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Constrained Clustering for the Capacitated Vehicle Routing 
Problem (CC-CVRP)
Francesco Alesiani a, Gulcin Ermis a, and Konstantinos Gkiotsalitis b

aNEC Laboratories Europe, Heidelberg, Germany; bUniversity of Twente, Faculty of Engineering 
Technology, Enschede, Netherlands

ABSTRACT
eCommerce, postal and logistics’ planners require to solve 
large-scale capacitated vehicle routing problems (CVRPs) on 
a daily basis. CVRP problems are NP-Hard and cannot be easily 
solved for large problem instances. Given their complexity, we 
propose a methodology to reduce the size of CVRP problems 
that can be later solved with state-of-the-art optimization sol
vers. Our method is an efficient version of clustering that con
siders the constraints of the original problem to transform it into 
a more tractable version. We call this approach Constrained 
Clustering Capacitated Vehicle Routing Solver (CC-CVRS) 
because it produces a soft-clustered vehicle routing problem 
with reduced decision variables. We demonstrate how this 
method reduces the computational complexity associated 
with the solution of the original CVRP and how the computed 
solution can be transformed back into the original space. 
Extensive numerical experiments show that our method allows 
to solve very large CVRP instances within seconds with optim
ality gaps of less than 16%. Therefore, our method has the 
following benefits: it can compute improved solutions with 
small optimality gaps in near real-time, and it can be used as 
a warm-up solver to compute an improved solution that can be 
used as an initial solution guess by an exact solver.
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Introduction

The Vehicle Routing Problem (VRP) is a generalization of the traveling 
salesman problem (TSP) which considers multiple vehicles. As its general
ization, it can use several exact optimization approaches that have been 
developed for the TSP (Christofides, Mingozzi, and Toth 1981a). The VRP 
is one of the most well-studied combinatorial optimization problems due 
to its practical relevance (Golden, Raghavan, and Wasil 2008; Laporte 
2009; Toth and Vigo 2014). The VRP determines the optimal routes of 
a set of vehicles, based at one or more depots, in order to serve a set of 
customers (see Toth and Vigo (2002)). This study is concerned with the 
Capacitated Vehicle Routing Problem (CVRP). The CVRP is NP-Hard 
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since it contains the NP-Hard Traveling Salesman and Bin Packing pro
blems as special cases (Faiz, Krichen, and Inoubli 2014). According to 
Dantzig and Ramser (1959), the CVRP is defined as follows: find a set of 
minimum cost vehicle routes starting and ending at the depot such that 
each customer is visited only by one vehicle and the capacities of vehicles 
are not exceeded. The fleet of vehicles is identical and has a known 
capacity. The travel cost between any pair of customers is known and it 
can be either symmetric (e.g., the same in both directions) or asymmetric.

In its basic definition, the solution of the CVRP is a set of tours, one for each 
vehicle, comprised of an ordered set of customers. The CVRP has been studied 
since the early 1960s and the most effective exact formulations can solve 
problems with up to 100 customers (see Gadegaard and Lysgaard (2021) and 
the survey of Laporte and Nobert (1987)). Effective exact methods for the 
solution of CVRP are branch and bound with relaxations (e.g., use of the 
shortest spanning tree and shortest path relaxations Christofides, Mingozzi, 
and Toth (1981a)) and branch and cut methods originally used for the solution 
of the TSP (see Naddef and Rinaldi (2002); Baldacci, Christofides, and 
Mingozzi (2008); Pecin et al. (2017)). Other exact approaches include dynamic 
programming Eilon et al. (1974),Christofides (1985) and integer linear pro
gramming Fisher and Jaikumar (1978) (e.g., two-index and three-index vehicle 
flow formulations).

CVRP appears in many applications, ranging from scheduling the 
deliveries of logistic companies (Wang, Shao, and Zhou 2017) to deliveries 
with unmanned aerial vehicles (UAVs) (Song, Park, and Kim 2018). 
Except from delivery problems, CVRP also appears in pickup problems 
(Tasan and Gen 2012). Several public transport services that operate on- 
demand need to assign vehicles to passengers by solving CVRPs. Because 
of its broad applications and its NP-Hardness that does not allow the 
computation of globally optimal solutions for large-scale problem 
instances, CVRP has received significant research attention. Recently, the 
need of rescheduling the routes of vehicles to adapt to the passenger 
demand changes in near real-time has increased the need to obtain 
CVRP solutions within a short time, even if these solutions are not the 
globally optimal ones (Petrakis, Hass, and Bichler 2012). Especially the 
availability of real-time information about the changes in passenger 
demand might require to repeatedly solve CVRP problems in order to 
reassign vehicles to routes. In such cases, exact solvers cannot provide 
a solution within a reasonable time and generic heuristics may fail if the 
problem instances are large.

This study contributes in this direction by proposing an approach to 
compute improved solutions to large-scale CVRP problem instances within 
seconds. This can be beneficial to vehicle scheduling companies that need to 
assign their vehicles to routes within a short time. In addition, the proposed 
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approach can be used to compute a solution to large-scale CVRP problems 
within seconds in order to offer an initial solution guess that speeds up the 
search of a globally optimal solution from exact CVRP solvers.

In this study, we explicitly focus on large-scale CVRP instances that appear 
in a broad spectrum of practical applications ranging from logistics to com
munication networks and agriculture. In contrast to common heuristics, we 
propose the use of constrained clustering for large-scale CVRP problems. 
More specifically, we propose a clustering method that is loosely related to 
k-means and it aims at partitioning our customers into k clusters that are 
treated as compressed nodes. This allows the partitioning of the data space 
into Voronoi cells and enables the combination of compressed clusters to find 
a diverse set of improved tours within a limited computational time. By 
developing such clusters we solve a much smaller soft-clustered CVRP con
sidering the locations of the cluster heads, also called cluster centroids, instead 
of solving a CVRP considering all customer locations (see Hintsch and Irnich 
(2020) for more details about the soft-clustered CVRP).

The remainder of our study is structured as follows. In section 2, we present 
related studies on solving large-scale CVRPs with a particular focus on clus
tering methods. In addition, we elaborate further on the contribution of our 
work in light of the relevant literature. Section 3 introduces our method of 
constrained clustering that clusters customers. In section 4 we present our 
numerical experiments. Finally, section 5 provides the concluding remarks 
and discusses further directions of research.

Related Studies

In this section, we elaborate on the characteristics of the large-scale CVRP and 
we report heuristic and clustering methods that are commonly used for 
solving such problems. Qu et al. (2004) defines a CVRP instance of 100 to 
1000 nodes as large-scale. Huang and Xiangpei (2012) provide an overview of 
existing literature on solving large-scale CVRP problems and classify the main 
solution methods previously used in this area as tabu search, evolutionary 
algorithms, simulated annealing and local search.

Large instances of the CVRP are typically solved with the use of heuristics. 
The large body of literature on heuristic solution methods for the CVRP is 
partially covered by the surveys of Christofides, Mingozzi, and Toth (1981a); 
Christofides (1985); Magnanti (1981); Bodin (1983); Fisher (1995); Laporte 
(1992); Konstantakopoulos, Gayialis, and Kechagias (2020). Heuristics include 
the nearest neighbor algorithm, insertion algorithms, and tour improvement 
procedures. The classic Clarke & Wright algorithm (Clarke and Wright 1964), 
the sweep algorithm described by Wren and Holliday (1972); Gillett and Miller 
(1974) and the Christofides-Mingozzi-Toth two-phase algorithm 
(Christofides, Mingozzi, and Toth 1981b) are well-known heuristics for the 
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CVRP. Tabu search Gendreau, Hertz, and Laporte (1994); Zhu et al. (2012), 
ant colony Mazzeo and Loiseau (2004); Lee et al. (2010), genetic algorithms 
Dorronsoro et al. (2007); Nazif and Lee (2012), and simulated annealing 
Tavakkoli-Moghaddam, Safaei, and Gholipour (2006); Leung et al. (2010) 
have also been extensively used in past literature. In a recent survey of Mor 
and Grazia Speranza (2020) covering the studies on periodic routing problems 
Zhang et al. (2017); Archetti, Fernandez, and Huerta-Muñoz (2017); Archetti, 
Jabali, and Grazia Speranza (2015); Campbell and Wilson (2014); Gulczynski, 
Golden, and Wasil (2011); Campbell and Hardin (2005), inventory routing 
problems Archetti, Christiansen, and Grazia Speranza (2018); Archetti and 
Grazia Speranza (2016); Coelho, Cordeau, and Laporte (2014); Archetti et al. 
(2014); Bertazzi, Savelsbergh, and Grazia Speranza (2008); Archetti et al. 
(2007); Savelsbergh and Song (2007); Lau, Liu, and Ono (2002), multi-trip 
VRPs and split deliveries Archetti and Grazia Speranza (2013); Archetti, 
Savelsbergh, and Grazia Speranza (2006), variable neighborhood search, 
memetic algorithms, simulated annealing and genetic algorithms were 
reported as employed solution approaches in several studies. Braekers, 
Ramaekers, and Van Nieuwenhuyse (2016) refer to Gendreau et al. (2008b) 
for a categorized bibliography on metaheuristic approaches for different VRP 
variants.

An initial attempt to solve large CVRP instances was made by Gendreau, 
Hertz, and Laporte (1994) for problems with instance sizes of up to 199 nodes 
using tabu search to restrict the route length. The simulated annealing meta- 
heuristic was later shown to provide an efficient solution for up to 300 nodes 
(Tavakkoli-Moghaddam, Safaei, and Gholipour 2006). While the simulated 
annealing algorithm employs an efficient Trie tree data structure to accelerate 
the search, it solves CVRP with two-dimensional loading constraints for 
instances with up to 255 nodes (Leung et al. 2010). With three-dimensional 
loading constraints, an efficient tabu search algorithm can also be equivalently 
efficient (Zhu et al. 2012). A parallel cellular genetic algorithm, PEGA 
Dorronsoro et al. (2007), was used to solve large CVRP instances of up to 
1200 nodes (Li, Golden, and Wasil 2005). The ant colony heuristic Lee et al. 
(2010) is also proposed to solve large-scale benchmark instances of Toth and 
Vigo (2003).

Syrichas and Crispin (2017) solved the VRP with 1200 nodes by quantum 
annealing. Huang and Xiangpei (2012) used a knowledge representation of 
qualitative factors, such as experts’ distribution experience, drivers’ prefer
ences, customer features, traffic information, and geographical features on the 
benchmark instances of Li, Golden, and Wasil (2007) with 200 to 480 nodes.

In addition to large-scale problems, past works have focused on “super” 
large-scale problems. Arnold, Gendreau, and Kenneth (2019a) solved 
instances of the CVRP with up to 30000 nodes with a local search heuristic 
combining pruning and sequential search. Bujel et al. (2019) proposed 
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a clustering algorithm that outperforms the Google OR-tool in solving the 
capacitated VRP with time windows by performing well on graph sizes of 
2000–5000 nodes. Finally, Tu et al. (2017) presented a novel spatial parallel 
heuristic approach that uses spatial partitioning strategies (vertical rectangle, 
horizontal rectangle, grid, fan, KD tree, and cluster) to divide a region into 
a set of small cells that allow using parallel local search. Tu et al. (2017) tested 
this on large-scale and super large-scale instances with 20000 nodes, using the 
shared memory library OpenMP as parallel computing platform.

Past studies that use clustering when solving the CVRP typically employ the 
k-means clustering method. In k-means clustering, customers are grouped into 
k clusters. Each customer belongs to the cluster with the nearest mean and the 
resulting centroids are derived from the geo-locations. Mostafa and Eltawil 
(2017) used k-means clustering to assign customers to a heterogeneous fleet of 
vehicles before solving the TSP for each vehicle using mixed integer program
ming (MIP) with valid inequalities that aim to accelerate its computational 
time. This method is capable of solving a problem size of 100 customers with 
a 5% optimality gap. Similarly, Singanamala, Reddy, and Venkataramaiah 
(2018) used k-means clustering as the first stage of a first assign then route 
approach in solving the multi-depot VRP. This solution technique, known as 
Cluster-First Route-Second Method (CFRS), first divides customers into clus
ters, and then solves an independent TSP on each cluster (Shalaby, 
Mohammed, and Kassem 2021).

The aforementioned clustering studies for the CVRP problem typically use 
a vicinity-based assignment of clusters to vehicles that stuck in local optima. 
The use of k-means clustering in our work differs from those studies because 
we treat the clusters as compressed nodes and solve a high-level CVRP. Our 
study’s contribution allows combining compressed clusters to find a diverse 
set of tours, rather than performing a vicinity-based assignment of clusters to 
vehicles that stuck in a local optimum. Our study transforms the original 
CVRP problem into a high-level CVRP. We thus reduce the problem’s com
plexity and we show in simulation that we reduce significantly the computa
tion times without getting trapped in local optima. After using our approach to 
cluster the CVRP, the CVRP can be modeled as a clustered CVRP (see Defryn 
and Kenneth (2017); Hintsch and Irnich (2020)) and it can be solved with 
existing solution methods.

Solving CVRP Using Constrained Clustering

Overview of Our CC-CVRP Approach

The CVRP belongs to the category of NP-hard problems that can be exactly 
solved only for small problem instances (Gendreau et al. 2008a). Therefore, 
we concentrate on developing clustering-based heuristic algorithms to solve 
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this problem in large-scale instances. Our Constrained Clustering for the 
CVRP (CC-CVRP) is loosely related to k-means (Forgy 1965; Lloyd 1982). 
We use a constrained clustering approach where customers are grouped into 
clusters (Hintsch and Irnich 2020). Each generated cluster will be served by 
only one vehicle and contains at least one customer. The resulting clustered 
CVRP has the following characteristics:

(1) A vehicle can serve more than one cluster;
(2) A cluster should have at least one customer;
(3) Each customer belongs to one, and only one, cluster;
(4) Clusters are determined in such way that all customers in the cluster can 

be served by a single vehicle.

To provide an overview of the approach, we present an example with five 
customers in Figure 1. A potential outcome of our CC-CVRP approach is the 
determination of three clusters with at least one customer each, where each 
cluster is served by a single vehicle.

Note that one vehicle can serve multiple clusters and the sequence of 
customers served by a vehicle is determined in a subsequent stage by solving 
a Traveling Salesman Problem (TSP) for each vehicle. The final outcome of 
our CC-CVRP approach is presented in Figure 2 where we solve the respective 
TSP problem for each vehicle.

To summarize, our CC-CVRP approach comprises the following steps:
Step 1: solve the CVRP problem to find a set of optimal cost routes for 

a fleet of capacitated vehicles considering the cluster heads as representa
tives of all customers in each cluster (outcome of Figure 1);

Step 2: for each vehicle visiting one or more clusters replace the cluster 
heads with the customer locations and solve a TSP to determine the optimal 
order of serving the customers (outcome of Figure 2).

Cluster 1 Cluster 2

Cluster 3

Figure 1. CC-CVRP example (step 1): two vehicles starting from a warehouse serve five customers 
assigned to three clusters.
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We note that the key aspect of our CC-CVRP approach is the determination 
of the clusters presented in Figure 1. This will be explained in detail in the next 
section. Focusing on solving the clustered CVRP problem when the clusters 
are already provided, we determine first the set of served clusters by each 
vehicle and then the optimal order of visiting its customers. Clustering of 
customers is used to reduce the number of variables when solving the NP-Hard 
CVRP. The cluster heads are similar to virtual customers in the new problem 
definition, where the demand of the virtual customer is the sum of the 
demands of the customers that belong to the cluster.

Whereas the second step is straightforward and there exist numerous 
algorithms for solving the TSP problem, the problem expressed in step 1 
needs to be modeled in a different way than the traditional CVRP formula
tion that considers the actual customers instead of cluster heads. In parti
cular, the locations of customers are now replaced by the locations of the 
heads of the clusters that represent our virtual customers. For ease of 
reference, the nomenclature introduced in our proposed CC-CVRP model 
is presented in Table 1.

Herein, we define the distance between two clusters ck and cl as the distance 
between their cluster head locations dkl ¼ dðck; clÞ (see Alg.3 for the determi
nation of the cluster head locations). We thus neglect the inter-distance of the 
customers inside the clusters in step 1. If we define binary variable ykl which is 
equal to 1 if traveling from the k-th to the l-th cluster is part of the solution, we 
can cast the clustered CVRP using the formulation in Equations (1)-(9).

Note that in Equations (1)-(9) we find the set of minimum cost routes to 
serve a set of clusters. That is, in Equations (1)-(9) actual customers are 
replaced by virtual customers (cluster heads). 

min
ykl

X

k2K

X

l2K
dklykl (1) 

Figure 2. CC-CVRP example (step 2): the minimum cost routes of the vehicles assigned to clusters 
are determined by solving seperate TSPs.
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s:t:
X

k2K
ykl ¼ 1;"l 2 Knf0g (2) 

X

l2K
ykl ¼ 1;"k 2 Knf0g (3) 

X

k2K
yk0 ¼

X

l2K
y0l (4) 

θl � θk � qlykl � Qð1 � yklÞ;"k 2 Knf0g; l 2 Knf0gjl�k (5) 

qk � θk � Q;"k 2 Knf0g (6) 

ykl 2 f0; 1g;"k; l 2 K (7) 

X

l2K
y0l � V (8) 

ykk ¼ 0; k 2 K (9) 

Equation (1) searches for the minimum total cost routes to serve all clusters. 
The indegree and outdegree constraints of Equations (2)-(3) ensure that ver
tices are visited exactly once. That is, exactly one arc enters and leaves each 
vertex associated with a cluster. Constraint (4) ensures that the number of 
vehicles leaving the depot is the same as the number of returning vehicles. 
Considering the subtour elimination constraints proposed by Miller, Tucker, 
and Zemlin (1960), Equations (5)-(6) impose the capacity requirements of the 
CVRP. In more detail, when ykl ¼ 0 constraint (5) becomes θl þ Q � θk which 
holds true for any θl; θk 2 ½0;Q�. Thus, for ykl ¼ 0 constraint (5) is not binding. 

Table 1. Nomenclature.
Sets Description
U0 U0 ¼ f1; . . . ; ng is the set of all customers.
Parameter Description
qk aggregate customer demand of the k-th cluster
dkl distance between the cluster heads of the k-th and the l-th clusters
ui location of i-th customer
K set of clusters
R maximum searching radius (maximum allowed distance between a customer and a cluster head)
W maximum number of customers that can belong to a single cluster
V number of available vehicles
Q vehicle capacity
μi demand of customer i
n number of customers
Variable Description
θk load of the vehicle after visiting the k-th cluster.
ykl {0,1} variable indicating whether traveling from cluster head k to cluster head l is part of the solution
ck location of k-th cluster head
Ak set of customer locations associated with the k-th cluster Ak ¼ fuiji 2 kg
ak the set of customers that belong to the k-th cluster
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In reverse, when ykl ¼ 1 constraint (5) imposes that θl � θk þ ql. Equation (6) 
ensures that the vehicle load after leaving cluster k: (i) is greater than or equal 
to the aggregate demand that is picked up when visiting cluster k, (ii) and does 
not exceed the vehicle capacity Q. Constraints (7) are the integrality con
straints. Lastly, constraint (8) ensures that we will not use more vehicles than 
available.

The clustered CVRP problem in Equations (1)-(9) returns the minimum 
cost routes to serve all clusters. However, this solution does not return the 
minimum cost routes to serve the actual customers. Because of this, we 
proceed to step 2 where we solve a TSP for each vehicle by replacing the 
locations of the cluster heads with the locations of the actual customers 
inside the clusters. Solving a TSP for each vehicle returns the shortest 
possible route that visits all the customers assigned to that vehicle (namely, 
all customers inside its visited clusters). It is important to note that when 
serving the TSP for each vehicle in step 2 we consider only the customers 
that must be served by a vehicle according to the outcome of step 1. The 
order of serving these customers is determined by the TSP and the clusters 
do not play a role in step 2, except from predetermining which customers 
should be served by each vehicle.

Determining the Clusters and the Cluster Heads

To solve the clustered CVRP in Equations (1)-(9), we need to define first the 
clusters and their respective cluster heads. This is achieved by implementing 
our clustering algorithm that is implemented in two phases: 1) the assignment 
phase and 2) the update phase. Alg.3 describes the algorithmic steps following 
the nomenclature in Table 1. The cluster heads are defined by their positions, 
ck, where k ¼ 1; . . . ; jKj, and jKj is the number of clusters (a given parameter). 
Note that jKj might change from iteration to iteration if we have customers 
that cannot be assigned to clusters or if we have empty clusters without 
customers. For this reason, our clustering algorithm is loosely based on 
k-means since it is self-adaptive.

The cluster heads can be seen as centroids that represent a number of 
customers. Alg.3 starts with jKj random cluster heads. One way to define the 
cluster heads is to randomly select jKj clusters. The algorithm then proceeds 
with assigning the actual customer positions to the closest cluster head, only if 
this does not violate the constraints of Equations (1)-(9). Clearly, 
0< jKj � V � n, where V is the total number of available vehicles, and n is 
the number of customers.

Let ck be the location of the cluster head of cluster k 2 K. Let also ak be the 
set of customers associated with that cluster. That is, ak ¼ fiji 2 kg, where i 2
f1; . . . ; ng is an actual customer. Let also Ak be the set of customer locations 
associated with that cluster. Each customer i 2 f1; . . . ; ng has a customer 
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location ui; hence, Ak ¼ fuiji 2 kg. In addition, a ¼
S

k ak is the set of 
assigned customers, while U ¼ U 0na is the set of unassigned customers and 
U 0 ¼ f1; . . . ; ng are all customers. Similarly, C ¼ fc1; . . . ; cjKjg is the set of the 
cluster head locations.

Initially, the cluster head location of each cluster k is randomly selected 
from the set of customer locations ðu1; . . . ; unÞ. That is, ck,Uðu1; . . . ; unÞ, 
such that ck�cj;"j 2 K. We initially assume that all clusters are empty: 
ak ¼ ;;"k 2 K. Using the randomly selected locations of the cluster heads, 
ck;"k 2 K we perform the following steps:

Step 1: We order the customers i 2 ð1; . . . ; nÞ based on their distances to 
the cluster heads. This ensures that we will cluster customers by prioritizing 
the ones that are closer to cluster heads. When adding a specific customer to 
his/her closest cluster head is not possible because of capacity limitations, we 
know that all previously assigned customers are closer to that cluster than the 
current customer. Figure 3 shows the effect of assigning a customer to an 
adjacent cluster when the capacity of the current cluster is reached. The 
distance of any customer i 2 ð1; . . . ; nÞ to his/her closest cluster head k 2 K is 

Di ¼ min
k

di;k 

where di;k is the distance between the location of customer i and the cluster 
head ck. After computing the distances of customers to their closest cluster 
heads, D1;D2; . . . ;Dn, we map customers ð1; 2; . . . ; nÞ to ðb1; b2; . . . ; bnÞ

which belong to a priority queue P ¼ ðb1; b2; . . . ; bnÞ such that 
Db1 � Db2 � . . . � Dbn . This step is performed by the algorithmic routine in 
Alg.1.

Algorithm 1 Step 1 – algorithmic routine that returns the ordered list of 
customers, P

Figure 3. CC-CVRP example (step 1): Customers are ordered by distance. In this way, customers 
that are assigned to another cluster are the most distant ones from the centroid.
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1: input: fdi;kg;U 0
2: for i 2 U0 do
3: compute Di by solving min

k
di;k

4: set P ¼ ðb1; . . . ; bnÞ such that Db1 � . . . � Dbn

5: output: P ¼ ðb1; . . . ; bnÞ

Step 2: In this step we assign customers to clusters. Starting from customer 
b1 in the priority queue we perform the following:

We first initialize the set Cb1 ¼ K of the potential clusters where we can 
assign customer b1 and we determine the closest cluster k� to customer b1: 

k� ¼ arg min
k

db1;k 

Then, we check if:
• cluster k� has not reached its maximum allowed number of customers, W,
• the distance db1;k� is smaller than or equal to the maximum allowed 

distance between a customer and a cluster head, R,
• and the accumulated customer demand in this cluster, μb1

þ
P

j2a�k

μj, where 
P

j2a�k

μj is the aggregate demand of all customers that are already in cluster k�, is 

less than or equal to the vehicle capacity Q.
If all the above hold true, we add customer b1 to the set of customers a�k of 

cluster k�. If not, customer b1 is not assigned to cluster k� and we remove 
cluster k� from the set of the potential clusters for customer 
b1 : Cb1  Cb1nfk�g. Then, we perform the same checks for the remaining 
clusters in set Cb1 until, hopefully, customer b1 is assigned to a cluster.

If customer b1 is assigned to a cluster k, we update the cluster head location 
of that cluster to represent the centroid (geometric center) of all customers in 
the cluster. The cluster head location for the extended set ak is calculated as 

ck ¼
1
jakj

X

i2ak

ui (10) 

where jakj is the number of all customers in cluster k that are stored in set ak. 
This step terminates once we process all customers in the priority queue (see 
Alg.2).

Algorithm 2 Step 2 – algorithmic routine
1: input: fuig;W;R; fμig;K; fckg; fdi;kg;U
2: execute Alg.1 to compute P
3: for bi 2 P do
4: set Cbi ¼ K
5: while bi 2 U ^ Cbi�; do
6: set k� ¼ arg min

k
dbi;k

7: if jak� j<W ^ dbi;k� � R ^ μb1
þ
P

j2ak�

μj � Q then
8: ak�  ak� [ fbig
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9: ck :¼ 1
jak� j

P

i2ak�

ui
10: U ¼ Unfbig

11: else
12: Cbi  Cbinfk�g
13: output: fakg; fckg

Step 3: In this step we remove all customers that are assigned to cluster 
sets ak and we keep only the updated locations of the cluster heads 
ck;"k 2 K. With these updated cluster head locations, we perform again 
Steps 1 and 2 until the assignment of customers to clusters in two 
consecutive iterations of the algorithm does not change (convergence). If 
our algorithm has converged and not all customers are assigned to the K 
clusters or there are clusters from the set K with no customers, we 
incrementally increase or reduce, respectively, the number of clusters jKj
and we perform again all the steps of our clustering algorithm. This self- 
adaptation part of our clustering algorithm guarantees the assignment of 
all customers to clusters (Alg.3).

Algorithm 3 Constrained Clustering algorithm
1: while ak�;"k 2 K ^ U�; do
2: ck,Uðu1; . . . ; unÞ;"k 2 K, such that ck�cj;"j 2 K
3: U  f1; . . . ; ng
4: ak  ;;"k 2 K
5: while ðfakg

jKj
1 Þprevious�ðfakg

jKj
1 Þ do

6: ðfakg
jKj
1 Þprevious  ðfakg

jKj
1 Þ

7: ðfakg
jKj
1 Þ  Alg.2

8: if U�; then
9: set jKj  jKj þ 1, if there are unassigned customers
10: if 9kjak ¼ ; then
11: set jKj  jKj � 1 if there are clusters without customers: ak ¼ ;; for 

some k 2 K
12: output: fckg; fakg

Note that the assignment step of customers to clusters, the update step of 
the locations of the cluster heads, and the termination criterion are loosely 
based on the k-means algorithm. One main difference is that in our assign
ment step we do not always assign the customer to the closest cluster head 
because we require to satisfy also a number of distance and capacity-related 
constraints. In addition, our number of clusters jKj can change if our algo
rithm fails to assign all customers to clusters.

Implementation Steps

To summarize, in Figure 4 we present the implementation steps of our 
constrained clustering approach for the capacitated vehicle routing problem 
(CC-CVRP).
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Initially, we use information regarding the network topology, the distances 
among customers and the number of available vehicles to implement the 
Constrained Clustering Algorithm (Alg.3). By doing so, we assign all our custo
mers to clusters. Using the cluster head locations and the overall demand in each 
cluster, we solve the clustered CVRP presented in Equations (1)-(9) by using an 
external CVRP solver (i.e., one might use branch-and-cut or a heuristic solver). In 
this step we assign vehicles to clusters that include one or more customers. Finally, 
for each vehicle that needs to serve a number of customers from the clusters we 
solve a TSP to determine the optimal route of serving these customers.

Computational Complexity

Using the big O notation, the complexity of the original CVRP problem that 
considers actual customers instead of cluster heads is exponential. In particu
lar, it is Oð2n2

Þ (Toth and Vigo 2002).
Solving a clustered CVRP reduces the number of decision variables by 

a factor of r ¼ n=jKj, hence the complexity of the clustered CVRP is reduced 
to Oð2ðn=rÞ2Þ. Once the clustering problem is solved, we still have to solve 
singular TSP problems for every vehicle that is assigned to one or more 
clusters. The complexity of each TSP problem depends on the number of 
customers visited by the respective vehicle. When using the well-known 
Held-Karp algorithm, the worst-case complexity of the TSP is Oðm22mÞ, 
where m is the number of visited customers. If we have V assigned vehicles, 
the number of customers served by each vehicle is m � n=V, and the 
complexity of this step is Oððn=VÞ22ðn=VÞÞ. Because we need to solve the 
TSP for all vehicles V, the worst-case complexity of our CC-CVRP approach 
is Oððn2=VÞ2ðn=VÞ þ Oð2n2=r2

Þ. If jKj< n, the computational complexity 
Oð2n2=r2

Þ dominates complexity Oððn2=VÞ2ðn=VÞ in large problem instances 
resulting in a worst-case complexity of Oð2n2=r2

Þ.
To summarize, by solving a clustered CVRP instead of the original CVRP we 

reduce the worst-case time complexity from Oð2n2
Þ to Oð2n2=r2

Þ. In the extreme 
case that the number of clusters is equal to the number of customers, jKj ¼ n, 
then r ¼ 1 and the complexity of the proposed approach becomes 
Oððn2=VÞ2ðn=VÞ þ Oð2n2

Þ. As expected, the proposed approach does not offer 
a benefit in terms of computational complexity in the extreme case where one 

Input: network 
topology, customer 

distances and 
vehicles

Apply Constrained 
Clustering 

Algorithm (Alg.3)

Solve the CVRP in 
Eqs.(1)-(9) with a 

CVRP solver

Output: 
clusters and 
cluster head 

locations

Output: 
assigned 

vehicles to 
clusters Solve a TSP for each 

vehicle to determine the 
order of serving its 

customers

Figure 4. Implementation overview of the CC-CVRP approach.
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assigns a cluster to each customer. If, however, we assign several customers to 
a cluster our method results in a time complexity reduction from Oð2n2

Þ

to Oð2n2=r2
Þ.

Numerical Experiments

Assessment Framework and Benchmark Datasets

Our CC-CVRP maps the original CVPR problem into a reduced dimension 
problem (see Alg.3). While the time complexity gain when using the proposed 
approach is exponential, the searched solution space is reduced, potentially 
excluding the optimal solution. We evaluate both the computational costs and 
the optimality gaps using a large number of publicly available problem 
instances designed for benchmarking solution approaches for the CVRP. We 
evaluate the quality gap, defined as the relative performance difference between:

(a) the solution of our CC-CVRP approach,
(b) and the proven optimal or best known solution reported in http://vrp. 

galgos.inf.puc-rio.br for the respective problem instances.

We note that to solve the clustered CVRP problem in Equations (1)-(9) 
we need to use branch-and-cut to compute a globally optimal solution or 
a heuristic to compute an approximate solution. In addition, we need to 
solve subsequent TSP problems for each single vehicle and this might 
result in higher computation costs in some problem instances, as dis
cussed in our previous section. This is investigated in our numerical 
experiments where we test the computation costs and the solution quality 
of the proposed approach.

In our implementation, the TSP problems are solved using the tspy Python 
package that implements the TwoOpt local search algorithm. All tests are 
conducted in a general-purpose computer with a 2.3 GHz Intel Core 5 
processor and a 16GB RAM. Our test instances include the following instances 
that are publicly available at http://vrp.galgos.inf.puc-rio.br:

• Small-scale instances A with 32 to 82 customers.
• Medium-scale instances X with 101 to 350 customers.
• Large-scale instances X with 350 to 1001 customers.
• Very large-scale instances with 3000 to 16000 customers.

Small-scale Instances

As previously mentioned, globally optimal solutions for the NP-Hard 
CVRP problem can be computed only in small-scale instances. For 
this, we initially use as benchmark small problem instances that belong 
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to class A described in Uchoa et al. (2017). These test instances and their 
globally optimal solutions are publicly available at http://vrp.galgos.inf. 
puc-rio.br.

In this initial investigation, we report the performance when solving our 
CC-CVPR and the original CVRP when imposing a time limit of 100 seconds. 
Then, we compare the solution of our CC-CVPR and the solution of the 
original CVRP against the globally optimal solution available at http://vrp. 
galgos.inf.puc-rio.br. Our objective is twofold: first, to investigate the optim
ality gap of our CC-CVRP solution with respect to the globally optimal 
solution; second, to investigate the performance improvement of our CC- 
CVRP solution compared to the solution of the original CVRP problem when 
using a time limit of 100 seconds for both methods. The latter will show us 
whether clustering can lead to better solutions by allowing to explore the 
solution space more efficiently.

As discussed, to ensure an unbiased comparison we use the same 
computation budget of 100 seconds when solving the CC-CVRP and the 
original CVRP. The results from all small-scale problem instances in class 
A are reported in Table 2 where we present the optimality gap(s) when 
solving the CC-CVRP and the original CVRP with respect to the globally 
optimal solution. In more detail, column 1 presents the identification 
number of the problem instance that belongs to the A class. Each instance 
is coded as A-nXX-kY where XX refers to the number of customers 
including the depot, and Y to the number of vehicles. Column 2 presents 
the tightness of the instance, which is the equal to the total demand 
divided by the vehicle capacity. Column 3 presents the dispersion of the 
instance, which is the standard deviation of the histogram of the distances 
over the mean. Column 4 presents the best-known solution reported in 
http://vrp.galgos.inf.puc-rio.br and column 5 states whether this solution 
is a proven optimal. We note that all solutions of the instances of class 
A reported in column 4 are globally optimal. Column 6 presents the 
performance of the CC-CVRP solution and column 7 presents the optim
ality gap of this solution with respect to the globally optimal solution 
presented in column 4. Finally, columns 8 and 9 present the performance 
and the optimality gap of the solution when solving the original CVRP 
problem without considering clusters. Note that the CC-CVRP and origi
nal CVRP solutions are the best found solutions within 100 seconds.

From Table 2 one can note that the CC-CVRP solutions have an 
average optimality gap of 10.1% with a standard deviation of 4.8% when 
compared against the respective globally optimal solutions. In contrast, 
the average optimality gap of the solutions of the original CVRP problem 
is 11.4% (1.3% higher). This demonstrates that the proposed approach 
used more efficiently the 100-second computation budget to find 
improved solutions.
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We further compare the results of our approach against the results of 
Shalaby, Mohammed, and Kassem (2021) who developed a Cluster-First 
Route-Second Method (CFRS) approach where customers are first divided 
into clusters, and then each cluster is solved independently as a TSP. 
Shalaby, Mohammed, and Kassem (2021) used a Fuzzy C-Means (FCM) 
clustering technique to assign customers into clusters. In their work, they 
present results for instances A-n32-k5, A-n33-k6, A-n36-k5, A-n33-k5, 
and A-n39-k6 after running their algorithm for up to 15 minutes. Their 
results are presented in the 4th column of Table 3. When comparing their 
results against the results of CC-CVRP, the CC-CVRP solution performs 
better in instances A-n32-k5, A-n36-k5 and A-n33-k5, whereas the FCM 
solution performs better in instances A-n33-k6 and A-n39-k6. We should 
note, however, that the FCM has a computation budget of 15 minutes, 
whereas the proposed CC-CVRP approach has a computation budget of 
only 100 seconds.

In the following sections of our numerical experiments we present the 
performances of the CC-CVRP solutions and their optimality gaps with 
respect to best-known solutions for medium-scale, large-scale, and very 
large-scale problem instances. Note that we do not provide results 

Table 2. Performance evaluation for the class A instances of Augerat et al. (1995) reported in 
http://vrp.galgos.inf.puc-rio.br

instance tightness dispersion best known proven CC-CVRP CVRP

solution optimal
solution optimality solution optimality

gap (%) gap (%)

A-n32-k5 4.1 49.40 784 yes 832 6.1 797 1.7
A-n33-k5 4.5 54.10 661 yes 691 4.6 776 17.4
A-n33-k6 5.4 53.40 742 yes 812 9.4 812 9.4
A-n34-k5 4.6 52.27 778 yes 796 2.3 857 10.2
A-n36-k5 4.4 51.29 799 yes 849 6.3 870 8.9
A-n37-k5 4.1 49.33 669 yes 717 7.2 673 0.7
A-n37-k6 5.7 48.83 949 yes 1061 11.8 1025 8
A-n38-k5 4.8 50.19 730 yes 827 13.3 837 14.6
A-n39-k5 4.8 50.57 822 yes 895 8.9 846 2.9
A-n39-k6 5.3 48.42 831 yes 907 9.2 902 8.6
A-n44-k6 5.7 50.97 937 yes 1034 10.4 1032 10.1
A-n45-k7 6.3 48.77 1146 yes 1208 5.4 1167 1.8
A-n46-k7 6.0 50.10 914 yes 1029 12.5 1057 15.7
A-n48-k7 6.3 50.17 1073 yes 1158 7.9 1168 8.9
A-n53-k7 6.6 49.31 1010 yes 1204 19.2 1119 10.8
A-n54-k7 6.7 48.82 1167 yes 1254 7.5 1288 10.4
A-n55-k9 8.4 49.42 1073 yes 1205 12.3 1174 9.4
A-n60-k9 8.3 48.45 1354 yes 1504 11.1 1523 12.5
A-n61-k9 8.9 49.12 1034 yes 1301 25.8 1720 66.3
A-n62-k8 7.3 49.16 1288 yes 1402 8.9 1414 9.8
A-n63-k9 9.3 49.38 1616 yes 1827 13 1827 13.1
A-n63-k10 9.3 49.47 1314 yes 1420 8.1 1436 9.3
A-n64-k9 8.5 49.04 1401 yes 1545 10.3 1515 8.1
A-n65-k9 8.8 47.26 1174 yes 1358 15.7 1284 9.4
A-n69-k9 8.5 48.64 1159 yes 1241 7.1 1231 6.2
A-n80-k10 9.4 49.63 1763 yes 1910 8.3 1959 11.1
Average 10.1 11.4
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regarding the solutions of the original CVRP for these larger instances 
because it is not possible to find such solutions within 100 seconds due 
to the computational complexity of the original CVRP.

Medium-scale Instances

In the medium-scale instances we present the results when solving our 
CC-CVRP within 100 seconds for the X instances with up to 350 custo
mers (see Table 4). The best-known solutions of these instances are 
publicly available at http://vrp.galgos.inf.puc-rio.br and in column 5 we 
declare which ones of them are globally optimal and which are just best- 
known. On average, the optimality gap of our CC-CVRP solutions is 9% 
with a standard deviation of 4.4%.

Large-scale Instances

In the large-scale instances we present the results when solving our CC-CVRP 
within 100 seconds for the X instances with customers ranging from 350 to 
1001 (see Table 5). The best-known solutions of these instances are publicly 
available at http://vrp.galgos.inf.puc-rio.br and in column 5 we declare which 
ones of them are globally optimal and which are just best-known. On average, 
the optimality gap of our CC-CVRP solutions is 8.7% with a standard devia
tion of 4%.

Very Large-scale Instances

In the very large-scale instances we present the results when solving our CC- 
CVRP within 100 seconds for the instances of Arnold, Gendreau, and Kenneth 
(2019a) with customers ranging from 3000 to 16000 (see Table 6). The best- 
known solutions of these instances are publicly available at http://vrp.galgos.inf. 
puc-rio.br. On average, the optimality gap of our CC-CVRP solutions is 15.7% 
with a standard deviation of 5.3%.

Table 3. Comparison of CC-CVRP solutions computed in up to 100 seconds 
and the FCM solutions of Shalaby, Mohammed, and Kassem (2021) com
puted in up to 15 minutes.

instance best known solution CC-CVRP Original FCM

A-n32-k5 784 832 840
A-n33-k6 742 812 769
A-n36-k5 799 849 857
A-n33-k5 661 691 695
A-n39-k6 831 895 876
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Table 4. Performance evaluation for the instances of class X for 100< n< 350 reported in http:// 
vrp.galgos.inf.puc-rio.br.

instance tightness dispersion best known solution proven optimal CC-CVRP

solution optimality
gap (%)

X-n101-k25 25.0 51.12 27591 yes 29838 8.1
X-n106-k14 13.1 64.67 26362 yes 27515 4.4
X-n110-k13 12.4 48.75 14971 yes 16885 12.8
X-n120-k6 5.7 49.46 13332 yes 14279 7.1
X-n125-k30 29.4 60.09 55539 yes 58535 5.4
X-n129-k18 17.1 49.51 28940 yes 32101 10.9
X-n134-k13 12.8 63.15 10916 yes 12319 12.9
X-n139-k10 9.8 47.99 13590 yes 15973 17.5
X-n148-k46 45.4 51.51 43448 yes 45358 4.4
X-n157-k13 13.0 71.20 16876 yes 17751 5.2
X-n162-k11 10.4 51.06 14138 yes 15354 8.6
X-n167-k10 9.3 48.70 20557 yes 22891 11.4
X-n172-k51 50.3 50.54 45607 yes 48406 6.1
X-n181-k23 22.5 58.34 25569 yes 26315 2.9
X-n186-k15 14.2 48.60 24145 yes 27121 12.3
X-n190-k8 7.6 74.32 16980 yes 18168 7
X-n195-k51 50.9 50.42 44225 yes 48409 9.5
X-n200-k36 35.5 70.58 58578 yes 60922 4
X-n204-k19 18.1 54.57 19565 yes 22157 13.2
X-n209-k16 15.3 48.84 30656 yes 33128 8.1
X-n214-k11 11.0 53.94 10856 yes 13163 21.2
X-n219-k73 72.7 48.18 117595 yes 118305 0.6
X-n223-k34 33.4 50.52 40437 yes 44187 9.3
X-n228-k23 16.0 51.70 25742 yes 28649 11.3
X-n233-k16 13.1 48.45 19230 yes 21346 11
X-n237-k14 47.3 48.66 27042 yes 29594 9.4
X-n242-k48 27.1 55.36 82751 yes 87106 5.3
X-n251-k28 27.1 55.18 38684 yes 40661 5.1
X-n256-k16 15.9 51.41 18839 no 20623 9.5
X-n261-k13 12.4 48.77 26558 yes 30318 14.2
X-n266-k58 57.6 52.36 75478 yes 78460 4
X-n270-k35 34.9 51.57 35291 yes 37116 5.2
X-n275-k28 27.4 54.18 21245 yes 22666 6.7
X-n280-k17 16.8 48.72 33503 no 37602 12.2
X-n284-k15 14.0 54.38 20215 yes 22953 13.5
X-n289-k60 59.8 50.84 95151 yes 100104 5.2
X-n294-k50 49.6 48.34 47161 no 51941 10.1
X-n298-k31 30.7 48.26 34231 yes 39052 14.1
X-n303-k21 20.1 59.65 21736 no 24867 14.4
X-n308-k13 12.7 49.47 25859 no 29168 12.8
X-n313-k71 70.7 54.00 94043 no 101650 8.1
X-n317-k53 52.7 62.73 78355 yes 79023 0.9
X-n322-k28 27.7 48.55 29834 yes 34597 16
X-n327-k20 19.2 51.13 27532 no 30735 11.6
X-n331-k15 14.3 48.50 31102 yes 33929 9.1
X-n336-k84 83.4 48.65 139111 no 145695 4.7
X-n344-k43 42.7 50.11 42050 no 45300 7.7
Average 9.0

e1995658-218 F. ALESIANI ET AL.

http://vrp.galgos.inf.puc-rio.br
http://vrp.galgos.inf.puc-rio.br


Table 5. Performance evaluation for the instances of class X for n � 350 reported in http://vrp. 
galgos.inf.puc-rio.br.

instance tightness dispersion best known solution proven optimal CC-CVRP

solution optimality
gap (%)

X-n351-k40 39.7 60.14 25896.0 no 28745 11
X-n359-k29 28.6 49.46 51505.0 no 55485 7.7
X-n367-k17 16.7 54.53 22814.0 no 25236 10.6
X-n376-k94 93.8 48.60 147713.0 yes 148790 0.7
X-n384-k52 51.7 48.24 65938.0 no 69757 5.8
X-n393-k38 37.4 56.76 38260.0 yes 41846 9.4
X-n401-k29 28.6 56.13 66154 no 69155 4.5
X-n411-k19 18.1 59.59 19712 no 22694 15.1
X-n420-k130 129.2 55.35 107798 yes 113708 5.5
X-n429-k61 60.2 47.99 65449 no 70343 7.5
X-n439-k37 36.5 50.03 36391 yes 39359 8.2
X-n449-k29 28.9 48.46 55233 no 60931 10.3
X-n459-k26 25.7 60.44 24139 no 27636 14.5
X-n491-k59 58.3 51.61 66483 no 71898 8.1
X-n502-k39 38.5 72.96 69226 no 70986 2.5
X-n513-k21 20.5 53.94 24201 no 28422 17.4
X-n548-k50 49.7 48.19 86700 yes 91028 5
X-n561-k42 41.3 49.38 42717 no 48334 13.1
X-n573-k30 29.4 60.66 50673 no 54030 6.6
X-n586-k159 158.2 51.65 190316 no 200107 5.1
X-n599-k92 91.9 48.19 108451 no 113937 5.1
X-n613-k62 61.2 48.22 59535 no 67638 13.6
X-n627-k43 42.8 64.79 62164 no 66463 6.9
X-n641-k35 34.4 50.68 63684 no 69888 9.7
X-n655-k131 130.8 63.67 106780 yes 107824 1
X-n685-k75 74.3 50.41 68205 no 79762 16.9
X-n701-k44 43.6 51.09 81923 no 89991 9.8
X-n716-k35 34.0 63.87 43373 no 47091 8.6
X-n733-k159 158.8 48.19 136187 no 147320 8.2
X-n749-k98 97.0 51.86 77269 no 83399 7.9
X-n766-k71 70.5 50.80 114417 no 127806 11.7
X-n783-k48 47.4 48.00 72386 no 80590 11.3
X-n801-k40 40.0 48.29 73305 no 79500 8.5
X-n876-k59 58.3 66.01 99299 no 105036 5.8
X-n895-k37 36.9 48.17 53860 no 60440 12.2
X-n957-k87 86.9 52.81 85465 no 90644 6.1
X-n979-k58 57.5 66.58 118976 no 125254 5.3
X-n1001-k43 42.4 48.04 72355 no 82174 13.6
Average 8.7

Table 6. Performance evaluation for the instances of Arnold, Gendreau, and Kenneth (2019a) 
presented in http://vrp.galgos.inf.puc-rio.br.

instance best known solution proven optimal CC-CVRP

solution optimality
gap (%)

Antwerp1-n6000 477277 no 535304 12.2
Antwerp2-n7000 291371 no 332856 14.2
Brussels2-n16000 345551 no 432440 25.1
Ghent2-n11000 257802 no 301728 17.0
Leuven1-n3000 192848 no 211946 9.9
Leuven2-n4000 111399 no 128756 15.6
Average 15.7
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Conclusion

This study introduced an approach for solving very large-scale instances of the 
Capacitated Vehicle Routing Problem (CVRP) based on the use of 
a constrained clustering algorithm that clusters customers and solves 
a CVRP considering the cluster heads. At its first stage, the proposed approach 
assigns vehicles to clusters. This is achieved by introducing a self-adapting 
clustering algorithm that is loosely based on k-means. At its second stage, we 
determine the tour of each vehicle by solving a TSP considering the set of 
customers that belong to the assigned clusters of that vehicle.

Our proposed CC-CVRP approach is applied in a large number of bench
mark scenarios described in Uchoa et al. (2017) and available at http://vrp. 
galgos.inf.puc-rio.br considering three different solvers. Our experiments 
demonstrate that our CC-CVRP approach returns solutions that outperform 
the solutions of solving the unclustered CVRP in small-sized problem 
instances by 1.3% in terms of solution quality. For larger problem instances, 
it is not even possible to compute solutions when solving the unclustered 
(original) CVRP within a computational budget of 100 seconds. Our CC- 
CVRP approach, however, was capable of finding improved solutions even for 
very large problem instances with up to 16000 customers. In particular, it 
exhibited:

• an average optimality gap of 10.1% and a standard deviation of 4.8% in 
small-sized instances;

• an average optimality gap of 9% and a standard deviation of 4.4% in 
medium-sized instances;

• an average optimality gap of 8.9% and a standard deviation of 4% in large- 
sized instances;

• an average optimality gap of 15.7% and a standard deviation of 5.3% in 
very large-sized instances.

In future research, one can expand further our method to apply it in 
different types of VRP, such as the Vehicle Routing Problem with Time 
Windows (VRPTW) and the Vehicle Routing Problem with Profits (VRPP). 
The proposed approach can also be extended by considering the development 
of multiple clusters with the use of different hyper-parameters (e.g., number of 
customers per cluster) and selecting the best setting. In addition, learning- 
based methods, such as neural network clustering, can be used to offer 
adaptive clustering by learning the characteristics of specific types of problem 
instances.
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