resulting system of algebraic equations by using the 
computerized symbolic calculations to obtain all possible values of the parameters µλ,  and β . 

 
2.2 The Tanh Method and the Extended Tanh Method 
 
The standard tanh method introduced in [9,10] where the tanh is used as a new variable, since all 
derivatives of a tanh are represented by a tanh itself. We use a new independent variable 
 

),tanh(µξ=Y           (2.5) 
 
that leads to the change of derivatives: 
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We then apply the following finite expansion: 
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where M is a positive integer that will be determined to derive a closed form analytic solution. 
However, if M is not an integer, a transformation formula is usually used. Substituting (2.5) and 
(2.6) into the simplified ODE (2.2) results in an equation in powers of Y. To determine the 
parameter M, we usually balance the linear terms of highest order in the resulting equation with 
the highest order nonlinear terms. With M determined, we collect all coefficients of powers of Y 
in the resulting equation where these coefficients have to vanish. This will give a system of 
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algebraic equations involving the parameters candba kk   ,, µ .Having determined these 

parameters, knowing that M is a positive integer in most cases, and using (2.7) or (2.8) we obtain 
an analytic solution ),( txu in a closed form. 
 

3 Using the Sine-Cosine Method 
 
Substituting (2.3) into (1.3) yields 
 

.0)(cos)1()(cos)1()(cos 22222)1(1 =−+−−++− −++ µξββλµµξλβµµξλ βββ nnnnmm nbcnbcncka  (3.1) 
 
Eq. (3.1) is satisfied only if the following system of algebraic equations holds: 
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Solving the system (3.2) gives 
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The results (3.3) can be easily obtained if we also use the sine method (2.4). Combining (3.3) with 
(2.3) and (2.4), the following compacton solutions [11,12]: 
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However, for 0)1( <−+ ckbc , we obtain the following solitary patterns solutions: 
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4 Using the Extended Tanh Method 
 
Second In Eq.(1.3), balancing φφφ ′′+−  3withnm we find 
 

,2)3( ++=+− MMnmM                                           (4.1) 
 
so that 
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To get a closed form analytic solution, the parameter M should be an integer. A transformation 
formula 
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should be used to achieve our goal. This in turn transforms Eq.(1.3) to 
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Balancing 2. M nd3 =′′givesa ψψφ The tanh method allows us to use the substitution 
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Substituting (4.5) into (4.4), collecting the coecients of each power of Y, and solve the resulting 
system of algebraic equations to find the following three sets of solutions: 
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Noting that ,1
1

+−= nmψφ for ,0)1( <−+ ckbc we obtain the following solitary patterns 
solutions 
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However, for ,0)1( >−+ ckbc we obtain the following periodic solutions 
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5 Conclusions 
 
The sine-cosine method and the extended tanh method were used to investigate the (2+1)-
dimensional GKP-BBM equation. The study revealed compactons, solitary patterns solutions and 
periodic traveling wave solutions for some examined variants. The study emphasized the fact that 
the two methods are reliable in handling nonlinear problems. The obtained results clearly 
demonstrate the efficiency of the two methods used in this work. Moreover, the methods are 
capable of greatly minimizing the size of computational work compared to other existing 
techniques. This emphasizes the fact that the two methods are applicable to a wide variety of 
nonlinear problems. 
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