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ABSTRACT
Disruptive events within a country can have global repercus
sions, creating a need for the anticipation and planning of these 
events. Crystal Cube (CC) is a novel approach to forecasting 
disruptive political events at least one month into the future. 
The system uses a recurrent neural network and a novel mea
sure of event similarity between past and current events. We 
also introduce the innovative Thermometer of Irregular 
Leadership Change (ILC). We present an evaluation of CC in 
predicting ILC for 167 countries and show promising results in 
forecasting events one to twelve months in advance. We com
pare CC results with results using a random forest as well as 
previous work.
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Introduction

Disruptive events across the globe present significant challenges to population 
health and welfare. These events, including major protests, riots, military 
actions and irregular leadership changes, can present short and long term 
challenges to the missions of domestic and foreign governments and non- 
governmental organizations. Contingency planning for these types of events is 
often a requirement for operating in high-risk environments. Yet maintaining 
these plans in a constant state of readiness is expensive and challenging and 
even the best plans often cannot address these types of disruptive events when 
they occur. Furthermore, new global threats have increased instability in many 
parts of the world, posing new challenges to many functions of governments, 
such as policy development, escalation management, resource allocation and 
crisis response.

For these reasons, there has been a significant amount of research dedicated 
to the forecasting of major disruptive events. For example, the 2005 US 
National Defense Strategy (Department of Defense 2005) acknowledged that 
it is easier to prepare for, influence and respond to disruptive events in their 
earliest stages when they are less threatening and more manageable. The 
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identification of global hotspots before they develop can lead to a more 
efficient allocation of resources and better planning to address the conse
quences of an event.

For these reasons, there has been a long-standing investment in training 
and personnel resources to analyze populations and governments in the 
hopes of understanding antecedents and factors that could forecast 
a disruptive event. Traditionally, a limited amount of data and the complex 
nature of the problem meant that the forecasting task was reserved for the 
domain of human experts. However, in recent decades there has been an 
explosion of data available on countries, populations and governments. 
This wealth of data coupled with advances in machine learning systems 
has led to an interest in automated systems that could forecast disruptive 
events.

This view has spurred investment in several programs to develop early 
warning systems for global crises. For example, the recent Intelligence 
Advanced Research Projects Activity (IARPA) funded project on Early 
Model Based Event Recognition using Surrogates (EMBERS) explored the 
use of social media data and machine learning systems to forecast civil unrest 
(Muthiah et al. 2016). Earlier work on the Integrated Crises Early Warning 
System (ICEWS) created a coded event database and five categories of dis
ruptive events (Lustick et al. 2015). These and related projects have established 
the demand and potential for automated forecasting systems for globally 
disruptive events.

While promising, there remain unanswered questions about forecasting 
these types of events. Previous work has focused on forecasting relatively 
stable event types, meaning that within a given country the events happen 
with some regularity. For example, ICEWS predicted the category of eth
nic/religious violence, an event type that, when it happened, often hap
pened with regularity. For example, in Nigeria or Kenya ethnic/religious 
violence happened every month from 2001 to 2014 – the years for which 
ICEWS has data. Events that happen with regularity are much easier to 
forecast than rare events. Additionally, the models considered in these 
systems were quite limited (Lustick et al. 2015; Muthiah et al. 2016) and, 
in contrast to modern deep learning models, they did not integrate diverse 
or large number of features but instead relied on a small number of hand- 
picked features.

In this work we consider the forecasting of irregular leadership changes 
(ILCs), defined as an unexpected change in the leadership of the government 
of a country. ILCs are among the most difficult events to forecast because they 
are very rare and the multitude of factors involved can be hard to synthesize 
into a prediction of an event. Yet they are among the most important to 
correctly forecast. ILCs can create political and social upheaval outside the 
normal bounds of legal, peaceful, fair or customary transitions of power. They 
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can further be accompanied by sociopolitical discontent, mass protest, crack
downs on dissent, lack of judicial independence, violence, armed conflict and 
other forms of instability.

Toward this goal we developed Crystal Cube, a deep learning-based system 
for the forecasting of ILCs. Our goal is to make predictions sufficiently in 
advance (at least one month) to allow policy makers time to prepare 
a response. Crystal Cube utilizes a recurrent neural network (RNN) to 
model the temporal nature of this task. In addition to integrating a wide 
range of features into our forecasting system, we propose a feature that is 
based on a new event similarity measure, allowing the system to compare 
developing situations to relevant historical events.

In addition to our new method, we expand the task of ILC forecasting 
beyond a binary task (did an event happen or not) to a more nuanced task in 
which we incorporate a measure of the significance of the event into our 
evaluation. We use the ARCHIGOS dataset (Goemans, Gleditsch, and 
Chiozza 2009) which tracks geopolitical state leadership changes and how 
the transition occurred. We augment this dataset by scoring each change 
according to the significance of the transition: the ILC thermometer. We 
based this measure on foundational theories of coalition collapse, impeach
ment, demonstrations, mass movements, violent rebellion and coups. We use 
this new dataset to forecast ILCs around the world. We compare our forecast
ing system to a random baseline, a random forest and the work of (Beger, 
Dorff, and Ward 2016; Ward and Beger 2017), finding that our system 
achieves better results.

The main contributions of our work are: 1) the development of a new 
system based on recurrent neural networks to predict ILCs; 2) the use of 
a new event similarity metric that compares developing events with historical 
events; 3) the framing of the task as non-binary prediction based the signifi
cance of the ILC (Thermometer of Disruptive Events).

The rest of this paper is organized as follows: in the next section we provide 
a review of existing approaches to disruptive event forecasting, then we 
describe the methodology we developed. We close with results, conclusions 
and future work.

Review: Geopolitical Disruptive Event Forecasting

Forecasting geopolitical conflicts has long been considered unfeasible. Major 
disruptive political events such as the collapse of the Soviet Union, the Arab 
Spring and the related overthrow of leaders in Egypt, Libya and Tunisia, etc., 
were not forecast before they happened (Stevens 2012). Attempts to forecast 
armed conflicts began in the 1980s with game-theoretical models developed by 
Bueno de Mesquita (1980, 1983, 1984). From the late 1980s Schrodt (1988, 
1991) has been building statistical and later shallow neural network models to 
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predict interstate security conflicts. The neural network forecasts achieved 
similar accuracy to logit models on randomly chosen test sets (the random 
division of data into training and test sets meant that future events could be 
part of the training data). Beginning in the late 2000s, conflict prediction 
became an active subdiscipline of conflict research.

Facilitated by the advances in computationally intensive methods to gather 
and analyze data, researchers gradually followed Schrodt in using automated 
event coded data from news to study how public opinion affects different 
conflicts around the world (Brandt, Colaresi, and Freeman 2008). Many 
forecasting methods used data at a granular level (days, weeks or months) to 
predict conflict in the short term. Other studies used country-year data to 
forecast (e.g., civil conflict) decades into the future (Hegre et al. 2013, 2016, 
2017, 2019).

Geopolitical forecasting includes a wide body of literature related to the 
Integrated Crises Early Warning System (ICEWS) (Lustick et al. 2015). 
ICEWS includes both a coded event database and five “prediction” categories 
of disruptive events: domestic political crisis, insurgency, international crisis, 
rebellion and ethnic/religious violence. The event types predicted by ICEWS 
are often relatively stable for a given country (e.g., when there was ethnic/ 
religious violence in Nigeria or Kenya, it happened every month from 2001 to 
2014 – the years for which ICEWS ground truth is available). Because the 
categories are relatively stable, it is much easier to predict them than ILCs that 
are rare and have spikes.

Several prediction approaches have been applied to the ICEWS prediction 
categories. Montgomery, Hollenbach, and Ward (2012) used ensemble 
Bayesian model averaging (EBMA) to fuse the forecasts of multiple classifiers. 
Arva et al. (2013) compared the performance of classification models using 
inputs derived from the ICEWS event database against another coded event 
database called the Global Database of Events, Language and Tone (GDELT). 
They found that the inputs derived from GDELT provided as good or better 
performance than those from ICEWS. They additionally found that 
a combination of macro-structural variables and a subset of coded-event 
variables selected through a Bayesian model averaging approach, as opposed 
to all of the available input variables, was sufficient for accurate prediction. 
Neither of these studies considered sequential prediction models and few of 
these methods have been extended to ILC prediction.

Another approach for predicting disruptive events is Early Model Based 
Event Recognition using Surrogates (EMBERS) (Muthiah et al. 2016). 
EMBERS gives high-resolution predictions of civil unrest (e.g., mass protests) 
by fusing information from social media and other open source domains. 
EMBERS can often find specific dates, locations and actors for events before 
they are reported in the news. This approach is highly reliant on a planned 
protest model that requires public announcements of intent to protest by civil 
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leaders and organizers. The system looks for precursor signals in social media 
and uses them to drive statistical and machine learning algorithms that gen
erate predictions (Beger, Dorff, and Ward 2016). It is not clear how this 
method would extend to ILCs since they are not planned in the same way as 
protests.

Qiao et al. (2017) developed a hidden Markov model (HMM) approach for 
predicting a custom truth category of social unrest events that they derived by 
looking for spikes of activity in the GDELT event database. An HMM is 
a sequential model but it typically does worse for classification tasks than 
discriminative methods (Lafferty, McCallum, and Pereira 2001) and recurrent 
neural networks (RNNs), especially with the modern architectures (gated 
recurrent units (GRU) and Long-Short Term Memory (LSTM)) that we 
consider here.

Beger, Dorff, and Ward (2016) may have been the first to develop 
a forecasting model for ILC. They rely directly on the ILC definition in 
ARCHIGOS (Goemans, Gleditsch, and Chiozza 2009) and use the 
ARCHIGOS database to train and test their prediction models. Their 
approach is an ensemble-based, split-population duration model where 
each member of the ensemble encompasses a “theme” that relates to ILC 
(e.g., public discontent or leadership characteristics). Each thematic model 
is a split-population duration regression that can be thought of as consist
ing of two components: a probability estimate of a country belonging to 
either an ”at-risk of failure” class vs. ”not at-risk of failure” and then 
a regression conditional on this first estimate. They separate countries 
into two groups: at-risk, and practically immune to ILC. Features for 
each group were hand-selected from three different types of data sources: 
macro-structural (e.g., GDP per capita), ICEWS coded events and spatial 
variables for neighboring countries. Monthly forecasts were computed for 
the next month.

Ward and Beger (2017) present six-month forecasts of the probability of 
ILC for most countries in the world. The forecasts are derived from a statistical 
ensemble of seven thematic models, each based on a split population duration 
model that aims to capture a specific set of covariates. The models for 
countries where the risk of an irregular turnover is low (e.g., New Zealand) 
are separate from models for countries in which the risk of irregular turnover 
is high (e.g., Ukraine). Those split population models are combined by 
ensemble approaches.

Parrish et al. (2018) developed several methods for prediction of the ICEWS 
categories. They evaluated logistic regression models, linear and radial basis 
function support vector machines, random forests and RNNs with GRU units. 
The results showed that GRUs and random forests gave the best performance. 
An in-depth history of forecasting in peace research that includes most devel
opments until 2017 is described in Hegre et al. (Hegre, et al., 2017).
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In this paper we use RNNs with LSTM units (which we found superior 
to GRUs) for forecasting ILC events with a novel ILC thermometer that we 
developed. We compare the results obtained by our method with those of 
Beger, Dorff, and Ward (2016) and Ward and Beger (2017). We also show 
Crystal Cube results for a larger set of ILCs that occurred until the end of 
2020 and compare the results with those obtained using random forests.

Methodology

Thermometer of Irregular Leadership Change

The ARCHIGOS dataset (Goemans, Gleditsch, and Chiozza 2009) tracks 
geopolitical state leaders around the world and assigns binary categories for 
the manner in which they leave office: regular or irregular. However, this 
binary definition of ILC does not adequately represent real events: resigning 
under pressure from mass protests is not the same as being ousted in a military 
coup d’état. To address these gradations, we developed an ILC thermometer 
based on foundational theories of coalition collapse, impeachment, demon
strations, mass movements, violent rebellion and coups. The ILC thermometer 
assigns ordinal scores between 0 and 1 in 0.2 increments, indicating the level of 
severity. The scores are defined as follows.

Customary (0.0): As defined in ARCHIGOS, regular leadership change 
is in accordance with the “prevailing rules, provisions, conventions and 
norms of the country” (Goemans, Gleditsch, and Chiozza 2009). In democ
racies, leadership change is decided by elections or term limits. Elections 
should be recognized as free and fair and not face contestation from 
society or political leaders. Other political systems also have processes for 
regular leadership change; for example, monarchies may make succession 
decisions based on the norms of power distribution or consensus within 
the ruling family (Herb 1999). President Barack Obama’s leaving office in 
2016 due to term limits illustrates regular democratic leadership change. In 
Saudi Arabia, King Salman’s reign after the natural death of King Abdullah 
in 2015 is an example of customary leadership change in a monarchy.

Dissent (0.2): Several studies have looked at the importance of ruling 
parties implementing promised polices, theories on coalition bargaining and 
durability, implications of power-sharing in coalitions and the role of 
motions of confidence in coalition cohesion (Diermeier and Feddersen 
1998; Laver and Schofield 1990; Thomson et al. 2017). Political coalitions 
that experience failures in these areas of governance and neglect to fulfill 
campaign pledges, govern effectively or maintain cohesive support may 
suffer from intra-party/intra-coalition disputes. Even when all relevant laws 
are followed, such as the procedure for holding a vote of no confidence to 
remove a leader, the leadership change takes place outside of the typical 
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process and challenges the status quo. Occurrences of leadership change 
under dissent include British PM David Cameron’s 2016 resignation amid 
the Brexit vote turmoil.

Demonstration (0.4): Social movement theory addresses the motivations 
and political implications of social mobilization and demonstration. Protest 
and mass demonstration can emerge from a threat or opportunity that incen
tivizes a new group to challenge the ruling group (McAdam 1982). Tilly (2002) 
argues that identity can also serve as an impetus for major political move
ments, transitions and transformations. Eckstein (1989) focuses on nonviolent 
protest movements in Latin America, such as noncompliance, strikes and 
demonstration. An example of this type of leadership change is President 
Richard Nixon’s resignation under intense pressure from the Watergate 
investigation and undergoing impeachment process.

Duress (0.6): As part of social movement theory that approaches violent 
protest and rebellion, Gurr (1970) examines the roles of deprivation, social 
environments and institutions in instigating rebellion. Mass movements, 
protests and demonstrations on the cusp of violence fall under the duress 
classification. Impeachment to remove a leader is also a powerful form of 
protest against leadership that can provide “mechanisms to solve disputes,” 
often in the face of corruption or mass mobilizations, short of resorting to 
military action (Perez-Linan 2007). Leadership change under duress is 
exemplified by Hosni Mubarak’s resignation during the Arab Spring in 
Egypt amid mass protests that saw crackdowns from government security 
forces.

Disintegration (0.8): Gurr (1970) looks at the specific social and institu
tional (including opposition party) conditions that could open opportunities 
for political violence. Della Porta (1995) considers the emergence of violence 
in certain social movements and the interactions between government security 
forces and protestors. Della Porta (2013) distinguishes between low-level 
violence that is targeted against objects – which corresponds to our duress 
category – and the escalation to high-level violence against humans. 
Disintegration occurred with President Didier Ratsiraka’s disputed election 
loss to Marc Ravalomanana in Madagascar in 2002, which led to violent 
clashes between split factions across the country.

Catastrophic (1.0): Catastrophic leadership change is exemplified by 
coups d’état and assassination of leaders domestically or by foreign inter
vention, such as in the case of an invasion that overthrows the government 
(Goemans, Gleditsch, and Chiozza 2009). An example of catastrophic leader
ship change is the coup that ousted Zimbabwe’s President Robert Mugabe in 
2017.

We integrated existing ARCHIGOS data with new data from the Rulers, 
Elections, and Irregular Governance (REIGN) dataset (Bell 2016), a dataset 
that currently tracks leadership change monthly (but does not assign regular/ 

e2001179-264 A. L. BUCZAK ET AL.



irregular labels). Finally, we coded each event with the new ILC thermometer 
levels for every change in leadership that has occurred from January 2001 to 
December 2020.

System Architecture

Figure 1 shows Crystal Cube’s high level system architecture. The predictive 
capability that we developed requires methods for data fusion and prediction 
which reside in the prediction engine. It also requires appropriate analytics to 
characterize historical and social context and event similarity. Historical and 
social context derives features from historical and socioeconomic data, such as 
data coming from the World Bank. Event similarity is a novel measure of 
correlation between historical and current events.

Historical/Social Context Data

Global Database of Events, Language and Tone
GDELT (Leetaru 2017) is our source for coded event data. It aims to document 
human society in an automatic fashion. GDELT uses a natural language 
processing system to code streams of contemporary news articles with geopo
litical event types. It covers all countries in the world and has real-time 
translation to English from at least 65 languages. Results are stored in an 
open database every fifteen minutes. Each row in GDELT represents an event 
record and includes information about the time the event occurred, the place 
where it happened and which actors were involved. To provide meaningful 
information about the nature of events, GDELT assigns a code to each event 

Figure 1. Architecture of the Crystal Cube event forecasting system.
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using the Conflict and Mediation Event Observations Event and Actor 
Codebook (CAMEO) (Schrodt 2012). CAMEO codes provide context for 
describing the event occurrences in a format that can be understood by 
a human analyst. For example, an event that is labeled with CAMEO code 
154 (mobilize or increase armed forces) describes an event related to military 
posturing. We only ingested GDELT events from 1990 to December 31, 2020 
(earlier data is sparse).

GDELT provides article counts and event counts. In order to give a higher 
weight to events that were more newsworthy we used the article counts rather 
than the event counts as the input to our model. We aggregated the GDELT 
coded events by date, country and event code producing a daily count of news 
articles about each event type per country. Due to the increase in the number 
and type of sources being ingested by GDELT there has been an exponential 
increase in the number of events coded over the time period of interest. To 
mitigate this effect we normalized the article count data: for each country the 
total number of articles about a given event code in a given day is divided by 
the total number of articles about that event code in the entire world on 
that day. We then scale these normalized values (which are typically quite 
small) by feature between 0 and 1 so that each feature covers the same range.

World Bank Data
Socio-economic inputs come from developmental and governmental indica
tors provided by the World Bank. The World Development Indicators (WDI) 
(2016) are a collection of indicators provided from 1960 to 2019 that summar
ize the state of a given country’s development in a given year over many 
dimensions. The World Bank sources WDI data from “officially-recognized 
international sources” such as the United Nations Conference on Trade and 
Development, the World Health Organization and Eurostat. WDIs include 
approximately 1,600 variables covering diverse topics such as percentage of 
land that is arable, number of children living with HIV, GDP per 
capita, percent of population with access to electricity, percent of firms 
expected to give gifts in meetings with tax officials and percent of women in 
parliament. The data is updated yearly, with each indicator describing a value 
in a given country in a given year. We used piecewise cubic interpolation 
(Fritsch and Carlson 1980) and extrapolation for missing values in the WDI 
data. The data was then normalized to have a zero mean and one standard 
deviation. The final WDI dataset consisted of normalized yearly values of 1591 
indicators for 264 countries and regions over a period of 29 years.

The Worldwide Governance Indicators (WGI) (2016) offer a country-by- 
country data set that provide an aggregate of expert-based assessments of the 
health of national governance along six dimensions: control of corruption, 
government effectiveness, political stability and absence of violence/terror, reg
ulatory quality, rule of law and voice and accountability. Each WGI is an 
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estimate that combines rankings of one to thirty expert opinions drawn from 
institutions such as non-governmental agencies and think tanks. WGIs span 
1996 to 2019 and are released on a yearly basis. We used nearest neighbor 
interpolation and extrapolation to fill in missing values in this dataset.

Event Similarity

The premise of developing the event similarity metric is that identifying 
situations in the past with fundamental similarities to the present situation 
can provide the necessary context for a deeper understanding of the present, 
helping us to discern the seeds of future disruptive events and, therefore, 
enhance our predictions of them.

Although there is a rich history of comparative analysis in the social science 
literature, the type of ground truth necessary to support a supervised or semi- 
supervised approach does not exist (i.e., there are no sets of global events for 
which we have a similarity value established). Thus, we developed a novel 
unsupervised method for identifying countries in similar political and socio
economic states across time utilizing open-source socioeconomic and coded 
political event data. Due to the inherently noisy nature of the data and the 
desire to assign membership values, we chose a fuzzy clustering approach 
using Gaussian mixture models combined with a pair of deep autoencoders for 
non-linear dimensionality reduction of the input features (Figure 2).

To make comparisons between the conditions of countries at different 
points in time we used the WDI indicators and GDELT event count data for 
the 12 month period prior to the times of interest. Combined, these datasets 
had over 4000 features, some of which were static, changing at most once 
a year, and some of which were dynamic, changing daily. For meaningful 
clustering, we needed to significantly reduce this feature set. Since deep 
autoencoders have been shown to be very powerful for non-linear dimension
ality reduction, we used a deep autoencoder consisting of a stacked pair of 

Figure 2. Method developed for computing event similarity.

APPLIED ARTIFICIAL INTELLIGENCE e2001179-267



deep belief networks (DBN) (Hinton and Salakhutdinov 2006) to reduce the 
static features, and we developed a deep convolutional neural network (CNN) 
autoencoder for multi-variate time series to reduce the dynamic features.

The DBN-based autoencoder consisted of 7 hidden layers with the inner
most one containing 30 units. This autoencoder was used to reduce the set of 
1591 WDI indicators to a set of 30 compressed features. The CNN-based 
autoencoder consisted of 17 hidden CNN, pooling and normalization layers. 
This autoencoder reduced 263 12-month long time series obtained from the 
GDELT dataset to a set of 60 compressed features. These 90 compressed 
features were then combined with 6 WGI indicators and clustered using 
Gaussian mixture models.

Currently the 90 compressed features generated by the two autoencoders 
are being used as inputs to the prediction engine. In future work we will also be 
leveraging the clustering results to train multiple models, each of which are 
specific to countries in a certain political and socio-economic state.

Forecasting Models

Recurrent Neural Networks with Long-Short Term Memory Units
We trained RNNs with LSTM units (Hochreiter and Schmidhuber 1997) for 
predicting ILCs. The RNNs had the following structure: the input layer was 
followed by a dropout layer with a dropout probability of 0.5. Next was the 
LSTM layer consisting of 256 hidden units with a dropout probability of 0.4 
and recurrent dropout probability of 0.4. This was followed by another drop
out layer with a dropout probability of 0.5, then a densely connected layer 
consisting of a single neuron with the sigmoid activation function, and finally 
the output layer.

The RNNs were trained on data from January 1999 through December 2011 
and tested on the period of January 2012 through December 2020. Training 
data covered 167 countries for 156 months (26,052 prediction points) and 
contained 117 ILCs (0.45%). The test data for the same countries covered 
108 months (18,036 prediction points) and contained 94 ILCs (0.52%). The 
inputs and outputs to the RNN are shown in Figure 3. The inputs to the RNNs 
were: uncompressed GDELT data, and GDELT and WDI data as compressed 
by the event similarity autoencoders. The data up to one month before 
forecasting a given month is fed to the RNN (e.g., when predicting 
November 2019, data through October 2019 is fed into the network). There 
is one forecast per month per country (this value is between 0 and 1). We use 
a threshold to change the continuous forecast into a binary one (ILC or no 
ILC) – at this point we are not yet forecasting the different levels of ILC. In 
order to choose the threshold, we computed the False Positive Rate (FPR) on 
the training data and chose the threshold that corresponded to FPR of 0.02 
(the corresponding threshold is 0.17).
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Random Forests
In order to compare the results of our LSTM-based approach (including the 
event similarity), we trained random forests using the same inputs as we used 
in Parrish et al. (2018). This included GDELT and uncompressed World Bank 
data. Training and test periods were exactly the same as for LSTMs. The 
random forests were composed of 501 trees. We reduced the number of 
features by removing those features which provide little information (features 
with near zero variance across all observations). This yielded 1546 input 
features.

Models for Comparison with Ward and Beger
In order to compare the Crystal Cube method with Beger, Dorff, and Ward 
(2016) and Ward and Beger (2017) we prepared the datasets covering the same 
set of countries (170) and used the same data as those papers did for training 
(January1999 – December 2009) and for validation (October 2010 – 
April 2012). The approaches from those papers also use data from 
January 1955 to February 2001 for calculating additional duration counters. 
In our approach we do not use any data before January 1990. We use the same 
test period as the aforementioned papers when comparing with their results: 
May 2012 – March 2014 for Beger, Dorff, and Ward (2016) and May 2012 – 
July 2015 for Ward and Beger (2017).

The ensemble model from Beger, Dorff, and Ward (2016) forecasts the 
next month (an ILC in a given country in the next month is defined as 
a positive) and the ensemble model from Ward and Beger (2017) forecasts 
the next six months (an ILC in a given country in the next six months is 
defined as a positive). We trained Crystal Cube models performing the same 
type of forecasts (models are called CC Model 1 and CC Model 2, 
respectively).

Crystal Cube models are described in the section Recurrent Neural 
Networks with Long-Short Term Memory Units. They use as inputs the data 
described in the section Event Similarity. During training they use the ground 

Figure 3. Crystal Cube’s inputs and outputs.
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truth from the ILC thermometer. When testing, in order for the results to be 
directly comparable with those of Beger, Dorff, and Ward (2016) and Ward 
and Beger (2017) they are evaluated against the ARCHIGOS binary ground 
truth.

Results

RNNs with LSTM Units

We used the ILC dataset with levels assigned from the ILC thermometer 
definitions as ground truth for training RNNs with LSTM units. The RNN 
correctly forecast many ILCs exactly in the month they occurred (e.g., in 
Ukraine, United Kingdom, Sudan, Ethiopia, Yemen, Greece, Korea and 
Thailand). Examples are shown in Figures 4–6. For some other countries, 
RNNs are partially successful at predicting some ILCs at the right time but 
missing other ILCs, or predicting ILCs that did not happen (e.g., Iraq and 
Egypt). For countries such as Burkina Faso and Latvia, the RNNs are predict
ing ILCs too late or missing them. For Haiti and France, we are forecasting 
ILCs that did not happen.

Predictions for Ukraine are shown in Figure 4 (President Viktor 
Yanukovych was removed from power as a result of the Ukrainian revolution 
(22 Feb 2014) and fled to Russia). Our method predicted an ILC in Ukraine 
from February through April 2014 using the data through the end of 
January 2014 (one month ahead prediction).

Figure 4. LSTM predictions for Ukraine for the test period: 1 Jan 2012–31 Dec 2020.
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Predictions for the United Kingdom (UK) are shown in Figure 5. During the 
test period there were two ILCs: on 13 Jul 2016 Prime Minster (PM) David 
Cameron resigned immediately after the UK Brexit vote. Our method predicted 
an ILC for every month in the period July-November 2016, meaning one 
month before the event happened. The second ILC was predicted for April- 
December 2019. On 24 May 2019 PM Theresa May announced her resignation 
as leader of Britain’s Conservative Party and she resigned on 24 July 2019 (and 
Boris Johnson became the PM), meaning that the event was predicted 2 months 
before it was announced and 4 months before it happened.

Figure 6 shows the predictions for Sudan. On 11 April 2019 Sudan’s 
President Omar al-Bashir was removed from power by the Sudanese Armed 
Forces amid ongoing protests after holding the office for nearly 30 years. Our 
model predicted an ILC in Sudan for March-October 2016, meaning 2 months 
in advance.

To organize monthly predictions into actionable insights for the user, we 
show a map with the countries with the top five highest ILC prediction scores. 
The countries coded in green are those for which our method correctly 
predicted an ILC within the next 12 months. The countries in brown are 
those for which an ILC was predicted but ultimately did not take place (in 
certain cases failed coups or other unrest did occur). Figures 7–8 are examples 
of these top five monthly predictions.

Figure 7 depicts the top five countries forecast to be at risk for an ILC in 
July 2015. In three of those countries an ILC occurred: we forecast Greek PM 
Alexis Tsipras’s resignation a month early, Australian PM Tony Abbott’s 

Figure 5. LSTM predictions for UK for the test period: 1 Jan 2012–31 Dec 2020.
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removal two months early and Macedonian PM Nikola Gruevski’s resignation 
six months early. In the two remaining countries, protests or threats of a coup 
d’état took place: violence erupted and an ILC was threatened in July in both 
Burundi and Nepal. Additional information about these events is shown in 
Table 1.

Figure 6. LSTM predictions for Sudan for the test period: 1 Jan 2012–31 Dec 2020.

Figure 7. LSTM forecasts for July 2015.
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Figure 8 shows the LSTM’s forecast for March 2019. All five countries 
faced some form of political turmoil or instability. We were able to make 
the prediction one month in advance of Sudan’s military coup d’état 
against Omar al-Bashir on 11 April 2019 and the subsequent resignation 
of the coup leader, Lieutenant General Ahmed Awad Ibn Auf. We pre
dicted an ILC in the UK two months in advance of PM Theresa May’s 

Table 1. Detailed description of events forecast for July 2015.
Country and Event News Example

Greece: After almost one-third of PM Alexis Tsipras’ 
Syriza members of Parliament defected from his 
bailout agreement with the European Union, Tsipras 
re-signed and a snap election was called in August.

Renee Maltezou and Michele Kambas, “Tsipras Resigns, 
Paving Way for snap Greek Elections,” Reuters, 
August 20, 2015.

Macedonia: In January 1996, PM Nikola Gruevski 
resigned after the Przino Agreement was reached 
with mediation of European Union. The agreement 
ended a wiretapping scandal in which the opposition 
claimed the government had illegally wiretapped 
20,000 people.

“Macedonian PM to Resign in Bid to End Crisis,” Radio 
Free Europe Radio Liberty, January 14, 2016.

Australia: In September 2015, despite claiming that his 
leadership was not under challenge, PM Tony Abbott 
was removed as the leader of his party in a party vote, 
and subsequently resigned as prime minister.

“Australian PM Tony Abbott Ousted by Malcolm 
Turnbull,” BBC News, Sep 14, 2015.

Burundi: In July 2015, General Leonard Ngendakumana 
warned that he could lead a rebellion due to 
President Pierre Nkurunziza’s insistence on running 
for a third time despite condemnation. Two days of 
violent clashes began between rebels and the army.

Fumbuka Ng’wanakilala, “Burundi Coup General Says 
Force Only Way to Oust President,” Reuters, July 6, 
2015.

Nepal: In July 2015, protestors stormed a stadium 
where the deputy PM was giving a speech and 
discussing a draft for the new constitution. Protestors 
also clashed with police.

Renee Maltezou and Michele Kambas, “Tsipras Resigns, 
Paving Way for snap Greek Elections,” Reuters, 
Aug 20, 2015.

Figure 8. LSTM forecasts for March 2019.
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resignation announcement during ongoing Brexit disputes. Even the coun
tries that did not experience ILC still had significant crises and political 
events worthy of attention: France faced rioting during protests and the 
government used military forces for protection; Venezuela continued to 
suffer from a political and humanitarian crisis; and Israel had election- 
related issues and on 1 November 2019, PM Benjamin Netanyahu was 
indicted on charges of breach of trust, bribery and fraud. As such, our 
top five forecasting identifies which countries warrant further evaluation of 
the potential effects of the turmoil and instability and examination for the 
possibility of ILC. Additional information about these events in shown in 
Table 2.

Random Forests

We have two methods for scoring our forecasts. In the first approach the 
predictions are monthly and a True Positive (TP) is achieved only when 
a prediction exceeded the threshold for exactly a given month (e.g., an ILC 
happened in May, 2018 and the prediction exceeded the threshold for May). 
This corresponds to the blue curve for random forests (RFs) and to the green 
curve for the LSTM on Figure 9. In the second approach, a TP is achieved 
when the ILC happened in the month it was predicted or up to 11 months later 
(e.g., the prediction exceeded the threshold for April 2018 and the ILC 
happened in May 2018). This corresponds to the yellow curve for RFs and 

Table 2. Detailed description of events forecast for March 2019.
Country and Event News Example

Sudan: Omar al-Bashir was removed from power by 
a military coup d’état on 11 April 2019. After leading 
the coup, Lieutenant General Ahmed Awad Ibn Auf 
stepped down one day later on 12 April 2019 due to 
mass demonstrations.

“Sudan Defense Minister Steps Down as Head of 
Transitional Military Council,” Al Arabiya, Apr 12, 
2019.

United Kingdom: Amid Conservative Party 
disagreements on Brexit and the failure to pass 
a Brexit deal, PM Theresa May announced her 
resignation on 24 May 2019 and left office on 
24 July 2019.

Eliza Mackintosh, “Brexit Failure Forces British Prime 
Minister Theresa May to Announce Resignation,” 
CNN, May 24, 2019.

France: Yellow vests movement protests on 
16 March 2019 led to rioting and looting. President 
Emmanuel Macron’s government called in soldiers for 
security and protestors were banned in areas of Paris.

Kim Willsher, “France Drafts in Troops to Prevent Further 
Gilets Jaunes Violence,” The Guardian, Mar 22, 2019.

Venezuela: Venezuela has been suffering from a severe 
political, socioeconomic, and humanitarian crisis 
under President Nicolas Maduro. In March 2019, the 
U.S. announced the withdrawal of diplomatic staff 
from its embassy due to the crisis.

Fabiola Sanchez and Scott Smith, “US Announces 
Withdrawal of Last of Its Embassy Personnel from 
Venezuela,” USA Today, Mar 12, 2019.

Israel: Israel’s Knesset was dissolved in December 2018 
with elections scheduled for April 2019. In 
March 2019 the Supreme Court banned a far-right, 
anti-Arab leader from the elections. Tel Aviv was also 
hit by rocket fire from Gaza, sparking fears of conflict 
before the election.

“Israel’s Supreme Court Bans Jewish Extremist from 
Election,” Associated Press, Mar 17, 2019.

e2001179-274 A. L. BUCZAK ET AL.



to the red one for LSTM on Figure 9. For the one month window, the Area 
under the Curve (AUC) for LSTM (0.774) is substantially higher than for RFs 
(0.699) and the AUCs for a twelve month window are comparable for both 
methods.

However, a ROC for forecasts is not the best way of measuring perfor
mance when the two classes are significantly imbalanced. A much better 
method is a Precision – Recall curve (shown in Figure 10). For both the 
one month and twelve month windows, LSTM results are significantly 
better than RF results.

Comparison with a Random Baseline

We also include a comparison between our LSTM results and a random 
baseline. The random baseline was created by computing the percentage 
of ILCs that occurred during the training period for each country and 
then predicting whether an ILC would occur in that country for each 
month of the testing period using a random number generator set to 
predict ILCs at the same rate that they occurred during the training 
period. Figures 11 and 12 show the ROC and the Precision-Recall curves, 

Figure 9. Random forest and LSTM ROCs for forecasting 1 month and up to12 months ahead.
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respectively, for this comparison. The LSTM results both for 1-month and 
12-months are significantly better than the random baseline in terms of 
ROC and Precision-Recall.

Comparison with Ward and Beger

Comparison of results achieved by the Crystal Cube networks with those of 
Beger, Dorff, and Ward (2016) and Ward and Beger (2017) on the test data is 
shown in Table 3. CC Model 1 achieves higher AUC and accuracy than the 
ensemble model of Beger, Dorff, and Ward (2016). CC Model 2 achieves 
higher AUC and average precision (Avg PR) than the ensemble model of 
Ward and Beger (2017). The ROC Curves for CC Model 1 and CC Model 2 are 
shown in Figures 13 and 14. In those figures the ROC curves for Beger, Dorff, 
and Ward (2016) and Ward and Beger (2017) are not shown as we did not 
have the data to draw them, given the fact that in their papers they only show 
the plots of ROC curves.

Figure 10. Random forest and LSTM Precision-Recall curves for forecasting 1 month and up to 
12 months ahead.
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Figure 11. Random baseline and LSTM ROCs for forecasting 1 month and up to 12 months ahead.

Figure 12. Random baseline and LSTM Precision-Recall curves for forecasting 1 month and up to 
12 months ahead.
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Figure 13. ROC for 1 month forecast – test data from .Beger, Dorff, and Ward (2016)

Figure 14. ROC for 6 month forecast by Crystal Cube – test data from Ward and Beger (2017).
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Conclusions

Forecasting disruptive events such as ILCs is of broad interest to decision 
makers and leaders across a variety of domains, including military, politics and 
business. Foreign policy makers can incorporate forecasting models in their 
analysis of how to adjust foreign policy of the US to better engage other 
nations. National security decision makers could allocate resources before an 
ILC to better respond to the event. Business professionals would benefit from 
understanding political risks and how they might affect investments.

We consider the task of forecasting ILCs, an especially challenging example of 
disruptive event forecasting due to the rarity of these events and the dynamic 
settings under which they occur. ILCs are comparatively more challenging to 
forecast than other more common types of disruptive events, such as riots, 
protests or ethnic/religious violence. We demonstrate that, by combining 
a novel measure of event similarity, GDELT event tracking and World Bank 
economic indices in a deep learning framework based on sequence models 
(LSTM), we can significantly improve over previous methods for ILC prediction. 
Furthermore, our new dataset includes an ILC Thermometer, which allows for 
a more nuanced view of what constitutes an ILC. Our system can be extended to 
incorporate other data types and to forecast other types of disruptive events.

Future Work

In our future work, we plan to consider issues of explainability to help policy 
makers understand the why behind our forecasts. For example, perhaps our 
model predicts there is a likely ILC because of growing protests combined with 
weak economic data. Understanding the justifications behind a forecast can 
engender trust in the forecast and provide a more nuanced view of the factors 
involved, further supporting policy makers in their decision process. To 
explaining Crystal Cube forecasts, we plan to work with methods such as 
SHapley Additive eXplanations (SHAP) (Lundberg and Lee 2017) that tell 
which variables contributed the most to a given forecast. We also plan to 
include social context data as additional inputs to the Prediction Engine, such 
as data from social media platforms.

Table 3. Comparison of CC forecasts with those from Beger, Dorff, and Ward (2016) and 
Ward and Beger (2017). Avg PR was not computed in Beger, Dorff, and Ward (2016), – 
accuracy was computed instead.

Model Test AUC Test Avg PR

Beger, Dorff, and Ward (2016), – 1 month forecast 0.839 Accuracy 0.992
CC Model 1 - – 1 month forecast 0.876 0.049 (Accuracy 0.996)
Ward and Beger (2017) – 6 months forecast 0.823 0.059
CC Model 2–6 months forecast 0.836 0.092
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