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Abstract
Experimental flow visualization is a valuable tool for analyzing microfluidics and nanofluidics
in a wide variety of applications. Since the late 1990s, considerable advances in optical methods
and image postprocessing techniques have improved direct optical measurements, resulting in
an accurate qualitative and quantitative understanding of transport phenomena in lab-on-a-chip
capillaries. In this study, a comparison of different optical measurement techniques is presented.
The state-of-the-art development of particle image velocimetry (PIV) to date, particularly in
microscale applications, is reviewed here in detail. This study reviews novel approaches for
estimating velocity field measurements with high precision within interrogation windows.
Different regularization terms are discussed to demonstrate their capability for particle
displacement optimization. The discussion shows how single- and multi-camera optical
techniques provide two-dimensional and three-component velocity fields. The performance of
each method is compared by highlighting its advantages and limitations. Finally, the feasibility
of micro resolution PIV in bioapplications is overviewed.

Keywords: flow visualization, experimental method, particle image velocimetry,
transport phenomena, two-phase flow

(Some figures may appear in color only in the online journal)

1. Introduction

Fluid mechanics involves a wide range of scales governing the
transport of momentum, heat, and mass. Therefore, a visual
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estimate of flow dynamics is an important tool to describe flow
behavior qualitatively and quantitatively. Flow visualization
provides significant and precise information about flow char-
acteristics in space and time. It also provides investigators with
data on the flow of interest to theorize and verify flow beha-
vior. Several noninvasive flow visualization techniques have
been developed in experimental fluid dynamics to provide data
on fluid motions and their interactions with the surroundings.
Flow visualization, in general, involves two categories: surface
and off-the-surface methods. Each method has advantages and
disadvantages.
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Colored oils, nylon tufts, fluorescent dyes, and special clay
mixtures, all placed within the medium of interest, respond
to shear stress on the solid surface of an object, display flow
patterns, and form streaklines around the object; this is called
the surface flow visualization (SFV) technique. For example,
fluorescent dyes or oil particles are illuminated when excited
by ultraviolet light sources and maintain flow patterns on a
wall (Barzegar Gerdroodbary 2020). This invasive technique
provides an illustrative image of the flow around an object in
laminar, turbulent, boundary layer transition, and flow separa-
tion by coating the outer surface of a model that is to be invest-
igated with dyed oil or pressure-sensitive paint. SFV operates
based on the principle that tracer particles faithfully follow the
flow without any significant lag (Eck et al 2019). Owing to
viscous effects, a fluid flow parallel to a surface causes a force
along the surface, resulting in a wall or surface shear stress.
The magnitude and direction of the fluctuating surface shear
stress can be directly measured using a complementary sur-
face method called surface or sublayer fence, first introduced
by Patel (1965). The approach presented an improved high-
precision curve calibration of the Preston tube with highly
favorable and adverse pressure gradients. It also eliminated
errors in earlier experiments, which were later adopted based
on microelectromechanical systems (MEMS) by von Papen
et al (2002) and Schober et al (2004). Hot-wire anemometry is
a velocity measurement technique based on forced heat trans-
fer from a heated wire which has also gained prominence in
evaluating surface shear stress in both laminar and turbulent
boundary layers (Ghouila-Houri et al 2017, 2019a, 2019b,
2021). Yang and Zhang (2021) summarized the state of the
art in the flexibility of MEMS sensors that were no longer
limited to mechanical rigidity by discussing 194 papers. This
high-performance, bendable, and stretchable MEMS device
can be used in a wide range of disciplines, such as mechanical
engineering, electrical engineering, chemistry, and materials
science.

As illustrated in figure 1, the oil/dye response technique
offers a unique ability to capture flow streaklines around a
model. The error depends on the choice of oil/dye employed
and the extent to which the fence protrudes from the viscous
sublayer adjacent to the model surface. Figure 1 shows time-
history snapshots of the flow visualization and flow patterns
over a triangular micro-ramp using amixture of paraffin, fluor-
escent color powders, silicone oil, and oleic acid.

The optical flow visualization (OFV) method, an off-the-
surface experimental flow technique, was designed based on
the distribution of the light refraction index in a transparent
fluid flow. Any changes in the intensity of the light beam
passing through a fluid flow field would carry information to
quantify the displacements or phase modulations. The optical
refractive index is a function of the air density at each point,
with the density as a function of velocity, pressure, and tem-
perature (e.g. Ristić 2007, Smits and Lim 2012). This com-
plex concentration of the optical refractive index is visualized
by optical techniques, such as shadowgraphy, schlieren photo-
graphy, and interferometry. Light attenuation or laser-induced
fluorescence can be added to a fluid to create more visible flow

Figure 1. Chronological images of the SFV and flow patterns over a
triangular micro-ramp with dimensions of width, cord, and height of
27.2, 33.4, and 4.64 mm, respectively, using a mixture of paraffin,
fluorescent color powders, silicone oil, and oleic acid. The blue oil
deposited around the ramp, as shown at the beginning, is just used
for visibility. Then, the flow on the top surface of the micro-ramp
moves towards the slant edges on both sides, which are caused by
the high-pressure gradient created by the leading-edge shock wave
(shown at t + 0.05 and t + 0.25 s). Therefore, as the flow
rotationally moves down the slant edges, it casts large visible
vortices on both sides. Downstream of the model, two wide areas
are not covered with oil, and this is recognized to be the footprints
of the primary vortices, shown at t + 1.25 and t + 5.15 s.
Reproduced with permission from Saad (2013).

patterns (Settles 2001, Smits and Lim 2012). Table 1 presents
a summary of three noninvasive OFV methods.

Particle tracking velocimetry (PTV), another off-the-
surface experimental flow visualization method, can be used
to measure the velocities and trajectories of moving particles
added to the fluid flow. Typically, same-sized spherical tracer
particles can be solid, liquid, and even gaseous and should
be neutrally buoyant to follow the fluid motion and pathline
with the lowest possible sedimentation and drag between the
particles and bulk fluid, resulting in the most accurate visu-
alization. Therefore, it is assumed that the velocities of the
tracer particles and localized flow are the same, and the tracer
particles’ attributes are adjusted to the bulk fluid flow.

The PTV method can provide measurements in a two-
dimensional (planar) slice of a fluid field illuminated by a
thin laser sheet and a single camera or in a three-dimensional
(volume) space of fluid flow based on volume illumination and
a stereoscopic arrangement of multiple cameras (Merzkirch
1987, Schroeder and Willert 2008, Kreizer et al 2010). As
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Table 1. Summary of three noninvasive OFV methods (Merzkirch 1987, Merzkirch and Ramesh 2000, Settles 2001, Ristić 2007).

Method Refractive index Optical equipment Remarks

Shadowgraph Density • Light source
• Recording plane

• Simplest method
• Lowest optical sensitivity (mere shadows)
• Suitable for transparent media
• Suitable for qualitative description
• Not suitable for quantitative measurements
• Difference between localized brightening/darkening of light beams

on the recording plane due to differences in density and temperature
• Based on the light beam displacement
• Sensitive to changes in the second spatial derivative of refractive

index
• Sensitive to the length of the light path
• Complicated calculations due to a reduction in the dimension of the

problem from 3D to 2D images of flow
• Useful in the shock wave, aeronautical, aerospace, combustion,

ballistic, explosion problems, and even in cough flow visualization

Schlieren Density • Light source
• Recording plane
• Concave mirrors
• Knife-edge

• Suitable for transparent media
• Suitable for qualitative description
• Based on the light beam refraction angle
• Sensitive to changes in the first spatial derivative of refractive index
• Much higher resolution and sensitivity than shadowgraph (focused

images)
• Sensitive to cutoff (amount of light blocked by the knife edges)
• The ability of color imaging utilizing color strip filters instead of

knife-edge filters

Interferometry Density • Laser source
• Achromatic lens
• Mirrors
• Reflection hologram
• Spatial filter
• Beam splitter cube

• Suitable for qualitative and quantitative descriptions
• Sensitive to changes in absolute refractive index
• Highest resolution and accuracy

the name implies, this technique tracks individual particles
making it a Lagrangian approach, in contrast to particle
image velocimetry (PIV) which uses the Eulerian approach
(observing a point in space) to map the velocity field. A nat-
ural extension of the PIV technique from a two-dimensional to
fully spatial measurements is defocusing digital PIV (DDPIV),
which was first proposed by Willert and Gharib (1992), and
its capability of measuring micro resolution velocity fields,
called micro-DDPIV (µDDPIV), was developed by Yoon and
Kim (2006) and Pereira et al (2007). A review study of
µDDPIV furnished by a new regression-based multi-frame
particle tracking algorithm was conducted by Kim (2012),
where quantitative flow visualization of a complex velocity
field in a chaotic mixer was presented as an example. Because
the focus of this work is on micro-scale hydrodynamic meas-
urements, the micro-PIV (µPIV) is described in the following
sections, and the authors refer readers to prominent public-
ations in the field for further comprehensive introduction of
PTV and PIV (e.g. Schroeder and Willert 2008, Adrian and
Westerweel 2011, Raffel et al 2018).

Since SFVs are limited by the presence of a solid sur-
face, this study compares three OFV methods and then
presents an in-depth review of the PIV diagnostic method
by describing its recent development within different discip-
lines. State-of-the-art development of micron resolution PIV

techniques has been studied in three categories: theoretical
(method), technological, and applicability. The trends of cur-
rent and probable future developments are discussed to out-
line the successful implementation of µPIVs in applications of
interest.

2. Discussion on the recent developments of PIV

PIV is a well-developed and noninvasive optical measure-
ment technique, particularly for multiphase flows, which
has benefited from advances in computer-based control sys-
tems, high-precision timing, light sources (e.g. lasers, light-
emitting diodes, and white light), and time-efficient image
postprocessing software. A PIV system includes several essen-
tial components: seeding, illumination, recording, calibration,
image evaluation and processing, and postprocessing.

The two main image-recording techniques are called single
and multiple frames based on the quantity of images in the
illuminated plane frame or the number of images for each
illumination pulse (figure 2). As shown in figure 2, a single-
frame/multi-exposure PIV recording technique superimposes
several exposures at times t, t′, and t′′ to create a single image.
Multiple-frame/single exposure recording techniques provide
the temporal order of the particle images using high-speed
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Figure 2. Single, double, and multiple-frame image-capturing techniques (open circle represents the position of the particle in the previous
frame).

motion cameras. For instance, using a double-frame/
single-exposure technique, as one of the most common pho-
tography techniques, seeding tracer particles are illuminated
on a sheet of a double pulsed laser light twice over a very
short and known time interval. The light scattered by the
tracer particles creates two images (captured and recorded by
a high-speed camera) from which particle displacements can
be estimated in the flow. Technically, each frame can be split
into a large number of areas of interest, called interrogation
windows, where a displacement vector field can be calculated
with the help of correlation techniques. The cross-correlation
(CC) technique is more appropriate compared to the autocor-
relation technique, for example, for calculating the instantan-
eous velocity at each point of interest when a double pulse
laser light source is employed. Commonly, preprocessing
techniques must be employed to minimize the influence of
zero-displaced particle images created by the ratio of back-
ground noise to low-signal noise (Kirby 2010). Based on the
depth of the flow field perpendicular to the viewing axis, PIVs
can be classified into low- and high-density images, of which
the latter lowers the out-of-focus images, increases the con-
centration of particles, and is much more compatible with
low-depth flows, such as microchannels (Olsen and Adrian
2000, 2001). The displacement of particles between two sub-
sequent images using the multiple-frame image-capturing
technique can be reliably calculated by a sufficiently small
time interval limited to 4–8 pixels (Raffel et al 2018). As a
rule of thumb, the so-called one-quarter rule, the maximum
displacement of a particle within an interrogation window
should not be greater than 0.25 of the interrogation window

extend in the direction of particle move; otherwise, uncer-
tainty arises (Raffel et al 2018). Particle displacement is not
dependent on the densities of the fluid and particle when the
time interval is much longer than the particle inertial response
time. Therefore, after evaluating the displacements of the
particles within the two subsequent images and removing
invalid measurements, the local instantaneous velocity vectors
in the laser light sheet can be determined by dividing the estim-
ated displacement by the calculated time between the image
pairs.

The initial development of PIVs, especially after consid-
erable advances in the method itself and equipment, and the
high demands of implementation of PIV make it a systematic
way to investigate transport phenomena over a broad dynamic
range of systems that are not limited to fluid mechanics and
aerodynamics applications. Before reviewing µPIV in capil-
laries, it will be relevant to highlight the relevance of using
the PIV system to conduct both fundamental and practical
measurements over a wide range of topics. Some of these rel-
evant studies have been published in highly rated journals.
Two journals, called Experiments in Fluids (https://springer.
com/journal/348), and Measurement Science and Techno-
logy (https://iopscience.iop.org/journal/0957-0233), are selec-
ted based on two basic principles: new developments of the
PIV and innovative applications. The dissemination of papers
dealing with the PIV systems in the previously mentioned
peer-reviewed journals over the past two decades is addressed
in the following. These journals showed significant dedica-
tion to PIVs, resulting in 92 and 21 articles, respectively.
Despite the ongoing COVID-19 pandemic, declared by the
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Figure 3. Statistical analysis of the number of papers published by Experiments in Fluids and Measurement Science and Technology that
deal with the PIV diagnosis method.

World Health Organization, due to the novel coronavirus
SARS-CoV-2 on 11 March 2020, the number of publications
in these journals has increased and also effectively expan-
ded into microscopic and macroscopic biomedical applica-
tions because of its ability to answer various research ques-
tions (e.g. Bahl et al 2020, de Silva et al 2021, Haffner
et al 2021, Tan et al 2021). The state of recent develop-
ments in the PIV diagnostic technique by a statistical ana-
lysis of 92 and 21 papers published by Experiments in Flu-
ids and Measurement Science and Technology, respectively,
in 2021 (and early 2022 for the last journal) is carried out by
showing the contribution percentage of six categories employ-
ing the PIV systems to provide deep insights into transport
phenomena (figure 3). As shown in figure 3, the majority
of studies are focused on the development of PIVs within a
broad classification, which can be divided into three groups,
namely theoretical aspects (e.g. PIV theory, method, image
processing, and uncertainty analysis), technological aspects
(e.g. laser light, particles, and seeding system), and applic-
ability (e.g. biomechanics, jet, and phase separation). There
are, however, other types of developments beyond imagina-
tion, such as the growth of PIVs. For instance, Cierpka et al
(2021) introduced an app compatible with smartphones to cap-
ture and record velocity fields with lower complexity and cost
than conventional PIV systems, which can be used for educa-
tional purposes. Consequently, theoretical and technological
developments in PIVs have drawn much more attention from

researchers than their development in complex-flow applic-
ations. In addition to the aforementioned journals, several
international symposia have showcased significant attempts
in the development of PIV systems in various research
areas that are being continuously expanded. Some of the
highly anticipated international conferences identified are the
14th International Symposium on Particle Image Velocimetry
(www.iit.edu/ispiv2021), the 19th International Symposium
on Flow Visualization (https://isfv2020.sjtu.edu.cn/index),
and the 2021 Micro Flow and Interfacial Phenomena (µFIP)
Conference (https://microfip2021.wustl.edu/), that were all
held virtually due to the COVID-19 global pandemic.

Figure 4 presents three subjective breakthroughs: theor-
etical, technological, and applicability that happened to the
PIV developments resulting in significant progress over the
past two decades. Advances in PIV systems are interde-
pendent with considerable progress under each breakthrough,
which are carefully reviewed under the development of micro-
resolution PIV section in this article.

3. Micro PIV (µPIV)

Micron-resolution PIV is an efficient technique for visualiz-
ing an in-depth description of microfluidic applications using
fluorescent particles as small as several hundred nanometers.
The tremendously small size of the particles predisposes the
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Figure 4. Three major milestones: applicability, technological, and theoretical aspects of the PIV systems summarized in seven
subcategories over the past two decades.

Brownian motion of particles to be in line with the bulk fluid
motion. This gives rise to a one-micron resolution for micro-
scopic image capturing (Santiago et al 1998, Meinhart et al
1999, Kirby 2010). In µPIVs, a lower particle density and
illuminated volume instead of an exact two-dimensional light
sheet make it more challenging to use compared to conven-
tional PIVs. An illustrative experimental setup of CC µPIV
in a typical microfluidic laboratory (figure 5) includes a fluid
supply unit, microfluidic device, microscopic unit, laser light
source, synchronous controller, and µPIV data processor. The
principle of operation is similar to that of conventional PIV,
in that neodymium-doped yttrium aluminum garnet laser light
is reflected through a dichroic mirror and travels through an
objective lens focused on the focal panel of interest in a flow
model to illuminate a specific flow volume. The reflected laser
beams and emissions from the particles travel back through the
lens, dichroic mirror, and an emission filter called a barrier fil-
ter, which prevents the laser beams from passing. Fluorescent
nanoparticles reflect laser beams at a longer wavelength than
the absorbed light. A high-speed charge-coupled device cam-
era captures and sends numerous images for processing (Kirby
2010). An adequate depth of flow field of the camera maxim-
izes the in-focus particle images and minimizes the scattered
light of out-of-focus illuminated particles.

Image resolution is key to the quality of the data obtained
from any µPIV setup; hence, effective measures are required
to ensure the capture of highly resolved images. To date, the
two main factors identified to adversely affect image resolu-
tion and reliability are wall overshadowing and hydrodynamic
interactions between the wall and seeding particles (Meinhart
et al 1999). The former factor results in background reflec-
tion, which induces significant uncertainty in the determina-
tion of the exact position of the wall. The latter factor pushes
particles away from the boundary layer and causes a lack of

velocity-field measurements over the near-wall region. The
dominance of any of these factors will result in measurement
errors, which will propagate throughout the experiment and
adversely affect the higher-order moments desired to com-
pletely elucidate the flow physics. Therefore, mitigating these
occurrences is critical. The epifluorescence method and flow-
tracing particles with diameters of 200 nm can resolve the
effects of these two destructive factors (Meinhart et al 1999).

Polydimethylsiloxane (PDMS) is the most common mater-
ial for constructing microchannels or lab-on-a-chips with sev-
eral specific properties, such as easy-to-fabrication, mech-
anical flexibility, transparency, adaptability to a wide range
of chemical applications, and chemical inertness. Photolitho-
graphy is a common method for fabricating a prototype
microchannel using PDMS (Duffy et al 1999, Beebe et al
2001, Whitesides et al 2001). The µPIV method is utilized
for numerous applications, such as lab-on-a-chip, pharmaco-
logical, bioMEMS, biomedical, microreactor, microchemical,
and analytical chemistry.

3.1. Theoretical (method) development

Flow visualization techniques have been efficiently expan-
ded to a broad range of topics in fluid mechanics, owing to
significant technological advancements. This section of the
current review deals with the theoretical development and
mathematical interpretation of image processing using µPIV
systems.

Particle displacement estimation results in a velocity vec-
tor field, providing researchers with precise two-dimensional
and three-dimensional flow structures. Double-frame/
single-exposure images must be processed to determine the
exact displacement of each particle within a specified time
interval. Therefore, a CC function R(s), an efficient measuring
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Figure 5. Schematic illustration of the µPIV system in the Microfluidic Laboratory at the Memorial University of Newfoundland. A pair of
high-precision syringe pumps establish a continuous, steady, and pulsation-free two-phase Taylor flow in a microfluidic device with a
cross-junction (the top view of the flow model is shown at the top right). The microscopic lens focuses the laser excitation light on a
two-dimensional plane with a thickness known as the depth of correlation (shown at the top left). The accuracy of the correlation is
significantly attributed to the reflection of the tracer particles.

tool, was introduced to find the similarities between two con-
secutive images and show the displacement (s) of the particles
in one image relative to the other (Adrian 1988, Willert and
Gharib 1991, Keane and Adrian 1992, Westerweel 1997),

R(s) = RC (s)+RF (s)+RD (s) (1)

where RC (s), RF (s), and RD (s) are the convolution of the
mean image intensity, fluctuating noise arising from the dif-
ference between the mean and fluctuating image intensities,
and Gaussian intensity distribution function for showing the
Gaussian peak shape of the velocity in the images, respect-
ively (Adrian 1988, Keane and Adrian 1992). The primary
measurement errors are attributed to the diameter, intensity,
and contrast of the particles, out-of-plane, and even in-plane
displacements within the interrogated velocity field windows.
The three-point Gaussian intensity distribution over interrog-
ation windows was first introduced by Willert and Gharib
(1991) for the peak interpolation and is still efficient practical.

A significant breakthrough in CC has occurred since
the 2000s through new mathematical concepts to increase
the image acquisition quality conducted with PIV systems
(Meinhart et al 2000). Meinhart et al (2000) demonstrated
that the contributions of other displacement components might
affect measurements and cause an erroneous estimation of the

average velocity field. Thus, it is necessary to apply averaging
methods to the data to estimate the averaged velocity vector
fields, which are presented in figure 6 for an image sequence of
N single-frame/double-exposure particle images (i.e. images
A and B) within a known time interval ∆t. These averaging
methods calculate more accurate velocity fields with lower
erroneous measurements than a standard CC, which creates
an instantaneous velocity field with noisy and unreliable meas-
urements in low-density particle images and near-wall regions
(Meinhart et al 2000). The lack of low-density particle images
can be compensated for in conventional µPIV measurements
by performing these averaging methods.

An alternative to CC is the OFV technique, which com-
putes velocity fields with high accuracy and spatial resolution
due to remarkable advances compared to the development
of CC-based PIVs. Moreover, a major source of estimation
errors in CC-based approaches has been attributed to the
smoothing effects of the interrogation window, which can be
improved by applying a regularization term in optical flow
calculations (Seong et al 2019, Simonini et al 2019). The
regularization process has been well established in imaging-
based velocity field measurements by adding a data term (JD)
and regularization term (JR) within the particle displacement
equation to obtain an optimized and accurate solution. The
mismatch between a pair of images can be penalized by JD

7



Meas. Sci. Technol. 33 (2022) 092002 Topical Review

Figure 6. An illustrative schematic of three methods of predicting average velocity vector fields using a linear averaging operator after
correlation peak detection in the average velocity method, after particle image acquisition in the average image method, and after particle
image correlation in the average correlation method. Reproduced with permission from Meinhart et al (2000). © 2000 The American
Society of Mechanical Engineers.

and the predicted velocity vector field (v) can be smoothed/
constrained by JR (Schmidt and Sutton 2021). Table 2 lists
the different regularization terms used in the literature. The
importance of the regularization term is highlighted in regions
of the interrogation window with a significant velocity gradi-
ent, such as vortices, shock waves, recirculation flows, and
boundary-layer flows (Seong et al 2019). It is noticed that the
use of regularization in image processing reduces the complex-
ity of computations compared to statistical OFV methods.

Traditional PIVs often employ CCs to calculate the dis-
placement field of two consecutive interrogated images called
initial and moved projections on a two-dimensional plane.
Table 3 presents a summary of two displacement measure-
ment approaches by noting the advantages and disadvantages
of each method.

To obtain a reliable flow dataset and velocity field, OFV
methods require precise image processing to be conduc-
ted. An essential part of each OFV is to show the flow
patterns using streamlines and stream surfaces. To address
this need, convolutional neural networks (CNNs) and deep
machine learning (ML) techniques have been effectively
developed, which explicitly normalize a flow field, in particu-
lar, flow-based generative model, and leverage OFVs used in
PIVs (Rezende and Mohamed 2015, Baker and Einav 2021,
Chun-Yu et al 2021, Lagemann et al 2021, Yu et al 2021).
Missing data recovery is crucial in image processing and typic-
ally occurs because of shadow and out-of-focus particle emis-
sions within interrogated windows. Akbari and Montazerin
(2022) employed ML to reconstruct the velocity field of tur-
bomachinery PIV measurements with 25% clustered missing
data. Multi-layer perceptron (MLP) and support vector regres-
sion (SVR) algorithms handle the nonlinear modeling of trans-
port phenomena attributed to such turbomachinery flow fields,
resulting in higher reconstruction accuracy of SVR compared

toMLP due to its robustness and superior flexibility inML (see
also Higham et al 2016, Saini et al 2016, Wen et al 2019).

Flow instability caused by shear flow is dominantly
responsible for the macroscale vortex structures that govern
the linear and nonlinear behaviors and interactions of such
coherent vortex structures (Lumley 1981). Tracking and char-
acterizing macroscale coherent structures are still challen-
ging parts of flow visualization involving vortices. Stevens
and Sciacchitano (2021) introduced a novel ML method that
combined clustering (i.e. an unsupervised technique to find
clusters with similar properties) and the Hungarian algorithm
and was independent of scale and could be used over different
length scales. This method was designed to accurately estim-
ate the temporal and spatial resolutions using consistent vortex
labeling and tracking. A comprehensive review ofML for fluid
mechanics problems was conducted by Brunton et al (2020).
They distinctly addressed the success ofML inmodeling, data-
driven optimization, and multiscale flow visualization. Table 4
presents several deep ML and neural network techniques that
are used to reconstruct the flow field.

Although the use of averaged correlations provides the
mean particle displacement, i.e. the velocity vector field,
within an interrogation window of a pair of two consecut-
ive images, it is responsible for the lack of information on
flow structures smaller than the interrogation window and
high velocity-gradient regions. To overcome this weakness,
single-pixel ensemble PIV (SPE-PIV) has been developed
to measure pixel-wise CC from sequential images in con-
trast to a sequential pair of images obtained using conven-
tional µPIVs (Westerweel and Scarano 2005). This tech-
nique of SPE-PIV (to measure the in-plane velocity field)
and dual-plane illumination (to measure the out-of-plane
velocity field) is able to determine two-dimensional three-
component (2D3C) velocity field measurements (e.g. Noto
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Table 2. Forms of regularization terms in the literature.

Name Regularization terma Remarks References

Horn and
Schunck (HS)

JHSR =
´
Ω

∥ ∇v1∥2+ ∥ ∇v2∥2dx • The most common regularization term
• Equivalent to first-order Tikhonov regularization
• Penalizing the curl of velocity (i.e. vorticity)
• Inappropriate for turbulent flows

Horn and Schunck
(1981),
Corpetti et al (2006)

Corpetti (d–c) Jd−c
R =

´
Ω

∥ ∇(∇· v)∥2

+ ∥ ∇(∇× v)∥2dx

• Equivalent to second-order div-curl regularization
• Considering divergence and vorticity to be cohered
• Without any firm basis considering a real fluid motion
• Minimizes the gradients of the divergence and vorticity

Corpetti et al (2002),
Yuan et al (2007)
Schmidt and Sutton
(2020)

Viscous
fluids (µ)b

JµR = ∫ ∥
Ω

∇2v+ 1
3∇(∇· v) ∥2dx • Obtained directly from Navier–Stokes equation

• Penalizing the derivatives in the same way of viscosity
imposed

Schmidt and Sutton
(2021)

Laplacian (Lap) JLapR =
´
Ω

∥ ∇2v∥2dx • For divergence-free conditions
• Commonly used in image filtering and smoothing
• Not common in the OFV

Paris et al (2011),
Kadri-Harouna et al
(2013)

Helmholtz
decomposition
(Helm)

JHelmR = ∫
Ω
∥ ∇2v∥2+ ∥ ∇2χ∥2

+ ∥ ∇2θ∥2+ ∥ ∇2ξ∥2dx

• Considering four motion components: translation,
linear distortion, shear distortion, and rotation

• Considering physical properties of flow
• Considering an increase in regularization parameters

within regions with uniform change in intensity and a
decrease in the image edges

Lu et al (2021)

a Where∇, Ω, υ, χ, ξ, and θ are the gradient operator, two-dimensional image domain, velocity vector, linear distortion rate tensor, rotation tensor, and shear
distortion rate tensor, respectively.
b This name has been selected by the authors of this study and obtained from the process of derivation of the regularization term conducted by Schmidt and
Sutton (2021).

Table 3. Summary of displacement measurement approaches to extract velocity field through PIV.

Approach Remarks References

CC Advantages:
• Most frequently used traditional algorithm
• Most commonly used benchmarking algorithm
• Maximum spatial correlation used between two consecutive particle images
• Adaptable to fast Fourier transform to lower computation expenses
• Adaptable to an iterative algorithm called window deformation iterative

multi-grid to improve robustness and accuracy
Disadvantages:
• Sparse velocity field
• Postprocessing methods to reduce error vectors

Westerweel (1997),
Scarano (2002),
Westerweel and Scarano (2005),
Raffel et al (2018)

OFV Advantages:
• Adaptable to anisotropic smoothness constraints to enhance accuracy
• Adaptable to the dynamic programming to improve accuracy and spatial

resolution by including order and continuity constraints
• Adjustable to the brightness constraint equation
• Flexible to physical knowledge and the geometry of problems
Disadvantages:
• Huge computational expenses and time-consuming
• Dissatisfying understanding between the optical flow field and actual fluid

velocity field

Nagel and Enkelmann (1986),
Quénot et al (1998),
Ruhnau et al (2005),
Liu et al (2015)

and Tasaka 2021). Figure 7 illustrates the concept behind
dual-plane SPE-PIV measurements. This method used two
blue and red laser sheets with an offset depth of ∆z and
performed the capability of three-component velocity-field

measurements at two in-plane and out-of-plane pixel by pixel.
To summarize volumetric flow visualization, table 5 presents
the advantages and disadvantages (limitations) of 2D3C PIV
methods.
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Table 4. Summary of different deep machine learning techniques used in flow field reconstruction.

Technique Main remark References

Convolutional neural network (CNN) Low error rate for classifying images by
a factor of two

Zitová and Flusser (2003),
Krizhevsky et al (2012),
Lee et al (2017),
Rabault et al (2017),
Rabault et al (2017),
Gu et al (2021)

Deep CNN Measurement of original displacement
by a four-level regression

Fully-connected NN Prediction network by six layers
Artificial neural network Accurate velocity field from a simple

subwindow by the training data
Vector field reconstruction for unsteady
flow data

Refined and denoise vector field by
recurrent residual blocks

Figure 7. (a) An illustrative schematic of dual-plane correlation in SPE-PIV measurements. Two adjoining two-dimensional planes, i.e. the
foreside and backside planes, were situated at a depth offset of∆z. An arbitrary particle with no negligible out-of-plane velocity component
(w) passes position x0 = (x0, y0) in the foreside plane at time frame t= t0 and then through position xς in the backside plane at the time
frame t0 + ς∆t. (b) Out-of-plane velocity component field in two offset planes with a depth of 1 mm in the foreside (left) and backside (right)
planes, (c) velocity field obtained by conventional PIV. Reproduced from Noto and Tasaka (2021), with permission from Springer Nature.

The flow regime in microfluidic applications is often lam-
inar, enabling PIVs to obtain highly resolved images; however,
this is limited to steady flow. To overcome this limitation,
Kislaya et al (2020) introduced a novel method called Ψ-
PIV, which requires a lower number of images (i.e. by
eight times for steady and by 30 times for unsteady flow),
particle density, and signal-to-noise ratio compared to tradi-
tional µPIV. Figure 8 shows the main differences between
µPIV and Ψ-PIV. µPIV typically uses a large number of
frames (i.e. 100–1000 frames) to be correlated and then aver-
aged to predict the velocity field. Conversely, Ψ-PIV required
significantly fewer frames (approximately ten frames) to
obtain the local flow direction (Θ). Therefore, stream func-
tions were obtained by following virtual particle paths along
with the measured directions and then interpolating neigh-
boring pathlines. Eventually, the velocity field is assigned
by space differentiation of the stream function in terms of

the distance between two consecutive interrogation windows.
There are three main sources of noise that arise from velo-
city time-dependency, quantization (pixelization), and non-
uniform velocity distribution within the interrogation window
to perform measurements in turbulent flows. As mentioned
earlier, the flow regime in microdevices remains laminar, for
which a key noise analysis was conducted by George and
Stanislas (2021).

3.2. Technological development

Due to technological limitations in the optical visualization of
non-transparent flows, such as blood and slurry, the difference
between the optimal and suspension particle image sizes is
significant and must be improved. Refractive index-matching
techniques, for example, self- or commercially-labeled
particles, create a florescent rim- and plateau-shaped,
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Table 5. Literature on single- and multi-camera 2D3C PIV.

Method Remarks References

Monography-PIV
(single camera)

Advantages:
• Simplified laboratory apparatus setup and calibration
• Encoding particle depth on the camera side or illumination side
• Reconstructing 3D particle paths in terms of position and

length of captured images
Disadvantages:
• Low-resolution reconstruction due to angular information in

image capturing
• Low-frame rates in image capturing
• Not-suitable for non-stationary fluid flow measurements
• Highly sensitive to light scattering, random noise, and optical

misalignment
• Low depth-to-width ratio

Willert and Gharib (1992),
Pereira and Gharib (2002),
Yoon and Kim (2006),
Fahringer et al (2015),
Shi et al (2016)

Tomography-PIV
(multi-camera)

Advantages:
• The ability to deal with high-density tracer particles
• The ability to provide high-resolution reconstruction images
• Applicability over a wide range of flow phenomena
• Adaptable to smartphones to reduce setup expenses
• High axial resolution
Disadvantages:
• The complexity of a multi-camera system (i.e. 4–6 cameras)
• Precise calibration to keep the high-quality reconstruction
• High-power light source to illuminate a large depth-of-field

Elsinga et al (2006),
Scarano (2012),
Rice et al (2018),
Shi et al (2018)

Rainbow-PIV
(single camera)

Advantages:
• Utilizing an illumination module to create a rainbow light

pattern.
• The ability to provide all-in-focus images of color-coded tracer

particles.
• The ability to reconstruct particle distributions and velocity

fields.
• Extendable depth-to-width ratio by changing rainbow

thickness and adjusting optics.
• The capability of velocity field reconstruction in

low/non-uniform particle densities compared to
tomography-PIV.

Disadvantages:
• Lower depth resolution in higher depth-to-width ratios
• Limited axial resolution

Xiong et al (2017),
Xiong et al (2021)

respectively. Using the fit functions of experimental data
(e.g. smoothing spline), other distribution functions can be
obtained, such as ring- and plateau-shaped distribution func-
tions (Blahout et al 2021). Figure 9 shows the images of a
particle utilizing three distribution functions.

Fragile equipment, laboratory-based, and pollutive tracer
particles are the three main concerns of using µPIV and PTV
techniques in the actual field, particularly in harsh envir-
onments. Recent field study developments, such as a com-
pact open-source remotely-operated vehicle (ROV) and rising
air bubbles as tracer particles for image capturing, make
these methods efficient for portable technology and environ-
mentally friendly velocity-component measurements (Løken
et al 2021). A novel approach for measuring a reliable high-
resolution velocity field under extreme Arctic conditions was
recently introduced by Løken et al (2021). They employed
PTV and PIV to track themotion of rising bubbles individually

in the laboratory and the field, respectively, so they called
the method remotely-operated vehicle particle velocimetry
(ROV-PV). As pointed out by Løken et al (2021), a two-
dimensional plane of rising bubbles enables ROV-PV to work
without a light sheet but challenges the method with the strong
buoyancy motion of the bubbles. Due to the non-uniform dis-
tribution of bubbles in terms of size and inertia, their method
showed a relative error of 10% in the measurement of the hori-
zontal velocity component.

3.3. Applicability development

The ability to visualize blood flow with the micron spatial
resolution is of significant interest. Blood travel starts from
the heart and then through the arteries, capillaries, and veins,
i.e. from a high-pressure region to a low-pressure region.
Capillaries are a complex network of microchannels between
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Figure 8. A schematic diagram showing the main difference between µPIV and Ψ-PIV. Reproduced from Kislaya et al (2020), with
permission from Springer Nature.

Figure 9. Effects of three CC distribution functions for predicting particle shapes. Synthetic particle shapes were generated by employing
the smoothing spline fit function of the recorded image data, whereas the Gaussian fit followed an analytical intensity function. An 8.5%
noise level was applied intentionally to consider the actual noise in the experimental image data. For synthetically generated images,
self-labeled and commercially-labeled polymethylmethacrylate particles with a diameter of 60 µm are used, which perform ring- and
plateau-shaped images of the particles. Reproduced from Blahout et al (2021), with permission from Springer Nature.
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Figure 10. Optical microscopic images of (a) a complex capillary network carrying RBC solution, (b) a 10% hematocrit (the ratio of the
volume of RBCs to the total volume of blood) solution of a goat for testing (a goat blood sample was selected because of its similarity with
human blood and then diluted with 0.9 wt% normal salines.), (c) an enlarged view of the network showing areas clogged by RBCs, and
(d)–(f) the effects of enhanced pressure drop with an increase in flow rate to push clogged RBCs away. Reproduced from Chen et al (2010),
with permission from Springer Nature.

arterioles and venules that deliver specific amounts of blood
and its components throughout the human body. Chen et al
(2010) designed a capillary network and employed µPIV to
observe the deformability of red blood cells (RBCs) in capil-
laries and the effect of a higher pressure drop on pushing away
some of the clogging RBCs through the blocked capillaries
(figure 10). A cell-free layer (i.e. a thin layer adjacent to the
wall without the presence of RBCs) within the capillaries was
not detected because of the extremely small capillary sizes of
5 and 8 µm. This layer is of interest when the capillary size
varies from 10 to 100 µm, and the physical forces push the
RBCs to the center of the capillaries (e.g. Suggi et al 2005,
Faivre et al 2006, Kim et al 2006a, Kim et al 2006b, 2009,
Zhang et al 2009).

Micro-resolution PIV and PTV have become robust tech-
niques for visualizing the flow dynamics of coughing and
sneezing. These multicomponent human-generated exhala-
tions include a wide range of droplet sizes, varying from 0.1 to
1 mm. Consequently, the social distance (i.e. the safe distance
between a patient and a health care worker) can be determ-
ined by visualizing such flow and estimating the motion of
pathogen-laden droplets. Table 6 presents the main findings of

several recent µPIVmeasurements of sneezing, coughing, and
speech. None of the studies mentioned in this table considered
the presence of a medical/non-medical face mask which is a
critical factor affecting airborne droplet spreading in terms of
velocity and traveling distance (e.g. refer to Tang et al 2009,
Dbouk and Drikakis 2020 for further information on droplet
visualization in the presence of a face mask).

Micromixers have been designed to enhance the mixing
rate in microfluidic devices through active and passive tech-
niques. An active technique uses an external source of energy,
e.g. electricity and magnetic fields, and a passive technique
uses pressure or barriers (Santana et al 2015). µPIV can visu-
alize and measure the velocity field in such pressure-driven
flow through micromixers. Kim and Kihm (2004) introduced
rectangular barriers embedded with a micromixer to produce
a helical type of flow, and soon after, the idea was employed
by Wang et al (2006), which resulted in a significant vari-
ation of velocity gradients and an improved mixing rate using
µPIV. These advantages led to the miniaturization of the size
of the microdevice, shortening the processing time, and min-
imizing the volume of fluids involved in the microchemistry
processes.
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Table 6. Summary of recent studies on the µPIV flow visualization of sneezing, coughing, and speaking.

References Main findings regarding horizontal distance

Zhu et al (2006) • The maximum horizontal traveling distance is more than 2 m for saliva droplets.
• The highest velocity was 22 m s−1.
• The effects of inertia and gravity were insignificant for droplets smaller than 30 µm.
• Gravity effects were more significant than inertia on droplets larger than 300 µm.

Chao et al (2009) • Mean exhalation velocity was 11.7 m s−1 for coughing and 3.9 m s−1 for speaking.
• Mean diameter of droplets were 13.5 µm and 16 µm for coughing and speaking, respectively.
• A combined method of interferometric Mie imaging and PIV to measure droplet size and velocity, respectively.

Feng et al (2015) • The use of a phase-averaged method due to the transient and periodic nature of breathing.
• Bell-shaped and flat velocity distribution for exhalation and inhalation, respectively.

Wei and Li (2017) • The use of two-stage cough flow called starting- and interrupted-jet stages instead of real human subject
exhalations.

• The maximum horizontal penetration distance is almost 50.6–85.5 times the diameter.
• Maximum droplet velocity is around 10 m s−1.

Bahl et al (2020) • More than 99% of generated droplets move with a velocity of less than 10 m s−1.
• Near 20% of droplets travel at a velocity greater than 5 m s−1.
• Maximum droplet velocities vary from 12 to 15 m s−1.
• Probability distribution of droplets with a velocity of 2 m s−1 within 0–5 cm from the mouth is 70% and 36%

greater than that for 10–15 cm and 20–25 cm, respectively.

Dudalski et al (2020) • Cough averaged peak velocity magnitudes are 1.09, 1.01, and 1.22 m s−1 during sick, convalescent, and healthy
stages of human subject.

• Cough averaged velocity is 1.17 m s−1 at 1 m downstream.
• The average spread angle is 24◦.
• Insignificant differences between coughs of sick and healthy participants in terms of the velocity and turbulence

intensity.

Tan et al (2021) • Plosive consonants with a stop, such as ‘t’ and coughing, produce faster air jets compared to non-plosive
consonants without a stop, such as ‘s’ and ‘m’.

• Horizontal traveling distance for plosive consonants are about 100 times the diameter of the mouth opening,
which is significantly greater than that of 20 for non-plosive consonants.

• A 2 m physical distancing (i.e. social distancing) can be destroyed under favorable conditions during speaking
compared to coughing.

• Droplet sizes vary from 0.1 to 1 µm and 10–100 µm for speech and cough, respectively.

4. Conclusions and outlooks

This study aimed to provide an in-depth understanding of
the recent developments of PIVs and µPIVs and to high-
light several novel measurement approaches to estimate the
velocity vector field. The significant development of micro-
scale flow visualization in terms of method, technology, and
sustainability has made µPIV a precise and robust tech-
nique to quantify and describe flow structure. In this paper,
two types of flow visualization methods: surface and off-
the-surface were reviewed. Three off-the-surface techniques
were then compared: shadowgraphy, schlieren, and inter-
ferometry. The recent PIV developments were studied in
two well-known journals and then placed into three cat-
egories: theoretical (method), technological, and applicab-
ility, which were later used to show µPIV development.
The CC method and its appreciable improvement using a
regularization term were explained to consider the differ-
ences between several regularization terms found in the
literature. Finally, the capability of µPIV measurements
in bio-applications were discussed due to a tremendous
interest in using this technology after the COVID-19 global
pandemic.

The systematic overview of this study could be a reference
to showcase how pre- and postprocessing techniques improve
the velocity field reconstruction using ML techniques and as
a resource for those who wish to inquire about advances hap-
pening to microscale flow visualization.
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