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ABSTRACT 
 

Aims: The aim of this paper is to develop several 2-tuple linguistic power aggregation 
operators for aggregating 2-tuple linguistic information. 
Study Design: We first introduce several power aggregation operators and then extend 
these operators to 2-tuple linguistic environments. 
Place and Duration of Study: We investigate several useful properties of the developed 
operators and discuss the relationships between them. 
Methodology: Furthermore, the new aggregation operators are utilized to develop two 
approaches to multiple attribute group decision making with 2-tuple linguistic information. 
Results: We develop several 2-tuple linguistic power aggregation operators to aggregate 
input arguments taking the form of 2-tuples. 
Conclusion: Finally, two practical examples are provided to illustrate the effectiveness 
and practicality of the proposed approaches. 
 

 
Keywords:  Multiple attribute group decision making; 2-tuple linguistic information; Power 

aggregation operators; 2-Tuple linguistic power aggregation operators. 
 

Original Research Article 



 
 
 
 

Zhang; JSRR, Article no. JSRR.2014.14.009 
 
 

1928 
 

1. INTRODUCTION 
 
Multiple attribute group decision making (MAGDM) consists of finding the most desirable 
alternative(s) from a given alternative set according to the preferences provided by a group 
of experts [1]. For some MAGDM problems, the decision information about alternatives is 
usually uncertain or fuzzy due to the increasing complexity of the socio-economic 
environment and the vagueness of inherent subjective nature of human thinking [2-4]; thus, 
the decision information cannot be precisely assessed in a quantitative form. However, it 
may be appropriate and sufficient to assess the information in a qualitative form rather than 
a quantitative form. For example, when evaluating a house’s cost, linguistic terms such as 
‘‘high’’, ‘‘medium’’, and ‘‘low’’ are usually used, and when evaluating a house’s design, 
linguistic terms like ‘‘good’’, ‘‘medium’’, and ‘‘bad’’ can be frequently used. Up to now, some 
methods have been developed for dealing with linguistic information [5-17]. In the fuzzy 
linguistic approach, the results usually do not exactly match any of the initial linguistic terms, 
then an approximation process must be developed to express the result in the initial 
expression domain. This produces the consequent loss of information and hence the lack of 
precision. To overcome this limitation, Herrera and Martinez [18] introduced a 2-tuple fuzzy 
linguistic representation model that represents the linguistic information by means of 2-
tuples, which are composed by a linguistic term and a number [18,19]. The main advantage 
of this representation is to allow a continuous representation of the linguistic information on 
its domain, therefore, it can represent any counting of information obtained in a aggregation 
process without any loss of information [18,19]. In a MAGDM problem with 2-tuple linguistic 
information, 2-tuple linguistic aggregation operators are most widely used tool for 
aggregating the individual 2-tuple linguistic information into the overall 2-tuple linguistic 
information. In the past few decades, a variety of 2-tuple linguistic aggregation operators 
have been developed, including 2-tuple arithmetic mean operator [18,20], 2-tuple weighted 
averaging operator [18], 2-tuple OWA operator [18], 2-tuple weighted geometric averaging 
(TWGA) operator [21], 2-tuple ordered weighted geometric averaging (TOWGA) operator 
[21], 2-tuple hybrid geometric averaging (THGA) operator [21], 2-tuple arithmetic average 
(TAA) operator [18], 2-tuple weighted average (TWA) operator [18], 2-tuple ordered 
weighted average (TOWA) operator [18], extended 2-tuple weighted average (ET-WA) 
operator [18], 2-tuple ordered weighted geometric (TOWG) operator [22,23], extended 2-
tuple weighted geometric (ET-WG) operator [23], extended 2-tuple ordered weighted 
geometric (ET-OWG) operator [23], generalized 2-tuple weighted average (G-2TWA) 
operator [24], generalized 2-tuple ordered weighted average (G-2TOWA) operator [24], and 
induced generalized 2-tuple ordered weighted average (IG-2TOWA) operator [24]. However, 
the aforementioned 2-tuple linguistic aggregation operators do not consider information 
about the relationship between the values being fused. 
 
Yager [25] introduced the power average (PA) and power ordered weighted average 
(POWA) operators, which are two nonlinear weighted average aggregation tools whose 
weight vectors depend on the input arguments and which allow the values being aggregated 
to support and reinforce one another [26]. Motivated by the success of the PA and POWA 
operators, based on the PA operator and the geometric mean, Xu and Yager [26] developed 
the power geometric (PG) operator. Based on the POWA operator and the geometric mean, 
Xu and Yager [26] developed the power ordered weighted geometric (POWG) operator. 
Zhou et al. [27] investigated a generalized power average (GPA) operator and its weighted 
form by combining the PA operator with the generalized mean [28], and developed a 
generalized power ordered weighted average (GPOWA) operator by combining the POWA 
operator with the generalized mean. Furthermore, many scholars extended the power 
aggregation operators to other domains and developed numerous extensions of the 
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aforementioned power aggregation operators, such as the uncertain power geometric (UPG) 
operator and its weighted form [26], uncertain power ordered weighted geometric (UPOWG) 
operator [26], uncertain generalized power average (UGPA) operator [27], uncertain 
weighted generalized power average (UWGPA) operator [27], uncertain generalized power 
ordered weighted average (UGPOWA) operator [27], uncertain power ordered weighted 
average (UPOWA) operator [29], intuitionistic fuzzy power weighted average (IFPWA) 
operator [30], intuitionistic fuzzy power average (IFPA) operator [30], intuitionistic fuzzy 
power weighted geometric (IFPWG) operator [30], intuitionistic fuzzy power geometric 
(IFPG) operator [30], intuitionistic fuzzy power ordered weighted average (IFPOWA) 
operator [30], intuitionistic fuzzy power ordered weighted geometric (IFPOWG) operator [30], 
generalized intuitionistic fuzzy power averaging(GIFPA) operator [27], generalized 
intuitionistic fuzzy power ordered weighted averaging (GIFPOWA) operator [27], interval-
valued intuitionistic fuzzy power weighted average (IVIFPWA) operator [30], interval-valued 
intuitionistic fuzzy power average (IVIFPA) operator [30], interval-valued intuitionistic fuzzy 
power weighted geometric (IVIFPWG) operator [30], interval-valued intuitionistic fuzzy power 
geometric (IVIFPG) operator [30], interval-valued intuitionistic fuzzy power ordered weighted 
average (IVIFPOWA) operator [30], interval-valued intuitionistic fuzzy power ordered 
weighted geometric (IVIFPOWG) operator [30], linguistic power average (LPA) operator [31], 
linguistic weighted power average (LWPA) operator [31], linguistic power ordered weighted 
averaging (LPOWA) operator [31], linguistic generalized power average (LGPA) operator 
[32], weighted linguistic generalized power average (WLGPA) operator [32], linguistic 
generalized power ordered weighted average (LGPOWA) operator [32], uncertain linguistic 
power averaging (ULPA) operator [31], uncertain linguistic weighted power average 
(ULWPA) operator [31], and uncertain linguistic power ordered weighted averaging 
(ULPOWA) operator [31]. However, these power aggregation operators cannot 
accommodate situations where the input arguments take the form of 2-tuples. 
 
Based on the above analysis, we can conclude that the existing 2-tuple linguistic 
aggregation operators do not consider information about the relationship between the values 
being fused and the existing power aggregation operators cannot accommodate situations 
where the input arguments take the form of 2-tuples. To address this issue, it is therefore 
necessary to develop some new aggregation operators that not only accommodate 2-tuple 
linguistic information but also consider the information about the relationship between the 
values being fused. We are only aware of one paper on the combination of power 
aggregation operators and 2-tuple linguistic aggregation operators. In [33], Xu and Wang 
extended the power average (PA) and power ordered weighted average (POWA) operators 
to 2-tuple linguistic environments and developed several 2-tuple linguistic power average 
aggregation operators for aggregating 2-tuple linguistic information, including 2-tuple 
linguistic power average (2TLPA) operator, 2-tuple linguistic power weighted average 
(2TLPWA) operator, and 2-tuple linguistic power ordered weighted average (2TLPOWA) 
operator. The primary characteristic of these operators is that they not only accommodate 
input arguments in the form of 2-tuples but also incorporate information regarding the 
relationship between the values being combined. This paper contains three parts: (1) First, 
we investigate a generalized 2-tuple linguistic power average (G2TLPA) operators and its 
weighted form (a generalized 2-tuple linguistic power weighted average (G2TLPWA) 
operator), which are on the basis of the 2TLPA operator and the generalized mean, and 
develop a generalized 2-tuple linguistic power ordered weighted average (G2TLPOWA) 
operator, which is on the basis of the 2TLPOWA operator and the generalized mean, and 
study some of their properties. These newly developed generalized 2-tuple linguistic power 
average operators add to the Xu and Wang’s 2-tuple linguistic power average operators an 
additional parameter controlling the power to which the argument values are raised. When 



 
 
 
 

Zhang; JSRR, Article no. JSRR.2014.14.009 
 
 

1930 
 

we use different choices for the parameter λ , we obtain some special cases. The Xu and 
Wang’s 2-tuple linguistic power average operators are special cases of these newly 
developed generalized 2-tuple linguistic power average operators. (2) Furthermore, we 
develop a 2-tuple linguistic power geometric (2TLPG) operator and its weighted form (a 2-
tuple linguistic power weighted geometric (2TLPWG) operator), which are on the basis of the 
2TLPA operator and the geometric mean, and develop a 2-tuple linguistic power ordered 
weighted geometric (2TLPOWG) operator, which is on the basis of the 2TLPOWA operator 
and the geometric mean, and study some of their properties. We also discuss the 
relationship between the 2TLPG and G2TLPA operators, the relationship between the 
2TLPWG and G2TLPWA operators, and the relationship between the 2TLPOWG and 
G2TLPOWA operators. The Xu and Wang’s 2-tuple linguistic power average operators are 
based on the arithmetic average tool, which is one of the basic aggregation techniques and 
which focuses on the group opinion. These newly developed 2-tuple linguistic power 
geometric operators are based on the geometric mean, which gives more importance to 
individual opinions. (3) Finally, we utilize the proposed operators to develop two approaches 
to multiple attribute group decision making with 2-tuple linguistic information and then apply 
both the developed approaches to two practical examples. 
 
In order to do that, this paper is organized as follows. In Section 2, we briefly review some 
basic concepts of the 2-tuple fuzzy linguistic approach, power aggregation operators, and 2-
tuple linguistic power aggregation operators. In Section 3, we present several new 2-tuple 
linguistic power aggregation operators, investigate some of their basic properties, and 
discuss the relationships between the various operators. Section 4 develops two approaches 
to multiple attribute group decision making with 2-tuple linguistic information based on the 
proposed operators. Two illustrative examples are provided in Section 5. Finally, we 
summarize the paper in Section 6. 
 
2. PRELIMINARIES 
 
In this section, we will introduce the basic notions of the 2-tuple fuzzy linguistic approach and 
power aggregation operators. Let R  be a set of all real numbers. 
 
2.1 The 2-Tuple Fuzzy Linguistic Representation Model 
 

Let 
{ }0,1,2, ,iS s i gL= =

 be a finite and totally ordered discrete linguistic term set with odd 

cardinality, where is  represents a possible value for a linguistic variable, and it should satisfy 
the following characteristics [18,20,34,35]. 
 

(1) The set is ordered: i js s≥
 if i j≥ ; 

(2) There is the negation operator: 
( )i jneg s s=

 such that j g i= − ; 

(3) Max operator: 
( )max ,i j is s s=

 if i js s≥
; 

(4) Min operator: 
( )min ,i j is s s=

 if i js s≤
. 

 

For example, a set of seven terms S  could be given as follows [35-39]: 
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{ }0 1 2 3 4 5 6, , , , , ,S s nothing s very low s low s medium s high s very high s perfect= = = = = = = =
 
Based on the concept of symbolic translation, Herrera and Martinez [18,34] introduced a 2-
tuple fuzzy linguistic representation model for dealing with linguistic information. This model 

represents the linguistic assessment information by means of a 2-tuple ( ),is α
, where is S∈  

represents a linguistic label from the predefined linguistic term set S  and [ )0.5,0.5α ∈ −
 is 

the value of symbolic translation. 
 

Definition 2.1 [18,34]. Let β  be the result of an aggregation of the indexes of a set of 

labels assessed in a linguistic term set S , i.e., the result of a symbolic aggregation 

operation. [ ]0, gβ ∈
, being 1g +  the cardinality of S . Let ( )roundi β=

 and iα β= −  be 

two values such that [ ]0,i g∈
 and [ )0.5,0.5α ∈ −

 then α  is called a symbolic translation, 

where ( )round �
 is the usual round operation. 

 

Definition 2.2 [18,34]. Let 
{ }0,1,2, ,iS s i gL= =

 be a linguistic term set and [ ]0, gβ ∈
 a 

value representing the result of a symbolic aggregation operation. Then, the 2-tuple that 

expresses the equivalent information to β  is obtained with the following function: 
 

[ ] [ ): 0, 0.5,0.5g S∆ → × −
                                                    (1) 

 

( ) ( ),isβ α∆ =
, 

 

      with 

( )
[ )

, round

, 0.5,0.5

is i

i

β
α β α
 =


= − ∈ −                                                                     (2) 

where is  has the closest index label to β  and α  is the value of the symbolic translation. 
 

Theorem 2.1 [18,34]. Let 
{ }0,1,2, ,iS s i gL= =

 be a linguistic term set and ( ),is α
 be a 2-

tuple. There is always a 
1−∆  function such that from a 2-tuple it returns its equivalent 

numerical value [ ]0, g Rβ ∈ ⊂
, where 

 

[ ) [ ]1 : 0.5,0.5 0,S g−∆ × − →
                                                                                  (3) 

 

( )1 ,is iα α β−∆ = + =
                                                                                            (4) 

 
It is obvious that the conversion of a linguistic term into a linguistic 2-tuple consist of adding 
a value zero as symbolic translation 
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( ),0i is S s∈ ⇒
. 

Definition 2.3 [18,34]. The comparison of linguistic information represented by 2-tuples is 

carried out according to an ordinary lexicographic order. Let ( ),k ks α
 and ( ),l ls α

 be two 2-
tuples, with each one representing a counting of information as follows. 
 

(1) If k l<  then ( ),k ks α
 is smaller than ( ),l ls α

. 

(2) If k l=  then 
 

• if k lα α=  then ( ),k ks α
, ( ),l ls α

 represents the same information; 

• if k lα α<  then ( ),k ks α
 is smaller than ( ),l ls α

; 

• if k lα α>  then ( ),k ks α
 is bigger than ( ),l ls α

. 
 

Theorem 2.2. Let ( ),k ks α
 and ( ),l ls α

 be two 2-tuples, ( )1 ,k k ksβ α−= ∆
, and 

( )1 ,l l lsβ α−= ∆
. Then, ( ) ( ), ,k k l ls sα α<

 if and only if k lβ β< , and ( ) ( ), ,k k l ls sα α=
 if and 

only if k lβ β= . 
 

Proof. (1) We first prove that ( ) ( ), ,k k l ls sα α<
 if and only if k lβ β< . Assume that 

( ) ( ), ,k k l ls sα α<
. Then, k l< , or k l=  and k lα α< . If k l< , then we have 
0.5 0.5k k l lk k l lβ α α β= + < + ≤ − ≤ + = . If k l=  and k lα α< , then we have 

k k l lk lβ α α β= + < + = . 
 

Assume that k lβ β< . Then, k l< , or k l=  and k lα α< . If k l< , then we have 

( ) ( ), ,k k l ls sα α<
. If k l=  and k lα α< , then we have ( ) ( ), ,k k l ls sα α<

. 
 

(2) We next prove that ( ) ( ), ,k k l ls sα α=
 if and only if k lβ β= . If ( ) ( ), ,k k l ls sα α=

, then 

k l=  and k lα α= , which implies that k k l lk lβ α α β= + = + = . If k lβ β= , then k l=  and 

k lα α= ,  which implies that ( ) ( ), ,k k l ls sα α=
.                                                                                                                            

 
2.2 Power Aggregation Operators 
 
In this subsection, we first briefly review the power average (PA) operator and the power 
ordered weighted average (POWA) operator [25]. 
 

Definition 2.4 [25]. The power average (PA) operator is the mapping PA : nR R→  defined 
by the following formula: 
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( ) ( )( )
( )( )

1
1 2

1

1
PA , , ,

1

n

i ii
n n

ii

T a a
a a a

T a
K

=

=

+
=

+
∑
∑                                                                                  (5) 

 
Where 

( ) ( )
1

,
n

i i j
j
j i

T a Supp a a
=
≠

=∑
                                                                                                        (6) 

and 
( ),i jSupp a a

 is the support for ia  from ja
. The support satisfies the following three 

properties: 
 

(1) 
( ) [ ], 0,1i jSupp a a ∈

. 

(2) 
( ) ( ), ,i j j iSupp a a Supp a a=

. 

(3) If i j s ta a a a− < −
, then 

( ) ( ), ,i j s tSupp a a Supp a a≥
. 

 
Definition 2.5 [25]. The power ordered weighted average (POWA) operator is the mapping 
POWA : nR R→  defined by the following formula: 
 

( ) ( )1 2
1

POWA , , ,
n

n i index i
i

a a a u aK

=

=∑
,                                                                                      (7) 

Where 
 

1i i
i

R R
u g g

TV TV
−   = −   

    , 
( )

1

i

i index j
j

R V
=

=∑
, 

( )
1

n

index i
i

TV V
=

=∑
, ( ) ( )( )1index i index iV T a= +

, 

( )( ) ( ) ( )( )
1

,
n

index i index i index j
j
j i

T a Supp a a
=
≠

=∑
                                                                                   (8) 

 

In the above equation, ( )index ia
 is the ith largest argument of all the arguments 

( )1,2, ,ja j nK=
, ( )( )index iT a

 denotes the support of the ith largest argument by all the other 

arguments, ( ) ( )( ),index i index jSupp a a
 indicates the support of the jth largest argument for the ith 

largest argument, and [ ] [ ]: 0,1 0,1g →
 is a basic unit-interval monotonic (BUM) function that 

has the following properties: (1) ( )0 0g =
, (2) ( )1 1g =

, and (3) if x y> , then ( ) ( )g x g y≥
. 

Motivated by Yager [25] and based on the PA operator and the geometric mean, Xu and 
Yager [26] defined the power geometric (PG) operator: 
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Definition 2.6 [26]. The PG operator is the mapping PG : nR R→  defined by the following 
formula: 

( )
( )

( )( )
1

1

1

1 2
1

PG , , ,

i
n

ii

T a
n

T a

n i
i

a a a aK =

+

+

=

∑= ∏
,                                                                        (9) 

Where ( )1,2, ,ia i nK=
 is a collection of arguments and ( )iT a

 satisfies Eq. (6). 
 
Based on the POWA operator and the geometric mean, Xu and Yager [26] defined a power 
ordered weighted geometric (POWG) operator as follows: 
 

Definition 2.7 [26]. The POWG operator is the mapping POWG : nR R→  defined by the 
following formula: 
 

( ) ( )1 2
1

POWG , , , i

n
u

n index i
i

a a a aK

=

= ∏
                                                                      (10) 

 

in which iu  satisfies Eq. (8) and ( )index ia
 is the ith largest argument of 

( )1,2, ,ja j nK=
. 

 
2.3 The Existing 2-Tuple Linguistic Power Aggregation Operator 
 

Definition 2.8 [33]. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. If 

            

( ) ( ) ( )( )
( )( ) ( )

( )( )

1

1
1 1 2 2

1

1 , ,
2TLPA , , , , , ,

1 ,

n

i i i i
i

n n n

i ii

T r r
r r r

T r
L

α α
α α α

α

−

=

=

 + ∆ 
 = ∆
 +
 
 

∑

∑
                (11) 

 
then 2TLPA  is called a 2-tuple linguistic power average (2TLPA) operator, where 
 

( ) ( ) ( )( )
1

, , , ,
n

i i i i j j
j
j i

T r Sup r rα α α
=
≠

=∑
                                                                    (12) 

 

and 
( ) ( )( ), , ,i i j jSup r rα α

 is the support for ( ),i ir α
 from 

( ),j jr α
, which satisfies the 

following three properties: 
 

(1) 
( ) ( )( ) [ ], , , 0,1i i j jSup r rα α ∈

; 

(2) 
( ) ( )( ) ( ) ( )( ), , , , , ,i i j j j j i iSup r r Sup r rα α α α=

; 
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(3) 
( ) ( )( ) ( ) ( )( ), , , , , ,i i j j s s t tSup r r Sup r rα α α α≥

, if 
( ) ( )( ) ( ) ( )( ), , , , , ,i i j j s s t td r r d r rα α α α<

,  

where d  is a distance measure between two linguistic variables. 
 

Definition 2.9 [33]. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. If 

            

( ) ( ) ( )( )
( )( ) ( )

( )( )

1

1
1 1 2 2

1

1 , ,
2TLPWA , , , , , ,

1 ,

n

i i i i i
i

w n n n

i i ii

w T r r
r r r

w T r
L

α α
α α α

α

−

=

=

 + ∆ 
 = ∆
 +
 
 

∑

∑
      (13) 

Then 2TLPWA  is called a 2-tuple linguistic power weighted average (2TLPWA) operator, 

where ( ),i iT r α
 satisfies Eq. (12), [ ]0,1iw ∈

 for 1,2 ,i nL= , and 1

1
n

i
i

w
=

=∑
. 

 

Definition 2.10 [33]. For a collection of 2-tuples
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1, 2, ,j jr S j nLα∈ ∈ − =
, a 2-tuple linguistic power ordered weighted average 

(2TLPOWA) operator is a mapping 
nH H→  such that 

 

    
( ) ( ) ( )( ) ( ) ( )( )( )1

1 1 2 2
1

2TLPOWA , , , , , , ,
n

n n i index i index i
i

r r r u rLα α α α−

=

 = ∆ ∆ 
 
∑

,                    (14) 
Where 

1i i
i

R R
u g g

TV TV
−   = −   

    , 
( )

1

i

i index j
j

R V
=

=∑
, 

( )
1

n

index i
i

TV V
=

=∑
, 

( ) ( ) ( )( )1 ,index i index i index iV T r α= +
, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
1

, , , ,
n

index i index i index i index i index j index j
j
j i

T r Sup r rα α α
=
≠

=∑
.                     (15) 

 

In Eq. (15), ( ) ( )( ),index i index ir α
 is the ith largest 2-tuple among all of the 2-tuples, 

( ) ( ), 1,2 ,j jr j nLα =
, ( ) ( )( ),index i index iT r α

 denotes the support of the ith largest 2-tuple by all 

of the other 2-tuples, 
( ) ( )( ) ( ) ( )( )( ), , ,index i index i index j index jSup r rα α

 denotes the support of the jth 

largest 2-tuple for the ith largest 2-tuple, and [ ] [ ]: 0,1 0,1g →
 is a basic unit-interval 

monotonic (BUM) function having the following properties: (1) ( )0 0g =
, (2) ( )1 1g =

, and 

(3) ( ) ( )g x g y≥
 if x y> . 
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2.4 Tuple Linguistic Power Aggregation Operators 
 
In this section, we first extend the PG operator (Eq. (9)) to 2-tuple environment, i.e., develop 
a 2-tuple linguistic power geometric (2TLPG) operator and its weight form, which are carried 
out in Subsection 3.1. Then, we extend the POWG operator (Eq. (10)) to 2-tuple 
environment, i.e., develop a 2-tuple linguistic power ordered weighted geometric 
(2TLPOWG) operator, which is conducted in Subsection 3.2. Furthermore, Subsection 3.3 
adds an additional parameter λ  to the 2TLPA operator (Eq. (11)) and its weighted form (Eq. 
(13)), i.e., develops a generalized 2-tuple linguistic power average (G2TLPA) operator and 
its weighted form. Finally, Subsection 3.4 adds an additional parameter λ  to the 2TLPOWA 
operator (Eq. (14)) and develops a generalized 2-tuple linguistic power ordered weighted 
average (G2TLPOWA) operator. 
 
2.5  Tuple Linguistic Power Geometric (2TLPG) Operators and 2-Tuple 

Linguistic Power Weighted Geometric (2TLPWG) Operators 
 

Definition 3.1. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. If 
 

    
( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

1
1 , 1 ,1

1 1 2 2
1

2TLPG , , , , , , ,
n

i i i ii

n T r T r

n n i i
i

r r r rL
α α

α α α α =
+ +−

=

 ∑= ∆ ∆ 
 
∏

,(16) 
 

Then 2TLPG  is called a 2-tuple linguistic power geometric (2TLPG) operator, where 
 

( ) ( ) ( )( )
1

, , , ,
n

i i i i j j
j
j i

T r Sup r rα α α
=
≠

=∑
                                                                      (17) 

and 
( ) ( )( ), , ,i i j jSup r rα α

 is the support for ( ),i ir α
 from 

( ),j jr α
, which satisfies the 

following three properties: 
 

(1) 
( ) ( )( ) [ ], , , 0,1i i j jSup r rα α ∈

; 

(2) 
( ) ( )( ) ( ) ( )( ), , , , , ,i i j j j j i iSup r r Sup r rα α α α=

; 

(3) 
( ) ( )( ) ( ) ( )( ), , , , , ,i i j j s s t tSup r r Sup r rα α α α≥

, if 
( ) ( )( ) ( ) ( )( ), , , , , ,i i j j s s t td r r d r rα α α α<

,  

where d  is a distance measure between two linguistic variables. 
 

Clearly, the support (i.e., Sup ) measure is essentially a similarity measure, which can be 
used to measure the proximity of a preference value provided by one decision maker to 
another one provided by a different decision maker. The higher the similarity, the smaller the 
distance between the two linguistic variables and the more they support each other. The 
2TLPG operator is a nonlinear weighted aggregation tool, and the weight 
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( )
( )( )1

1 ,

1 ,

i i
n

i ii

T r

T r

α
α

=

+

+∑  of argument ( ),i ir α
 depends on all of the input arguments 

( )( ), 1,2, ,j jr j nLα =
 and allows the argument values to support each other in the 

aggregation process. 
 

Theorem 3.1. Let 
( ) ( )( ), , ,i i j jSup r r kα α =

 for all i j≠ . Then, 

( ) ( ) ( )( ) ( )( )11
1 1 2 2

1

2TLPG , , , , , , ,
n n

n n i i
i

r r r rLα α α α−

=

 = ∆ ∆ 
 
∏

,                                (18) 
 
indicating that when all of the supports are the same, the 2TLPG operator reduces to the 2-
tuple geometric (2TG) operator [22]. 
 

Proof. If 
( ) ( )( ), , ,i i j jSup r r kα α =

 for all i j≠ , then 
 

( ) ( ) ( )( ) ( )
1

, , , , 1
n

i i i i j j
j
j i

T r Sup r r n kα α α
=
≠

= = −∑
. 

 
We therefore have 
 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( )

1

1

1 , 1 ,1
1 1 2 2

1

1 1 1 11

1

11

1

2TPG , , , , , , ,

,

, ,

n
i i i ii

n

i

n T r T r

n n i i
i

n n k n k

i i
i

n n

i i
i

r r r r

r

r

L
α α

α α α α

α

α

=

=

+ +−

=

+ − + −−

=

−

=

 ∑= ∆ ∆ 
 

 ∑= ∆ ∆ 
 

 = ∆ ∆ 
 

∏

∏

∏
 

 
which is simply a 2-tuple geometric (2TG) operator [22].                                                                                                  
 

Theorem 3.2. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. Then, the following properties hold. 
 

(1) Commutativity: If 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′

 is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α
, then 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPG , , , , , , 2TLPG , , , , , ,n n n nr r r r r rL Lα α α α α α′ ′ ′ ′ ′ ′=
.                (19) 

 

(2) Idempotency: If ( ) ( ), ,i ir rα α=
 for all i , then 
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( ) ( ) ( )( ) ( )1 1 2 22TLPG , , , , , , ,n nr r r rLα α α α=
.                                                    (20) 

 
(3) Boundedness: 
 

( ){ } ( ) ( ) ( )( ) ( ){ }1 1 2 21 1
min , 2TLPG , , , , , , max ,i i n n i ii n i n

r r r r rLα α α α α
≤ ≤ ≤ ≤

≤ ≤
.                                 (21) 

 

Proof. (1) Suppose that 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′

 is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α
. Then, for each ( ),i ir α

, there exists one and only one 
( ),j jr α′ ′

 

such that 
( ) ( ), ,i i j jr rα α′ ′=

 and vice versa. We have 
( ) ( ), ,i i j jT r T rα α′ ′=

, and therefore, 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( ) ( ) ( )( )

1

1

1 , 1 ,1
1 1 2 2

1

1 , 1 ,
1

1

1 1 2 2

2TLPG , , , , , , ,

,

2TLPG , , , , , , .

n
i i i ii

n
j j j ji

n T r T r

n n i i
i

n T r T r

j j
j

n n

r r r r

r

r r r

L

L

α α

α α

α α α α

α

α α α

=

=

+ +−

=

′ ′ ′ ′+ +−

=

 ∑= ∆ ∆ 
 

 ∑′ ′= ∆ ∆ 
 

′ ′ ′ ′ ′ ′=

∏

∏

 

(2) If ( ) ( ), ,i ir rα α=
 for all i , then 

 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )

1

1

1 , 1 ,1
1 1 2 2

1

1 , 1 ,1

1

2TLPG , , , , , , ,

,

, .

n
i i i ii

n

i

n T r T r

n n i i
i

n T r T r

i

r r r r

r

r

L
α α

α α

α α α α

α

α

=

=

+ +−

=

+ +−

=

 ∑= ∆ ∆ 
 

 ∑= ∆ ∆ 
 

=

∏

∏

 

(3) Because 
( ){ } ( ) ( ) ( )( ) ( ){ }1 1 2 21 1

min , 2TLPG , , , , , , max ,i i n n i ii n i n
r r r r rLα α α α α

≤ ≤ ≤ ≤
≤ ≤

, we have 
 

( ){ } ( ){ }( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( ){ }( )( ) ( )( ) ( )( )

( ){ }

1

1

1

1 , 1 ,
1

1 1
1

1 , 1 ,1

1

1 , 1 ,
1

1
1

1

min , min ,

,

max ,

max , .

n
i i i ii

n
i i i ii

n
i i i ii

n T r T r

i i i i
i n i n

i

n T r T r

i i
i

n T r T r

i i
i n

i

i i
i n

r r

r

r

r

α α

α α

α α

α α

α

α

α

=

=

=

+ +
−

≤ ≤ ≤ ≤
=

+ +−

=

+ +
−

≤ ≤=

≤ ≤

 ∑
= ∆ ∆ 

 
 

 ∑≤ ∆ ∆ 
 

 ∑
= ∆ ∆ 

 
 

=

∏

∏

∏

 
 
The proof of Theorem 3.2 is complete.                                                                                                                                               
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Lemma 3.1 [40,41]. Let 0ix > , 0iλ > , 1,2, ,i nL= , and 1

1
n

i
i

λ
=

=∑
. Then, 

( )
11

i

n n

i i i
ii

x x
λ λ

==

≤∑∏  

 
with equality if and only if 1 2 nx x xL= = = . 
 

Theorem 3.3. Suppose that 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =
 is a collection of 2-tuples. Then, we have 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPG , , , , , , 2TLPA , , , , , ,n n n nr r r r r rL Lα α α α α α≤
.            (22) 

Proof. Because 

( )
( )( )

( )( )
( )( )

1

1
1 1

1 ,1 ,
1

1 , 1 ,

n
n

i ii i i
n n

i i i i ii i

T rT r

T r T r

αα
α α

=

=
= =

++
= =

+ +
∑

∑
∑ ∑ , we have by Lemma 3.1: 

 

( )( ) ( )( ) ( )( ) ( )( ) ( )
( )( )

1

1
1 , 1 ,1

11
1

1 , ,
,

1 ,

n
i i i ii

n nT r T r i i i i
i i n

ii i ii

T r r
r

T r

α α α α
α

α
=

−
+ +−

==
=

 + ∆∑  ∆ ≤
 + 

∑∏
∑ . 

 
Therefore, by Theorem 2.2, we have 
 

 

( )( ) ( )( ) ( )( ) ( )( ) ( )
( )( )

1

1
1 , 1 ,1

11
1

1 , ,
,

1 ,

n
i i i ii

n nT r T r i i i i

i i n
ii i ii

T r r
r

T r

α α α α
α

α
=

−
+ +−

==
=

  + ∆ ∑   ∆ ∆ ≤ ∆    +    
∑∏

∑
, 

 
Which implies that  
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPG , , , , , , 2TLPA , , , , , ,n n n nr r r r r rL Lα α α α α α≤
.     

 
Theorem 3.3 shows that the values obtained with the 2TLPG operator are not larger than 
those obtained with the 2TLPA operator. 
 
In the 2TLPG operator, all of the arguments that are being aggregated are of equal 
importance. If we allow the arguments to have different weights, then the 2-tuple linguistic 
power weighted geometric (2TLPWG) operator can be defined as follows: 
 

Definition 3.2. For a collection of 2-tuples
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =
, a 2-tuple linguistic power weighted geometric 

(2TLPWG) operator is a mapping 
nH H→  such that 
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( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( )( )1
1 , 1 ,1

1 1 2 2
1

2TLPWG , , , , , , ,
n

i i i i i ii

n w T r w T r

w n n i i
i

r r r rL
α α

α α α α =
′ ′+ +−

=

 ∑= ∆ ∆ 
 
∏

,(23) 
 
Where 
 

( ) ( ) ( )( )
1

, , , ,
n

i i j i i j j
j
j i

T r w Sup r rα α α
=
≠

′ =∑
                                                     (24) 

with the conditions that ( )1 2, , ,
T

nw w w wL=
, [ ]0,1iw ∈

 for 1,2 ,i nL= , and 1

1
n

i
i

w
=

=∑
. 

In particular, if 

1 1 1
, , ,

T

w
n n n

L
 =  
  , then the 2TLPWG operator reduces to the 2TLPG 

operator, that is, when all of the arguments are of equal importance, the 2TLPWG operator 
should be 2TLPG operator. 

Theorem 3.4. Let 
( ) ( )( ), , ,i i j jSup r r kα α =

 for all i j≠ . Then, 
 

( ) ( ) ( )( ) ( )( )1
1 1 2 2

1

2TLPWG , , , , , , ,
i

n w

w n n i i
i

r r r rLα α α α−

=

 = ∆ ∆ 
 
∏

,                         (25) 
 
indicating that when all of the supports are the same, the 2TLPWG operator reduces to the 
2-tuple weighted geometric (2TWG) operator [22]. 
 

Proof. If 
( ) ( )( ), , ,i i j jSup r r kα α =

 for all i j≠ , then 
 

( ) ( ) ( )( ) ( )
1

, , , , 1
n

i i i i j j
j
j i

T r Sup r r n kα α α
=
≠

= = −∑
. 

 
We therefore have 
 

( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( )( )

( )( )

1

1

1 , 1 ,1
1 1 2 2

1

1 1 1 11

1

1

1

2TLPWG , , , , , , ,

,

, ,

n
i i i i i ii

n
i ii

i

n w T r w T r

w n n i i
i

n w n k w n k

i i
i

n w

i i
i

r r r r

r

r

L
α α

α α α α

α

α

=

=

+ +−

=

+ − + −−

=

−

=

 ∑= ∆ ∆ 
 

 ∑= ∆ ∆ 
 

 = ∆ ∆ 
 

∏

∏

∏
 

 
which is simply a 2-tuple weighted geometric (2TWG) operator [22].                                                                                        
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Similar to the 2TLPG operator, the 2TLPWG operator has the properties such as 
idempotency and boundedness, but commutativity property does not hold. In fact, if 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′
 is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α
, then 

 

( ) ( ) ( )( )
1

, , , ,
n

i i j i i j j
j
j i

T r w Sup r rα α α
=
≠

′ ′ ′ ′ ′ ′ ′=∑
 

 
and thus 
 

( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( )( )1
1 , 1 ,1

1 1 2 2
1

2TLPWG , , , , , , ,
n

i i i i i ii

n w T r w T r

w n n i i
i

r r r rL
α α

α α α α =
′ ′ ′ ′ ′ ′+ +−

=

 ∑′ ′ ′ ′ ′ ′ ′ ′= ∆ ∆ 
 
∏

. 
 

Since 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nT r T r T rLα α α′ ′ ′ ′ ′ ′ ′ ′ ′

 may not be the permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nT r T r T rLα α α′ ′ ′
,then 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPWG , , , , , , =2TLPWG , , , , , ,w n n w n nr r r r r rL Lα α α α α α′ ′ ′ ′ ′ ′
 generally 

does not hold. 
 
Similar to the 2TLPG operator, the 2TLPWG operator has the following property: 
 

Theorem 3.5. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 

collection of 2-tuples and assume that 0λ > . Then, 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPWG , , , , , , 2TLPWA , , , , , ,w n n w n nr r r r r rL Lα α α α α α≤ .      (26) 

 
Theorem 3.5 shows that the values obtained with the 2TLPWG operator are not larger than 

those obtained with the 2TLPWA operator for any 0λ > . 
 
2.6  Tuple Linguistic Power Ordered Weighted Geometric (2TLPOWG) 

Operators 
 
Based on the POWG and 2TLPG operators, we next define a 2-tuple linguistic power 
ordered weighted geometric (2TLPOWG) operator as follows. 
 

Definition 3.3. For a collection of 2-tuples 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =
, a 2-tuple linguistic power ordered weighted geometric 

(2TLPOWG) operator is a mapping 
nH H→  such that 

 

     
( ) ( ) ( )( ) ( ) ( )( )( )1

1 1 2 2
1

2TLPOWG , , , , , , ,
i

n u

n n index i index i
i

r r r rLα α α α−

=

 = ∆ ∆ 
 
∏

,          (27) 
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Where 
 

1i i
i

R R
u g g

TV TV
−   = −   

    , 
( )

1

i

i index j
j

R V
=

=∑
, 

( )
1

n

index i
i

TV V
=

=∑
, ( ) ( ) ( )( )1 ,index i index i index iV T r α= +

, 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
1

, , , ,
n

index i index i index i index i index j index j
j
j i

T r Sup r rα α α
=
≠

=∑
.                                           (28) 

 

In Eq. (28), ( ) ( )( ),index i index ir α
 is the ith largest 2-tuple among all of the 2-tuples, 

( ) ( ), 1,2 ,j jr j nLα =
, ( ) ( )( ),index i index iT r α

 denotes the support of the ith largest 2-tuple by all 

of the other 2-tuples, 
( ) ( )( ) ( ) ( )( )( ), , ,index i index i index j index jSup r rα α

 denotes the support of the jth 

largest 2-tuple for the ith largest 2-tuple, and [ ] [ ]: 0,1 0,1g →
 is a basic unit-interval 

monotonic (BUM) function having the following properties: (1) ( )0 0g =
, (2) ( )1 1g =

, and 

(3) ( ) ( )g x g y≥
 if x y> . 

 

In particular, if ( )g x x=
, then the 2TLPOWG operator reduces to the 2TLPG operator. By 

Eq. (27), we have 
 

( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )
( )

1

1

1
1 1 2 2

1

1

1

1

1

1

2TLPOWG , , , , , , ,

,

,

,

i

i i

i i

index i

n u

n n index i index i
i

R Rn g g
TV TV

index i index i
i

R Rn
TV TV

index i index i
i

V

index i index i

r r r r

r

r

r

Lα α α α

α

α

α

−

−

−

=

    −    −     

=

 − −  

=

−

 = ∆ ∆ 
 

 
 = ∆ ∆
 
 

 
 = ∆ ∆
 
 

= ∆ ∆

∏

∏

∏

( ) ( )( )( ) ( ) ( )( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( )( )

( ) ( ) ( )( )

1

1

1

1 , 1 ,
1

1

1 , 1 ,1

1

1 1 2 2

,

,

2TLPG , , , , , , .

n

index i index i index i index i
i

n
i i i ii

n
TV

i

n T r T r

index i index i
i

n T r T r

i i
i

n n

r

r

r r rL

α α

α α

α

α

α α α

=

=

=

+ +
−

=

+ +−

=

 
 
 
 

 ∑
 = ∆ ∆
 
 

 ∑= ∆ ∆ 
 

=

∏

∏

∏

 

Furthermore, if 
( ) ( )( ), , ,i i j jSup r r kα α =

 for all i j≠  and ( )g x x=
, then we have 
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( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )11
1 1 2 2 1 1 2 2

1

2TLPOWG , , , , , , , 2TG , , , , , ,
n n

n n i i n n
i

r r r r r r rL Lα α α α α α α−

=

 = ∆ ∆ = 
 
∏

, 
which indicates that when all of the supports are the same, the 2TLPOWG operator reduces 
to the 2-tuple geometric (2TG) operator [22]. 
 

Theorem 3.6. Suppose that 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 is 
a collection of 2-tuples. Then, we have 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPOWG , , , , , , 2TLPOWA , , , , , ,n n n nr r r r r rL Lα α α α α α≤
.        (29) 

 
Theorem 3.6 shows that the values obtained with the 2TLPOWG operator are not larger than 
those obtained with the 2TLPOWA operator. 
 

Theorem 3.7. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. Then, the following properties hold. 

(1) Commutativity: If 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′

 is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α
, then 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPOWG , , , , , , 2TLPOWG , , , , , ,n n n nr r r r r rL Lα α α α α α′ ′ ′ ′ ′ ′=
       (30) 

 

(2) Idempotency: If ( ) ( ), ,i ir rα α=
 for all i , then 

 

( ) ( ) ( )( ) ( )1 1 2 22TLPOWG , , , , , , ,n nr r r rLα α α α=
.                                                              (31) 

 
(3) Boundedness: 
 

( ){ } ( ) ( ) ( )( ) ( ){ }1 1 2 21 1
min , 2TLPOWG , , , , , , max ,i i n n i ii n i n

r r r r rLα α α α α
≤ ≤ ≤ ≤

≤ ≤
                         (32) 

 
2.7  Generalized 2-Tuple Linguistic Power Average (G2TLPA) Operators And 

Generalized 2-Tuple Linguistic Power Weighted Average (G2TLPWA) 
Operators 

 
We now provide a generalization of the 2TLPA operator by combining it with the generalized 
mean operator [28] to obtain the generalized 2-tuple linguistic power average (G2TLPA) 
operator. The G2TLPA operator can be defined as follows: 
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Definition 3.4. For a collection of 2-tuples 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =
, a generalized 2-tuple linguistic power average 

(G2TLPA) operator is a mapping 
nH H→  such that 

 

( ) ( ) ( )( )
( )( ) ( )( )

( )( )

1

1

1
1 1 2 2

1

1 , ,
G2TLPA , , , , , ,

1 ,

n

i i i i
i

n n n

i ii

T r r
r r r

T r
L

λ
λ

λ

α α
α α α

α

−

=

=

  + ∆  
  = ∆
  +
     

∑

∑
,         (33) 

 

where ( ),i iT r α
 satisfies Eq. (17). 

 

From Definition 3.4, the weight vector 

( )
( )( )1

1 ,

1 ,

i i
n

i ii

T r

T r

α
α

=

+

+∑  of the G2TLPA operator depends 
on the input arguments and allows the arguments being aggregated to support and reinforce 
one another. 
 

In particular, if 
( ) ( )( ), , ,i i j jSup r r kα α =

 for all i j≠ , then 

( ) ( ) ( )( ) ( )( )
1

1
1 1 2 2

1

1
G2TLPA , , , , , , ,

n

n n i i
i

r r r r
n

L

λ
λ

λ α α α α−

=

  = ∆ ∆     
∑

, 
 
which indicates that when all of the supports are the same, the G2TLPA operator reduces to 
the generalized 2-tuple linguistic average (G2TLA) operator [24]. 
 

If 1λ = , then the G2TLPA operator degenerates to the 2TLPA operator (Eq. (11)). If 

( ) ( )( ), , ,i i j jSup r r kα α =
 for all i j≠  and 1λ = , then the G2TLPA operator reduces to the 

2-tuple average (2TA) operator [18]. 
 

Theorem 3.8. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 

collection of 2-tuples and assume that 0λ > . Then, 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPG , , , , , , G2TLPA , , , , , ,n n n nr r r r r rL Lλα α α α α α≤ .               (34) 

 

Proof. Because 

( )
( )( )

( )( )
( )( )

1

1
1 1

1 ,1 ,
1

1 , 1 ,

n
n

i ii i i
n n

i i i i ii i

T rT r

T r T r

αα
α α

=

=
= =

++
= =

+ +
∑

∑
∑ ∑ , we have by Lemma 3.1: 
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( )( ) ( ) ( )( ) ( )( )( ) ( ) ( )( )

( )
( )( )

( )( )

1
1

1
1 , 1 ,1 , 1 ,1 1

1 1

1

1

1
1

, ,

1 ,
, .

1 ,

n
n

i i i iii i i ii

n n T r T rT r T r

i i i i
i i

n
i i

i in
i i ii

r r

T r
r

T r

λ
α αα α λ

λ

λ

α α

α
α

α

==
+ ++ +− −

= =

−

=
=

 ∑∑∆ = ∆ 
 
 

  +
  ≤ ∆

  +  

∏ ∏

∑
∑

 
 
By Theorem 2.2, we can therefore conclude that 
 

( )( ) ( ) ( )( ) ( )
( )( )

( )( )1

1

1 , 1 ,1 1

11
1

1 ,
, ,

1 ,

n
i i i ii

n nT r T r i i
i i i in

ii i ii

T r
r r

T r

λ

α α λα
α α

α
=

+ +− −

==
=

   + ∑    ∆ ∆ ≤ ∆ ∆     +      

∑∏
∑

, 
which implies that  
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPG , , , , , , G2TLPA , , , , , ,n n n nr r r r r rL Lλα α α α α α≤
.                     

 
According to Theorem 3.8, the values obtained with the 2TLPG operator are no larger than 

those obtained with the G2TLPA operator for any 0λ > . 
 

Theorem 3.9. For a given collection of 2-tuples 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

, the G2TLPA 

operator is  monotonically increasing with respect to the parameter λ . 
 
Proof. From the monotonicity of the GOWA operator [42], we obtain that 

( )( ) ( )( )
( )( )

1

1

1

1

1 , ,

1 ,

n

i i i i
i

n

i ii

T r r

T r

λ
λ

α α

α

−

=

=

 + ∆ 
 
 +
 
 

∑

∑
 is monotonically increasing with respect to the 

parameter λ . By Theorem 2.2, we can therefore conclude that 

( )
( )( )

( )( )
1

1

1
1

1 ,
,

1 ,

n
i i

i in
i i ii

T r
r

T r

λ

λα
α

α
−

=
=

   +   ∆ ∆   +    

∑
∑

 is monotonically increasing with respect 

to the parameter λ , which implies that the G2TLPA operator is monotonically increasing 

with respect to the parameter λ .                       ο 

Theorem 3.10. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. Then, the following properties hold. 
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(1) Commutativity: If 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′

 is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α
, then 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 2G2TLPA , , , , , , G2TLPA , , , , , ,n n n nr r r r r rL Lλ λα α α α α α′ ′ ′ ′ ′ ′=
        (35) 

 

(2) Idempotency: If ( ) ( ), ,i ir rα α=
 for all i , then 

 

( ) ( ) ( )( ) ( )1 1 2 2G2TLPA , , , , , , ,n nr r r rLλ α α α α=
                                       (36) 

 
(3) Boundedness: 
 

( ){ } ( ) ( ) ( )( ) ( ){ }1 1 2 21 1
min , G2TLPA , , , , , , max ,i i n n i ii n i n

r r r r rLλα α α α α
≤ ≤ ≤ ≤

≤ ≤
                  (37) 

 
In the G2TLPA operator, all the arguments that are aggregated are of equal importance. If 
we consider the weights of the arguments, then we can develop a generalized 2-tuple 
linguistic power weighted average (G2TLPWA) operator as follows: 
 

Definition 3.5. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. A generalized 2-tuple linguistic power weighted average (G2TLPWA) 
operator is defined as follows: 

( ) ( ) ( )( )
( )( ) ( )( )

( )( )

1

1

1
, 1 1 2 2

1

1 , ,
G2TLPWA , , , , , ,

1 ,

n

i i i i i
i

w n n n

i i ii

w T r r
r r r

w T r
L

λ
λ

λ

α α
α α α

α

−

=

=

  ′+ ∆  
  = ∆
  ′+
     

∑

∑
,(38) 

 

where ( ),i iT r α′
 satisfies Eq. (24), [ ]0,1iw ∈

 for 1,2, ,i nK= , and 1

1
n

i
i

w
=

=∑
. 

 
We now consider some special cases obtained by using different choices for the parameters 
w  and λ . If 1λ = , then the G2TLPWA operator becomes the 2TLPWA operator (Eq. (13)). 

If 

1 1 1
, , ,

T

w
n n n

K
 =  
  , then the G2TLPWA operator reduces to the G2TLPA operator (Eq. 

(33)). If 

1 1 1
, , ,

T

w
n n n

K
 =  
   and 1λ = , then the G2TLPWA operator reduces to the 2TLPA 

operator (Eq. (11)). 
 
Similar to the 2TLPWG operator, the G2TLPWA operator has the properties such as 
idempotency and boundedness, but commutativity property does not hold. 
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Theorem 3.11. For a given collection of 2-tuples 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =
, the G2TLPWA operator is  monotonically increasing 

with respect to the parameter λ . 
 

Theorem 3.12. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 

collection of 2-tuples and assume that 0λ > . Then, 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 , 1 1 2 22TLPWG , , , , , , G2TLPWA , , , , , ,w n n w n nr r r r r rL Lλα α α α α α≤ .    (39) 

 
3.8  Generalized 2-Tuple Linguistic Power Ordered Weighted Average 

(G2TLPOWA) Operators 
 
Based on the 2TLPOWA operator (Eq. (14)) and the generalized mean operator [28], we 
define a generalized 2-tuple linguistic power ordered weighted average (G2TLPOWA) 
operator as follows: 
 

Definition 3.6. For a collection of 2-tuples
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =
, a generalized 2-tuple linguistic power ordered weighted 

average (G2TLPOWA) operator is a mapping 
nH H→  such that 

                 

( ) ( ) ( )( ) ( ) ( )( )( )
1

1
1 1 2 2

1

G2TLPOWA , , , , , , ,
n

n n i index i index i
i

r r r u rL

λλ

λ α α α α−

=

   = ∆ ∆       
∑

,     (40) 
 

where iu  satisfies Eq. (28) and ( ) ( )( ),index i index ir α
 is the ith largest argument of 

( ) ( ), 1,2, ,j jr j nLα =
. 

 

In particular, if 1λ = , then the G2TLPOWA operator reduces to the 2TLPOWA operator (Eq. 

(14)). If ( )g x x=
, then the G2TLPOWA operator reduces to the G2TLPA operator. 
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( ) ( ) ( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( )

1 1 2 2

1

1

1

1

11

1

11

G2TLPOWA , , , , , ,

,

,

,

n n

n

i index i index i
i

n
i i

index i index i
i

i i
index i index i

r r r

u r

R R
g g r

TV TV

R R
r

TV TV

Lλ

λλ

λ
λ

λ

α α α

α

α

α

−

=

−−

=

−−

   = ∆ ∆       

        = ∆ − ∆               

 = ∆ − ∆ 
 

∑

∑

( )
( ) ( )( )( )

( ) ( )( )
( ) ( )( )( ) ( ) ( )( )( )

1

1

1

1

1

1

1

1

1

,

1 ,
,

1 ,

1 ,

n

i

n
index i

index i index i
i

n
index i index i

index i index in
i

index i index i
i

i

V
r

TV

T r
r

T r

T r

λ

λ
λ

λ

λ

α

α
α

α

=

−

=

−

=

=

  
     

   
 = ∆ ∆        

   
   +
   = ∆ ∆   +       

+
= ∆

∑

∑

∑
∑

( )
( )( )

( )( )

( ) ( ) ( )( )

1

1

1

1

1 1 2 2

,
1 ,

G2TLPA , , , , , , .

n
i

i in
i

i i
i

n n

r
T r

r r rL

λ

λ

λ

α
α

α

α α α

−

=

=

   
   
   ∆   +       

=

∑
∑

 
 

Theorem 3.13. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 
collection of 2-tuples. Then, the following properties hold. 

(1) Commutativity: If 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′

 is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α
, then 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 2G2TLPOWA , , , , , , G2TLPOWA , , , , , ,n n n nr r r r r rλ λα α α α α α′ ′ ′ ′ ′ ′=L L
.         (41) 

 

(2) Idempotency: If ( ) ( ), ,i ir rα α=
 for all i , then 

 

( ) ( ) ( )( ) ( )1 1 2 2G2TLPOWA , , , , , , ,n nr r r rLλ α α α α=
.                                    (42) 

 
(3) Boundedness: 
 



 
 
 
 

Zhang; JSRR, Article no. JSRR.2014.14.009 
 
 

1949 
 

( ){ } ( ) ( ) ( )( ) ( ){ }1 1 2 21 1
min , G2TLPOWA , , , , , , max ,i i n n i ii n i n

r r r r rLλα α α α α
≤ ≤ ≤ ≤

≤ ≤
.                    (43) 

 

Theorem 3.14. For the given 2-tuples 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 

[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =
, the G2TLPOWA operator is monotonically increasing 

with respect to the parameter λ . 
 

Theorem 3.15. Let 
( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α

 
[ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =

 be a 

collection of 2-tuples and assume that 0λ > . Then, 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 2 2 1 1 2 22TLPOWG , , , , , , G2TLPOWA , , , , , ,n n n nr r r r r rL Lλα α α α α α≤ .   (44) 

 
According to Theorem 3.15, the values obtained with the 2TLPOWG operator are no larger 

than those obtained with the G2TLPOWA operator for any 0λ > . 
 
Remark 3.1. In this section, we have proposed six aggregation operators for aggregating 2-
tuple linguistic information, which can be divided into two categories: 2-tuple linguistic power 
aggregation operators and 2-tuple linguistic power ordered weighted aggregation operators. 
The former, including the 2TLPG, 2TLPWG, G2TLPA, and G2TLPWA, emphasize the 
importance of each argument, i.e., the closer an argument is to the middle one(s), the higher 
its weight. The latter, including the 2TLPOWG and G2TLPOWA operators, weight the 
importance of each argument according to its ordered position, i.e., the closer the ordered 
position of the argument is to the middle one(s), the higher its weight. 
 
In real-life situations, the arguments sometimes take the form of a collection of 2-tuples 
provided by different individuals. In recent years, many aggregation operators have been 
developed for aggregating 2-tuple linguistic information, such as the 2-tuple arithmetic mean 
operator [18,20], 2-tuple weighted averaging operator [18], 2-tuple OWA operator [18], 
TWGA operator [21], TOWGA operator [21], THGA operator [21], TAA operator [18], TWA 
operator [18], TOWA operator [18], ET-WA operator [18], TOWG operator [22], ET-WG 
operator [23], ET-OWG operator [23], G-2TWA operator [24], G-2TOWA operator [24], and 
IG-2TOWA operator [24]. However, these 2-tuple linguistic aggregation operators cannot 
capture the sophisticated nuances that the decision makers wish to reflect in the aggregated 
value, i.e., these aggregation operators cannot take into account the relationships between 
the arguments provided by different individuals. However, the new 2-tuple linguistic power 
aggregation operators proposed in this paper can not only incorporate the relationships 
between the input arguments by allowing the values being aggregated to support and 
reinforce one another but also measure the similarity degrees of the arguments and thereby 
reduce the influence of unduly high or low arguments on the decision result by using the 
support measure to assign them lower weights. In the process of group decision making, 
some individuals may provide unduly high or low evaluation values to their preferred or 
dispreferred objects. Compared to the previously proposed 2-tuple linguistic aggregation 
operators, the new operators have the advantage that the associated weights are 
determined using the support measure. If the preference value provided by a decision maker 
is more similar (or closer) to the values provided by the other decision makers, then it 
receives a higher weight; the operators can therefore reduce the influence of these unduly 



 
 
 
 

Zhang; JSRR, Article no. JSRR.2014.14.009 
 
 

1950 
 

high or low arguments of the individual information, thereby providing a more reliable 
decision result. 
 
3.  Approaches to Multiple Attribute Group Decision Making With 2-Tuple 

Linguistic Information 
 
In this section, we utilize the proposed 2-tuple power aggregation operators to develop some 
approaches to multiple attribute group decision making with 2-tuple linguistic information. 
 
The multiple attribute group decision making problem with 2-tuple linguistic information can 
be formulated as follows: 
 

Let { }1 2, , , mX x x xL=
 be a set of m  alternatives, and let { }1 2, , , nC c c cK=

 be a collection 

of n  attributes, whose weight vector is ( )1 2, , ,
T

nw w w wL=
, with [ ]0,1iw ∈

, 1,2, ,i nL= , 

and 1

1
n

i
i

w
=

=∑
, and let { }1 2, , , lD d d dL=

 be a set of l  decision makers, whose weight 

vector is ( )1 2, , ,
T

lLω ω ω ω=
 with [ ]0,1kω ∈

, 1,2, ,k lL= , and 1

1
l

k
k

ω
=

=∑
. Each decision 

maker provides his/hier own linguistic decision matrix 
( ) ( )( )k k

ij
m n

R r
×

=
 ( )1,2, ,k lL=

, where 
( )k

ijr S∈
 is a preference value, which takes the form of linguistic variable, given by the 

decision maker kd D∈ , for the alternative ix X∈  with respect to the attribute jc C∈
. 

In the following, we utilize the G2TLPWA (or 2TLPWG) operator to develop an approach to 
multi-attribute group decision making in a 2-tuple linguistic environment. The algorithm 
involves the following steps. 
 
Approach I 

Step 1. Transform the linguistic decision matrix 
( ) ( )( )k k

ij
m n

R r
×

=
 ( )1,2, ,k lL=

 into 2-tuple 

linguistic decision matrix 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 ( )1,2, ,k lL=
. 

Step 2. Calculate the supports, 
( )( ) ( )( )( ) ( )( ) ( )( )( ),0 , ,0 1 ,0 , ,0k t k t

ij ij ij ijSup r r d r r= −
, , 1,2, ,k t lL= , 1,2, ,i mL= , 1,2, ,j nL= ,  (45) 

 
which satisfy support conditions (1)-(3) in Definition 3.1. Without loss of generality, we 

assume that 

( )( ) ( )( )( ),0 , ,0k t
ij ijd r r

 is the distance between 
( )( ),0k

ijr
 and 

( )( ),0t
ijr

 given in [33]: 

( )( ) ( )( )( ) ( )( ) ( )( )1 11
,0 , ,0 ,0 ,0k t k k

ij ij ij ijd r r r r
g

− −= ∆ − ∆
.                                           (46) 
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Step 3. Utilize the weights ( )1,2, ,k k lLω =
 of the decision makers, ( )1,2, ,kd k lL=

, to 

calculate the weighted support 
( )( ),0k

ijT r′
 of 2-tuple 

( )( ),0k
ijr

 by the other 2-tuples, 
( )( ),0t

ijr
 

( 1,2, ,t lL= , and t k≠ ): 
 

( )( ) ( )( ) ( )( )( )
1

,0 ,0 , ,0
l

k k t
ij t ij ij

t
t k

T r Sup r rω
=
≠

′ =∑
                                                           (47) 

 

Then, utilize the weights ( )1,2, ,k k lLω =
 of the decision makers, ( )1,2, ,kd k lL=

, to 

calculate the weights 
( )k
ijξ

 ( )1,2, ,k lL=
 associated with 2-tuples 

( )( ),0k
ijr

 ( )1,2, ,k lL=
: 

( )
( )( )( )

( )( )( )1

1 ,0

1 ,0

k
k ijk

ij l k
k ijk

T r

T r

ω
ξ

ω
=

′+
=

′+∑
,    1,2, ,k lL= ,                                                  (48) 

 

where 
( ) 0k
ijξ ≥

, 1,2, ,k lL= , and 

( )

1

1
l

k
ij

k

ξ
=

=∑
. 

 
Step 4. Use the G2TLPWA operator (Eq. (38)), 

                 

( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( )( )

1 2
,

1

1

1

, G2TLPWA ,0 , ,0 , , ,0

,0

l
ij ij ij w ij ij ij

l
k k

ij ij
k

r r r r r

r

λ

λλ

α

ξ −

=

= =

   = ∆ ∆       
∑

K

                        (49) 
 
or the 2TLPWG operator (Eq. (23)), 

 
( ) ( )( ) ( )( ) ( )( )( ) ( )( )( )

( )
1 2 1

1

, 2TLPWG ,0 , ,0 , , ,0 ,0
k

ij
l

l k
ij ij ij w ij ij ij ij

k

r r r r r rK

ξ
α −

=

 
= = = ∆ ∆ 

 
∏

          (50) 
 

to aggregate all of the individual 2-tuple linguistic decision matrices, 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 

( 1,2, ,k lL= ), into the collective 2-tuple linguistic decision matrix, 

( ) ( )( ),ij ij ijm n m n
R r r α

× ×
= =

. 
Step 5. Calculate the supports: 

( ) ( )( ) ( ) ( )( ), , , 1 , , ,ij ij ip ip ij ij ip ipSup r r d r rα α α α= −
, 1,2, ,i mL= , , 1,2, ,j p nL= ,        (51) 

 
which satisfy support conditions (1)-(3) in Definition 3.1. Here, we assume that 

( ) ( )( ), , ,ij ij ip ipd r rα α
 is the distance between 

( ),ij ijr α
 and 

( ),ip ipr α
 given in [33]: 
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( ) ( )( ) ( ) ( )1 11

, , , , ,ij ij ip ip ij ij ip ipd r r r r
g

α α α α− −= ∆ − ∆
.                           (52) 

 

Step 6. Use the weights 
( )1,2, ,jw j nL=

 of attributes 
( )1,2, ,jc j nL=

 to calculate the 

weighted support 
( ),ij ijT r α′

 of the 2-tuple 
( ),ij ijr α

 by the other 2-tuples, 
( ),ip ipr α

 

( 1,2, ,p nL= , and p j≠ ): 
 

( ) ( ) ( )( )
1

, , , ,
n

ij ij p ij ij ip ip
p
p j

T r w Sup r rα α α
=
≠

′ =∑
 .                                                                   (53) 

 

Then, utilize the weights 
( )1,2, ,jw j nL=

 of attributes 
( )1,2, ,jc j nL=

 to calculate the 

weights 
( )1,2, ,ij j nLη =

  associated with 2-tuple 
( ),ij ijr α

 ( )1,2, ,j nL=
: 

 

( )( )
( )( )1

1 ,

1 ,

j ij ij

ij n

j ij ijj

w T r

w T r

α
η

α
=

′+
=

′+∑
,    1,2, ,j nL= ,                                                        (54) 

 

where 
0ijη ≥

, 1,2, ,j nL= , and 1

1
n

ij
j

η
=

=∑
. 

 
Step 7. Utilize the G2TLPWA operator (Eq. (38)), 

        

( ) ( ) ( ) ( )( ) ( )( )( )
1

1
1 1 2 2

1

, G2TLPWA , , , , , , ,
n

i i i i i i i in in ij ij ij
j

r r r r r rK

λ
λ

α α α α η α−

=

  
 = = = ∆ ∆ 
   
∑

(55) 
 
or the 2TLPWG operator (Eq. (23)), 
 

           
( ) ( ) ( ) ( )( ) ( )( )1

1 1 2 2
1

, 2TLPWG , , , , , , ,
ij

n

i i i i i i i in in ij ij
j

r r r r r rK

η
α α α α α−

=

 
= = = ∆ ∆ 

 
∏

(56) 

to aggregate all of the preference values ijr
 ( 1,2, ,j nL= ) in the ith line of R , and then 

derive the collective overall preference value, ( )= ,i i ir r α
 ( )1,2, ,i mL=

, of alternative ix  

( )1,2, ,i mL=
. 

 

Step 8. Rank the ( )= ,i i ir r α
 ( )1,2, ,i mL=

 in descending order using Definition 2.3. 

Step 9. Rank all of the alternatives, ix  ( )1,2, ,i mL=
, and then select the best one(s) in 

accordance with the collective overall preference values, ( )= ,i i ir r α
 ( )1,2, ,i mL=

. 
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Step 10. End. 
 
If the information regarding the weights of the decision makers and attributes is unknown, 
then we utilize the G2TLPOWA (or 2TLPOWG) operator to develop an alternative approach 
to the MAGDM problem with 2-tuple linguistic information, which is described below. 
 
Approach II 
 

Step 1. Transform the linguistic decision matrix 
( ) ( )( )k k

ij
m n

R r
×

=
 ( )1,2, ,k lL=

 into 2-tuple 

linguistic decision matrix 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 ( )1,2, ,k lL=
. 

 
Step 2. Calculate the supports: 
 

( )( )( ) ( )( )( )( ) ( )( )( ) ( )( )( )( ),0 , ,0 1 ,0 , ,0index k index t index k index t

ij ij ij ijSup r r d r r= −
, , 1,2, ,k t lL= , 

1,2, ,i mL= , 1,2, ,j nL= ,                                                                                                 (57) 
 
which satisfy the support conditions of Eq. (28) in Definition 3.3. We assume that 

( )( )( ) ( )( )( )( ),0 , ,0index k index t
ij ijd r r

 is the distance between 

( )( ),0index k

ijr
 and 

( )( )( ),0index t
ijr

 given in 
[33]: 
 

( )( )( ) ( )( )( )( ) ( )( )( ) ( )( )( )1 11
,0 , ,0 ,0 ,0index k index t index k index t

ij ij ij ijd r r r r
g

− −= ∆ − ∆
.                             (58) 

 

Step 3. Calculate the support 

( )( )( ),0index k
ijT r

 of the kth largest 2-tuple 

( )( )( ),0index k
ijr

 by the 

other 2-tuples 

( )( )( ),0index t

ijr
 ( 1,2, ,t lL= , and t k≠ ): 

 

( )( )( ) ( )( )( ) ( )( )( )( )
1

,0 ,0 , ,0
l

index k index k index t
ij ij ij

t
t k

T r Sup r r
=
≠

=∑
                                                      (59) 

 

and then utilize Eq. (28) to calculate the weight 
( )k
iju

 ( )1,2, ,k lL=
 associated with the kth 

largest 2-tuple 
( )( ),0index k

ijr
 ( )1,2, ,k lL=

, where 

( )
( ) ( )1k k
ij ijk

ij
ij ij

B B
u g g

TV TV

−   
   = −
   
    , 

( ) ( )

1

k
k index h

ij ij
h

B V
=

=∑
, 

( )

1

l
index h

ij ij
h

TV V
=

=∑
, 

( ) ( )( )1 ,0index h index h
ij ijV T r= +

,        (60) 
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( ) 0k
iju ≥

, 1,2, ,k lL= , 

( )

1

1
l

k
ij

k

u
=

=∑
, and g  is the BUM function, as described in Definition 3.3. 

Step 4. Utilize the G2TLPOWA operator (Eq. (40)), 

    
( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )( )( )

1
1 2 1

1

, =G2TLPOWA ,0 , ,0 , , ,0 ,0
l

l k index k
ij ij ij ij ij ij ij ij

k

r r r r r u rK

λλ
α −

=

   = = ∆ ∆       
∑

   (61) 
 
or the 2TLPOWG operator (Eq. (27)), 
 

( ) ( )( ) ( )( ) ( )( )( ) ( )( )( )
( )

1 2 1

1

, =2TLPOWG ,0 , ,0 , , ,0 ,0
k

ij
l u

l index k
ij ij ij ij ij ij ij

k

r r r r r rKα −

=

 
= = ∆ ∆ 

 
∏

         (62) 
 

to aggregate all of the 2-tuple linguistic decision matrices, 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 ( 1,2, ,k lL= ), 

into the collective 2-tuple linguistic decision matrix, 
( ) ( )( ),ij ij ijm n m n

R r r α
× ×

= =
. 

 
Step 5. Calculate the supports: 
 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( ), , , 1 , , ,iindex j iindex j iindex p iindex p iindex j iindex j iindex p iindex pSup r r d r rα α α α= −
, 

1,2, ,i mL= , , 1,2, ,j p nL= ,                                                                                   (63) 
 

which satisfy the support conditions of Eq. (28) in Definition 3.3. Here, ( ) ( )( ),iindex j iindex jr α
 is 

the jth largest 2-tuple among all of the 2-tuples 
( )( ), 1,2, ,iq iqr q nLα =

, and 

( ) ( )( ) ( ) ( )( )( ), , ,iindex j iindex j iindex p iindex pd r rα α
 is the distance between ( ) ( )( ),iindex j iindex jr α

 and 

( ) ( )( ),iindex p iindex pr α
 given in [33]: 

 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )1 11
, , , , ,iindex j iindex j iindex p iindex p iindex j iindex j iindex p iindex pd r r r r

g
α α α α− −= ∆ − ∆

.  (64) 
 

Step 6. Calculate the support ( ) ( )( ),iindex j iindex jT r α
 of the jth largest 2-tuple, 

( ) ( )( ),iindex j iindex jr α
, by the other 2-tuples, ( ) ( )( ),iindex p iindex pr α

 ( 1,2, ,p nL= , and p j≠ ): 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
1

, , , ,
n

iindex j iindex j iindex j iindex j iindex p iindex p
p
p j

T r Sup r rα α α
=
≠

=∑
.                                    (65) 
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Then, utilize Eq. (28) to calculate the weight iju
 ( )1,2, ,j nL=

 associated with the jth 

largest 2-tuple, ( ) ( )( ),iindex j iindex jr α
 ( )1,2, ,j nL=

, where 
 

( )1i jij
ij

i i

BB
u g g

TV TV
−  

= −     
    , 

( )
1

j

ij iindex h
h

B V
=

=∑
, 

( )
1

n

i iindex h
h

TV V
=

=∑
, 

( ) ( ) ( )( )( )1 ,iindex h iindex h iindex hV T r α= +
,                                                        (66) 

 

0iju ≥
, 1,2, ,j nL= , 1

1
n

ij
j

u
=

=∑
, and g  is the BUM function, as described in Definition 3.3. 

Step 7. Use the G2TLPOWA operator (Eq. (40)), 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )
1

1
1 1 2 2

1

, G2TLPOWA , , , , , , ,
n

i i i i i i i in in ij iindex j iindex j
j

r r r r r u r

λ
λ

α α α α α−

=

    = = = ∆ ∆      
∑K

        (67) 
 
or the 2TLPOWG operator (Eq. (27)), 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )1
1 1 2 2

1

, 2TLPOWG , , , , , , ,
ij

n u

i i i i i i i in in iindex j iindex j
j

r r r r r rKα α α α α−

=

 
= = = ∆ ∆ 

 
∏

   (68) 
 

to aggregate all of the preference values 
( ),ij ijr α

 ( 1,2, ,j nL= ) in the ith line of R , and 

then derive the collective overall preference value, ( )= ,i i ir r α
 ( )1,2, ,i mL=

, of alternative 

ix  ( )1,2, ,i mL=
. 

 

Step 8. Rank the ( )= ,i i ir r α
 ( )1,2, ,i mL=

 in descending order using Definition 2.3. 
 

Step 9. Rank all of the alternatives, ix  ( )1,2, ,i mL=
, and then select the best one(s) in 

accordance with the collective overall preference values, ( )= ,i i ir r α
 ( )1,2, ,i mL=

. 
 
Step 10. End. 
 
Remark 4.1. Approach I is designed for situations where the weights of the decision makers 
and attributes can be predefined and utilizes the G2TLPWA (or 2TLPWG) operator to 
aggregate all of the individual 2-tuple linguistic decision matrices into the collective 2-tuple 
linguistic decision matrix. If we emphasize the individual influence, then the 2TLPWG 
operator based on the geometric aggregating tool is available; if we emphasize the group’s 
influence, then the G2TLPWA operator based on the arithmetic aggregating tool is available. 
Approach II is designed for situations where the information regarding the weights of the 
decision makers and attributes is unknown and utilizes the G2TLPOWA (or 2TLPOWG) 
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operator to aggregate all of the individual 2-tuple linguistic decision matrices into the 
collective 2-tuple linguistic decision matrix. If we emphasize the individual influence, then the 
2TLPOWG operator based on the geometric aggregating tool is available; if we emphasize 
the group’s influence, then the G2TLPOWA operator based on the arithmetic aggregating 
tool is available. Both approaches are quite suitable for multiple attribute group decision 
making in 2-tuple linguistic environments. In the process of group decision making, some 
individuals may assign unduly high or low preferences to their preferred or dispreferred 
objects. The proposed approaches can reduce the influence of these unduly high or low 
arguments on the decision result by using the support measure to assign lower weights to 
them, making the decision more reliable. 
 
4. ILLUSTRATIVE EXAMPLES 
 
In this subsection, let us consider a numerical example adapted from Herrera et al. [43], and 
Herrera and Martínez [34]. 
 
Example 5.1. Suppose that an investment company wants to invest a sum of money in the 
best option. There is a panel with four possible alternatives in which to invest the money: (1) 

1x  is a car industry; (2) 2x  is a food company; (3) 3x  is a computer company; and (4) 4x  is 
an arms industry. The investment company must make a decision according to the following 

four attributes: (1) 1c  is the risk analysis; (2) 2c  is the growth analysis; (3) 3c  is the social-

political impact analysis; and (4) 4c  is the environmental impact analysis. The weight vector 

of attributes jc
 ( )1,2,3,4j =

 is ( )0.3,0.25,0.25,0.2
T

w =
. The four possible alternatives ix  

( )1,2,3,4i =
 are to be evaluated using the linguistic term set 

 

          

0 1 2 3 4

5 6 7 8

extremely poor, very poor, poor, slightly poor, fair,

slightly good, good, very good, extremely good

s s s s s
S

s s s s

= = = = = 
=  = = = =   

 

by three decision makers ( )1,2,3kd k =
 (suppose that the weight vector of three decision 

makers is ( )0.2,0.5,0.3
Tω =

) under the above four attributes, and construct, respectively, 

the linguistic decision matrices 
( ) ( )( )

4 4

k k
ijR r

×
=

 ( )1,2,3k =
 as shown in Tables 1-3. 

 

Table 1. Linguistic decision matrix 
( )1R  provided by 1d  

 
1 

1c  2c  3c  4c  

1x  4s  3s  1s  5s  

2x  3s  6s  5s  8s  

3x  3s  2s  7s  5s  

4x  8s  1s  3s  6s  
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Table 2. Linguistic decision matrix 
( )2R  provided by 2d  

 
2 

1c  2c  3c  4c  
1x  5s  2s  7s  3s  

2x  7s  4s  8s  6s  

3x  7s  8s  5s  6s  

4x  8s  6s  5s  3s  
 

Table 3. Linguistic decision matrix 
( )3R  provided by 3d  

 
3 

1c  2c  3c  4c  
1x  5s  1s  2s  8s  

2x  7s  8s  6s  5s  

3x  5s  6s  3s  4s  

4x  6s  8s  5s  7s  
 

Assume that the weights of the decision makers and attributes are known. We use Approach 
I to find the decision result. 
 

Step 1. Transform the linguistic decision matrices 
( ) ( )( )

4 4

k k
ijR r

×
=

 ( )1,2,3k =
 given in Tables 

1-3 into 2-tuple linguistic decision matrices 

( ) ( )( )( )
4 4

,0k k
ijR r

×
=

 ( )1,2,3k =
 which are given in 

Tables 4-6. 

Table 4. 2-Tuple linguistic decision matrix 
( )1R  

 
4 

1c  2c  3c  4c  

1x  ( )4 , 0s
 ( )3 ,0s

 ( )1,0s
 ( )5 ,0s

 

2x  ( )3 ,0s
 ( )6 ,0s

 ( )5 ,0s
 ( )8 ,0s

 

3x  ( )3 ,0s
 ( )2 , 0s

 ( )7 , 0s
 ( )5 ,0s

 

4x  ( )8 ,0s
 ( )1,0s

 ( )3 ,0s
 ( )6 ,0s

 
 

Table 5. 2-tuple linguistic decision matrix 
( )2R  

 

5 
1c  2c  3c  4c  

1x  ( )5 ,0s
 ( )2 , 0s

 ( )7 , 0s
 ( )3 ,0s

 
2x  ( )7 , 0s

 ( )4 , 0s
 ( )8 ,0s

 ( )6 ,0s
 

3x  ( )7 , 0s
 ( )8 ,0s

 ( )5 ,0s
 ( )6 ,0s

 
4x  ( )8 ,0s

 ( )6 ,0s
 ( )5 ,0s

 ( )3 ,0s
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Table 6. 2-tuple linguistic decision matrix 
( )3R  

 
6 

1c  2c  3c  4c  
1x  ( )5 ,0s

 ( )1,0s
 ( )2 , 0s

 ( )8 ,0s
 

2x  ( )7 , 0s
 ( )8 ,0s

 ( )6 ,0s
 ( )5 ,0s

 
3x  ( )5 ,0s

 ( )6 ,0s
 ( )3 ,0s

 ( )4 , 0s
 

4x  ( )6 ,0s
 ( )8 ,0s

 ( )5 ,0s
 ( )7 , 0s

 
  

Step 2. Use Eq. (45) to calculate the supports, 

( )( ) ( )( )( ),0 , ,0k t
ij ijSup r r

 ( , 1,2,3,4i j = , 

, 1,2,3k t = , k t≠ ). For simplicity, we denote 

( )( ) ( )( )( )( )
4 4

,0 , ,0k t
ij ijSup r r

×  by 
ktSup , which 

refers to the supports between 
( )kR  and 

( )tR , in the following: 
 
, 

13 31

0.8750 0.7500 0.8750 0.6250

0.5000 0.7500 0.8750 0.6250

0.7500 0.5000 0.5000 0.8750

0.7500 0.1250 0.7500 0.8750

Sup Sup

 
 
 = =
 
 
  ,

12 21

0.8750 0.8750 0.2500 0.7500

0.5000 0.7500 0.6250 0.7500

0.5000 0.2500  0.7500 0.8750

1.0000 0.3750 0.7500 0.6250

Sup Sup

 
 
 = =
 
 
   

 

23 32

1.0000 0.8750 0.3750 0.3750

1.0000 0.5000 0.7500 0.8750

0.7500 0.7500 0.7500 0.7500

0.7500 0.7500 1.0000 0.5000

Sup Sup

 
 
 = =
 
 
  . 

 

Step 3. Use Eq. (47) to calculate the weighted support 
( )( ),0k

ijT r′
 of 2-tuple 

( )( ),0k
ijr

 by the 

other 2-tuples, 
( )( ),0t

ijr
 ( 1,2,3t = , and t k≠ ). We denote 

( )( )( )
4 4

,0k
ijT r

×
′

 by kT ′
 ( 1,2,3k = ) 

in the following equations: 
 

      

1

0.7000 0.6625 0.3875 0.5625

0.4000 0.6000 0.5750 0.5625

0.4750 0.2750 0.5250 0.7000

0.7250 0.2250 0.6000 0.5750

T

 
 
 ′=
 
 
  , 

2

0.4750 0.4375 0.1625 0.2625

0.4000 0.3000 0.3500 0.4125

0.3250 0.2750 0.3750 0.4000

0.4250 0.3000 0.4500 0.2750

T

 
 
 ′ =
 
 
  ,  
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3

0.6750 0.5875 0.3625 0.3125

0.6000 0.4000 0.5500 0.5625

0.5250 0.4750 0.4750 0.5500

0.5250 0.4000 0.6500 0.4250

T

 
 
 ′ =
 
 
  . 

 

Use Eq. (48) to calculate the weights 
( )k
ijξ

 ( ), 1,2,3,4, 1,2,3i j k= =
 of 2-tuple 

( )( ),0k
ijr

 

( ), 1,2,3,4, 1,2,3i j k= =
. We denote 

( )( )
4 4

k
ijξ

×  by kV  ( 1,2,3k = ) in the following: 
 

 

1

0.2152 0.2177 0.2189 0.2336

0.1918 0.2302 0.2165 0.2101

0.2085 0.1910 0.2125 0.2259

0.2277 0.1863 0.2078 0.2283

V

 
 
 =
 
 
  , 

2

0.4668 0.4705 0.4586 0.4720

0.4795 0.4676 0.4639 0.4748

0.4682 0.4775 0.4791 0.4651

0.4703 0.4943 0.4708 0.4620

V

 
 
 =
 
 
  ,  

3

0.3180 0.3118 0.3225 0.2944

0.3288 0.3022 0.3196 0.3151

0.3233 0.3315 0.3084 0.3090

0.3020 0.3194 0.3214 0.3098

V

 
 
 =
 
 
  . 

 

Step 4. Let 2λ = . Use the G2TLPWA operator (Eq. (49)) to aggregate all of the individual 

2-tuple linguistic decision matrices 

( ) ( )( )( )
4 4

,0k k
ijR r

×
=

 ( 1,2,3k = ) into the collective 2-tuple 

linguistic decision matrix, 
( ) ( )( )

4 4 4 4
,ij ij ijR r r α

× ×
= =

 (see Table 7). 
 

Table 7. The collective 2-tuple linguistic decision matrix R  
 

7 
1c  2c  3c  4c  

1x  ( )5 , 0.1976s −
 ( )2 ,0.0379s

 ( )5 , 0.1031s −
 ( )5 ,0.3787s

 
2x  ( )6 ,0.4287s

 ( )6 , 0.0748s −
 ( )7 , 0.1730s −

 ( )6 ,0.1981s
 

3x  ( )6 , 0.2641s −
 ( )7 , 0.4229s −

 ( )5 ,0.0167s
 ( )5 ,0.2283s

 
4x  ( )7 ,0.4528s

 ( )6 ,0.1986s
 ( )5 , 0.3443s −

 ( )5 ,0.2492s
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Step 5. Use Eq. (51) to calculate the supports, 
( ) ( )( ), , ,ij ij ip ipSup r rα α

 ( 1,2,3,4i = , 

, 1,2,3,4j p = , j p≠ ). For simplicity, we denote 
( ) ( )( )( )

4 1
, , ,ij ij ip ipSup r rα α

×  by jpSup
, 

which refers to the supports between the jth and pth rows of R , in the following: 
 

      

12 21

0.6544

0.9371

0.8949

0.8432

Sup Sup

 
 
 = =
 
 
  , 

13 31

0.9882

0.9502

0.9101

0.6504

Sup Sup

 
 
 = =
 
 
  , 

14 41

0.9280

0.9712

0.9365

0.7246

Sup Sup

 
 
 = =
 
 
  ,  

 

      

23 32

0.6426

0.8873

0.8049

0.8071

Sup Sup

 
 
 = =
 
 
  , 

24 42

0.5824

0.9659

0.8314

0.8813

Sup Sup

 
 
 = =
 
 
  ,  

34 43

0.9398

0.9214

0.9735

0.9258

Sup Sup

 
 
 = =
 
 
  . 

 

Step 6. Use Eq. (53) to calculate the weighted support 
( ),ij ijT r α′

 of 2-tuple 
( ),ij ijr α

 by the 

other 2-tuples, 
( ),ip ipr α

 ( 1,2,3,4p = , and p j≠ ). We denote 
( )( )

4 4
,ij ijT r α

×
′

 by T ′  in the 
following equation: 
 

0.5963 0.4735 0.6451 0.6589

0.6661 0.6961 0.6912 0.7632

0.6385 0.6360 0.6690 0.7322

0.5183 0.6310 0.5821 0.6692

T

 
 
 ′ =
 
 
  . 

 

Use Eq. (54) to calculate the weights 
( )1,2,3,4ij jη =

  of 2-tuple 
( ),ij ijr α

 ( )1,2,3,4j =
. We 

denote 
( )

4 4ijη
×  by V  in the following: 

 
0.3011 0.2316 0.2586 0.2086

0.2941 0.2495 0.2488 0.2075

0.2954 0.2458 0.2507 0.2082

0.2860 0.2560 0.2483 0.2096

V

 
 
 =
 
 
  . 

 
Step 7. Use the G2TLPWA operator (Eq. (55)) to aggregate all of the preference values, 

( ),ij ijr α
 ( 1,2,3,4j = ), in the ith line of R  and then derive the collective overall preference 

value, ( )= ,i i ir r α
 ( )1,2,3,4i =

, of the alternative ix  ( )1,2,3,4i =
. 
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( )1 4 ,0.4882r s=
,  ( )2 6 ,0.3628r s=

,  ( )3 6 , 0.3124r s= −
,  ( )4 6 ,0.0731r s=

. 
 

Using Definition 2.3, we then rank the ir  ( )1,2,3,4i =
 in descending order: 

 

2 4 3 1r r r r> > > . 
 

 Step 8. Rank all of the alternatives, ix  ( )1,2,3,4i =
, as follows: 

2 4 3 1x x x xf f f . 
 

The best alternative is 2x . 
 

As the parameter λ  varies, we may obtain different results. In Table 8, observe that the 2-

tuples obtained with the G2TLPWA operator become larger as λ  increases for the same 

aggregation arguments, and the decision makers can choose the values of λ  according to 
their preferences. 
 

Table 8. ( )1
ir

−∆
 obtained with the G2TLPWA operator and rankings of the alternatives 

 
8 =1 3λ  

10λ =  20λ =  30λ =  40λ =  50λ =  

1x  
3.5328 6.3167 6.9947 7.2916 7.4575 7.5617 

2x  
6.0491 7.1196 7.4688 7.6292 7.7179 7.7731 

3x  
5.2329 6.7403 7.2276 7.4560 7.5843 7.6648 

4x  
5.4219 7.1388 7.5244 7.6767 7.7559 7.8041 

Ranking 
2 4

3 1

x x

x x

f f

f
 

4 2

3 1

x x

x x

f f

f
 

4 2

3 1

x x

x x

f f

f
 

4 2

3 1

x x

x x

f f

f
 

4 2

3 1

x x

x x

f f

f
 

4 2

3 1

x x

x x

f f

f
 

 

Furthermore, it is possible to analyze how the different attitudinal character λ  plays a role in 

the aggregation results. To do so, we consider different values of λ , 0.01, 0.02, 0.03, 0.04, 
0.05,K, 50, which are provided by the decision maker. The result of a symbolic aggregation 

operation ( )1
i irβ −= ∆

 ( )1,2,3,4i =
 of the collective overall preference values ir  

( )1,2,3,4i =
 of the alternatives ix  ( )1,2,3,4i =

 are shown in Fig. 1. 
 

Fig. 1 demonstrates that all iβ  ( )1,2,3,4i =
 increase as λ  increases. Fig. 1 also 

demonstrates that as λ  increases, first, 2x  is the best choice; then, 4x  is the best choice. 
 

If the 2TLPWG operator is used in place of the G2TLPWA operator to aggregate the values 

of the alternatives in steps 4 and 7. The collective overall preference value, ( )= ,i i ir r α
 

( )1,2,3,4i =
, of the alternative ix  ( )1,2,3,4i =

 are as follows: 
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Fig. 1. Variation of iβ  with respect to the parameter λ . 
 

( )1 3 ,0.3056r s=
,  ( )2 6 , 0.0242r s= −

,  ( )3 5 ,0.1237r s=
,  ( )4 5 ,0.2227r s=

. 
 

Using Definition 2.3, we then rank the ir  ( )1,2,3,4i =
 in descending order: 

 

          2 4 3 1r r r r> > > . 
 

Rank all of the alternatives, ix  ( )1,2,3,4i =
, as follows: 

 

2 4 3 1x x x xf f f . 
 

Thus, the best alternative is 2x . 
 

It is clear that the 2-tuples obtained with the G2TLPWA operator are always greater than 

those obtained with the 2TLPWG operator for the same aggregation values and any λ . 
 
Example 5.2 [34,43]. Let us reconsider Example 5.1. Suppose that the weights of the 
decision makers and the attributes are unknown; then, we use Approach II to determine the 

decision. Assume that 
( ) ( )( )k k

ij
m n

R r
×

=
 ( )1,2,3k =

 are three linguistic decision matrices 

shown in Tables 1-3. 

( ) ( )( )( )
4 4

,0k k
ijR r

×
=

 ( )1,2,3k =
 are three 2-tuple linguistic decision 

matrices given in Tables 4-6. 
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Step 1. We denote 

( )( )( )
4 4

,0index k
ijr

×  by 
( )( )index kR , where 

( )( )( ),0index k
ijr

 is the kth largest 2-tuple 

of all the 2-tuples 
( )( ) ( ),0 1,2,3k

ijr k =
. 

( )( )index kR  ( )1,2,3k =
 are given in Tables 9-11. 

 

Table 9. The 2-tuple linguistic decision matrix 
( )( )1indexR  

 
9 

1c  2c  3c  4c  
1x  ( )5 ,0s

 ( )3 ,0s
 ( )7 , 0s

 ( )8 ,0s
 

2x  ( )7 , 0s
 ( )8 ,0s

 ( )8 ,0s
 ( )8 ,0s

 
3x  ( )7 , 0s

 ( )8 ,0s
 ( )7 , 0s

 ( )6 ,0s
 

 

Table 10. The 2-tuple linguistic decision matrix 
( )( )2indexR  

 
10 

1c  2c  3c  4c  
1x  ( )5 ,0s

 ( )2 , 0s
 ( )2 , 0s

 ( )5 ,0s
 

2x  ( )7 , 0s
 ( )6 ,0s

 ( )6 ,0s
 ( )6 ,0s

 
3x  ( )5 ,0s

 ( )6 ,0s
 ( )5 ,0s

 ( )5 ,0s
 

4x  ( )8 ,0s
 ( )6 ,0s

 ( )5 ,0s
 ( )6 ,0s

 
 

Table 11. The 2-tuple linguistic decision matrix 
( )( )3indexR  

 
11 

1c  2c  3c  4c  
1x  ( )4 , 0s

 ( )1,0s
 ( )1,0s

 ( )3 ,0s
 

2x  ( )3 ,0s
 ( )4 , 0s

 ( )5 ,0s
 ( )5 ,0s

 
3x  ( )3 ,0s

 ( )2 , 0s
 ( )3 ,0s

 ( )4 , 0s
 

4x  ( )6 ,0s
 ( )1,0s

 ( )3 ,0s
 ( )3 ,0s

 
4x  ( )8 ,0s

 ( )8 ,0s
 ( )5 ,0s

 ( )7 , 0s
 

 

Step 2. We use Eq. (57) to calculate the supports 

( )( )( ) ( )( )( )( ),0 , ,0index k index t
ij ijSup r r

 

( , 1,2,3,4i j = , , 1,2,3k t = , k t≠ ). For simplicity, we denote 
( )( )( ) ( )( )( )( )( )

4 4

,0 , ,0index k index t
ij ijSup r r

×  by 
ktSupp , which refers to the supports between 

( )( )index kR  and 
( )( )index tR , in the following: 
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12 21

1.0000 0.8750 0.3750 0.6250

1.0000 0.7500 0.7500 0.7500

0.7500 0.7500 0.7500 0.8750

1.0000 0.7500 1.0000 0.8750

Supp Supp

 
 
 = =
 
 
  , 

 

13 31

0.8750 0.7500 0.2500 0.3750

0.5000 0.5000 0.6250 0.6250

0.5000 0.2500 0.5000 0.7500

0.7500 0.1250 0.7500 0.5000

Supp Supp

 
 
 = =
 
 
  , 

          

23 32

0.8750 0.8750 0.8750 0.7500

0.5000 0.7500 0.8750 0.8750

0.7500 0.5000 0.7500 0.8750

0.7500 0.3750 0.7500 0.6250

Supp Supp

 
 
 = =
 
 
  . 

Step 3. Use Eq. (59) to calculate the weighted support 
( )( )( ),0index k

ijT r
 of the kth largest 2-

tuple 

( )( )( ),0index k
ijr

 by the other 2-tuples 

( )( )( ),0index t
ijr

 ( 1,2,3t = , t k≠ ). We denote 
( )( )( )( )

4 4
,0index k

ijT r
×  by kT  ( 1,2,3k = ) in the following: 

 

1

1.8750 1.6250 0.6250 1.0000

1.5000 1.2500 1.3750 1.3750

1.2500 1.0000 1.2500 1.6250

1.7500 0.8750 1.7500 1.3750

T

 
 
 =
 
 
  , 

2

1.8750 1.7500 1.2500 1.3750

1.5000 1.5000 1.6250 1.6250

1.5000 1.2500 1.5000 1.7500

1.7500 1.1250 1.7500 1.5000

T

 
 
 =
 
 
  , 

  

                     

3

1.7500 1.6250 1.1250 1.1250

1.0000 1.2500 1.5000 1.5000

1.2500 0.7500 1.2500 1.6250

1.5000 0.5000 1.5000 1.1250

T

 
 
 =
 
 
  . 

 

Let ( ) 3g x x=
 and use Eq. (60) to calculate the weights 

( )k
iju

 ( ), 1,2,3,4, 1,2,3i j k= =
 

associated with the kth largest 2-tuple 

( )( )( ),0index k
ijr

 ( ), 1,2,3,4, 1,2,3i j k= =
. We denote 

( )( )
4 4

k
iju

×  by kV  ( 1,2,3k = ) in the following: 
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1

0.0387 0.0353 0.0199 0.0291

0.0456 0.0332 0.0318 0.0318

0.0332 0.0370 0.0332 0.0353

0.0406 0.0396 0.0406 0.0391

V

 
 
 =
 
 
  , 

2

0.2709 0.2680 0.2495 0.2758

0.3189 0.2792 0.2645 0.2645

0.2792 0.3184 0.2792 0.2680

0.2843 0.3451 0.2843 0.2987

V

 
 
 =
 
 
  ,  

 

                     

3

0.6904 0.6967 0.7306 0.6951

0.6356 0.6875 0.7037 0.7037

0.6875 0.6446 0.6875 0.6967

0.6750 0.6153 0.6750 0.6622

V

 
 
 =
 
 
  . 

 

Step 4. Let 0.7λ = . Use the G2TLPOWA operator (Eq. (61)) to aggregate all the individual 

2-tuple linguistic decision matrices 

( ) ( )( )( )
4 4

,0k k
ijR r

×
=

 ( 1,2,3k = ) into the collective 2-tuple 

linguistic decision matrix 
( ) ( )( )

4 4 4 4
,ij ij ijR r r α

× ×
= =

 (see Table 12). 
 

Table 12. The collective 2-tuple linguistic decision matrix R  
 

12 
1c  2c  3c  4c  

1x  ( )4 ,0.3024s
 ( )1,0.3103s

 ( )1,0.3185s
 ( )4 , 0.3493s −

 
2x  ( )4 ,0.3404s

 ( )5 , 0.3426s −
 ( )5 ,0.3491s

 ( )5 ,0.3491s
 

3x  ( )4 , 0.3510s −
 ( )3 ,0.3313s

 ( )4 , 0.3510s −
 ( )4 ,0.3290s

 
4x  ( )7 , 0.3691s −

 ( )3 , 0.3185s −
 ( )4 , 0.3839s −

 ( )4 , 0.0229s −
 

 

Step 5. We denote ( ) ( )( )
4 4

,iindex j iindex jr α
×  by indexR , where ( ) ( )( ),iindex j iindex jr α

 is the jth largest 

2-tuple of all the 2-tuples 
( ) ( ), 1,2,3,4iq iqr qα =

. indexR  is shown in Table 13. 
 

Table 13. The 2-tuple linguistic decision matrix indexR  
 

13 
1c  2c  3c  4c  

1x  ( )4 ,0.3024s
 ( )4 , 0.3493s −

 ( )1,0.3185s
 ( )1,0.3103s

 
2x  ( )5 ,0.3491s

 ( )5 ,0.3491s
 ( )5 , 0.3426s −

 ( )4 ,0.3404s
 

3x  ( )4 ,0.3290s
 ( )4 , 0.3510s −

 ( )4 , 0.3510s −
 ( )3 ,0.3313s

 
4x  ( )7 , 0.3691s −

 ( )4 , 0.0229s −
 ( )4 , 0.3839s −

 ( )3 , 0.3185s −
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Use Eq. (63) to calculate the supports 
( ) ( )( ) ( ) ( )( )( ), , ,iindex j iindex j iindex p iindex pSup r rα α

 ( 1,2,3,4i = , 
, 1,2,3,4j p = , j p≠ ). For simplicity, we denote 

( ) ( )( ) ( ) ( )( )( )( )
4 1

, , ,iindex j iindex j iindex p iindex pSup r rα α
×  by jpSupp

, which refers to the supports 

between the jth row and the pth row of indexR , in the following: 
 

12 21

0.9185

1.0000

0.9150

0.6683

Supp Supp

 
 
 = =
 
 
  , 

13 31

0.6270

0.9135

0.9150

0.6232

Supp Supp

 
 
 = =
 
 
  , 

 

14 41

0.6260

0.8739

0.8753

0.5063

Supp Supp

 
 
 = =
 
 
  ,

23 32

0.7085

0.9135

1.0000

0.9549

Supp Supp

 
 
 = =
 
 
  , 

 

        

24 42

0.7074

0.8739

0.9603

0.8381

Supp Supp

 
 
 = =
 
 
  , 

34 43

0.9990

0.9604

0.9603

0.8832

Supp Supp

 
 
 = =
 
 
  . 

 

Step 6. Use Eq. (65) to calculate the weighted support ( ) ( )( ),iindex j iindex jT r α
 of the jth largest 2-

tuple ( ) ( )( ),iindex j iindex jr α
 by the other 2-tuples ( ) ( )( ),iindex p iindex pr α

 ( 1,2,3,4p = , and p j≠ ). 

We denote 
( ) ( )( )( )

4 4
,iindex j iindex jT r α

×  by T  in the following: 
 

2.1715 2.3345 2.3345 2.3324

2.7874 2.7874 2.7874 2.7082

2.7053 2.8753 2.8753 2.7959

1.7978 2.4612 2.4612 2.2276

T

 
 
 =
 
 
  . 

 

Use Eq. (66) to calculate the weights iju
 ( )1,2,3,4j =

 associated with the jth largest 2-

tuple ( ) ( )( ),iindex j iindex jr α
 ( )1,2,3,4j =

. We denote 
( )

4 4iju
×  by V  in the following: 
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0.0140 0.1065 0.2964 0.5831

0.0159 0.1111 0.3016 0.5714

0.0143 0.1084 0.3010 0.5762

0.0101 0.1029 0.3101 0.5769

V

 
 
 =
 
 
  . 

 
Step 7. Use the G2TLPOWA operator (Eq. (67)) to aggregate all the preference values 

( ),ij ijr α
 ( 1,2,3,4j = ) in the ith line of R . Then, derive the collective overall preference value 

( )= ,i i ir r α
 ( )1,2,3,4i =

 of the alternative ix  ( )1,2,3,4i =
 as follows: 

 

( )1 2 , 0.4375r s= −
,  ( )2 5 , 0.4394r s= −

,  ( )3 3 ,0.4742r s=
,  ( )4 3 ,0.1279r s=

. 
 

Step 8. According to Definition 2.3, we rank ir  ( )1,2,3,4i =
 in descending order: 

 

2 3 4 1r r r r> > > . 
 

Step 9. Rank all the alternatives ix  ( )1,2,3,4i =
 as follows: 

 

2 3 4 1x x x xf f f . 
 

Thus, the best alternative is 2x . 
 

As the parameter λ  changes, we obtain different results (see Table 14). From Table 14, we 

see that the 2-tuples obtained by the G2TLPOWA operator increase as the parameter λ  
increases and the aggregation arguments are kept fixed. The decision makers can choose 

the value of λ  according to their preferences. 
 

Table 14. ( )1
ir

−∆
 obtained by the G2TLPOWA operator and the rankings of 

alternatives 
 
14 =1 3λ  

10λ =  20λ =  30λ =  40λ =  50λ =  

1x  
1.4774 4.3556 5.5256 6.1998 6.5958 6.8524 

2x  
4.4632 5.9488 6.6950 6.9902 7.1995 7.3461 

3x  
3.3418 4.9573 5.7959 6.3031 6.6433 6.8826 

4x  
2.8579 5.4536 6.3754 6.8595 7.1283 7.2958 

Ranking 
2 3

4 1

x x

x x

f f

f  

2 4

3 1

x x

x x

f f

f  

2 4

3 1

x x

x x

f f

f  

2 4

3 1

x x

x x

f f

f  

2 4

3 1

x x

x x

f f

f  

2 4

3 1

x x

x x

f f

f
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Furthermore, it is possible to analyze how different values of the attitudinal character λ  

change the aggregation results. To do so, we consider different value of λ , 0.01, 0.02, 0.03, 

0.04, 0.05,K, 50. The result of a symbolic aggregation operation ( )1
i irβ −= ∆

 ( )1,2,3,4i =
 

of the collective overall preference values ir  ( )1,2,3,4i =
 of the alternatives ix  

( )1,2,3,4i =
 are shown in Fig. 2. 

 

Fig. 2 demonstrates that all of the iβ  ( )1,2,3,4i =
 increase as λ  increases. From Fig. 2, 

we can see that as λ  increases, 2x  is always the best choice. 
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Fig. 2. Variation of iβ  with respect to the parameter λ . 
 

In the above example, if we use the 2TLPOWG operator instead of the G2TLPOWA operator 
to aggregate the values of the alternatives in steps 4 and 7, then the collective overall 

preference value, ( )= ,i i ir r α
 ( )1,2,3,4i =

, of the alternative ix  ( )1,2,3,4i =
 are as follows: 

 

( )1 1,0.4116r s=
,  ( )2 4 ,0.3773r s=

,  ( )3 3 ,0.2287r s=
,  ( )4 3 , 0.3847r s= −

. 
 

Using Definition 2.3, we then rank the ir  ( )1,2,3,4i =
 in descending order: 

 

2 3 4 1r r r r> > > . 
 

Rank all of the alternatives, ix  ( )1,2,3,4i =
, as follows: 

2 3 4 1x x x xf f f . 
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Thus, the best alternative is 2x . 
 
It is clear that the 2-tuples obtained with the G2TLPOWA operator are always greater than 

those obtained with the 2TLPOWG operator for the same aggregation values and any λ . 
 
6. CONCLUSIONS 
 
In this paper, we have developed several new 2-tuple linguistic power aggregation 
operators, including the 2TLPG, 2TLPWG, 2TLPOWG, G2TLPA, G2TLPWA, and 
G2TLPOWA operators. We have studied some fundamental properties of the developed 
operators, such as commutativity, idempotency, boundedness, and monotonicity. The 
primary advantage of these operators is that they take the relationships between the 2-tuples 
being aggregated into account. Furthermore, we have used the proposed operators to 
develop two approaches to multiple attribute group decision making with 2-tuple linguistic 
information. Concretely, if the weight vectors of the decision makers and attributes are 
known, then we employ an approach based on the G2TLPWA and 2TLPWG operators to 
aggregate all of the individual 2-tuple linguistic decision matrices into a collective 2-tuple 
linguistic decision matrix and then utilize the G2TLPWA and 2TLPWG operators to derive 
the collective overall preference values of each alternative. If the weight vectors of the 
decision makers and attributes are unknown, then we employ another approach based on 
the G2TLPOWA and 2TLPOWG operators to aggregate the individual 2-tuple linguistic 
decision matrices and utilize the G2TLPOWA and 2TLPOWG operators to derive the 
collective overall preference values of each alternative. Our approaches incorporate all of 
the decision arguments as well as the relationships between them. Finally, two numerical 
examples are provided to illustrate the developed approaches. 
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