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ABSTRACT 
 

This paper present several signal processing tools for the analysis of heart sounds. Cardiac 
auscultation is noninvasive, low-cost and accurate to diagnose some heart diseases. A new 
module for the segmentation of heart sounds based on S-Transform is presented. The heart sound 
segmentation process divides the Phono Cardio Gram (PCG) signal into four parts: S1 (first heart 
sound), systole, S2 (second heart sound) and diastole. The segmentation can be considered one 
of the most important phases in the auto-analysis of PCG signals. A segmentation method based 
on the Shannon energy of the local spectrum calculated by the S-transform is proposed. Then, the 
energy concentration of the S-transform is optimized to accurately detect the boundaries of the 
localized sounds. New features based on the energy concentration of the S-transform are 
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proposed to classify S1 and S2 and other features based on the complexity measu
Frequency (TF) domain are proposed to detect systolic murmurs.
 

 

Keywords: Heart sounds; segmentation; 
 

1. INTRODUCTION 
 

The recent advances in signal processing 
powerful applications in the real life conditions for 
Doctors and medical staff. 
 

Simultaneous technological evolutions with the 
development of non connected devices
new approaches for medical practice via 
telemedicine. 
 

Combination of the two developments lead to an 
increase in clinical diagnostic power immediately 
if signal processing is available on an hosting 
device or after connection to a reference center.
 

Raw heart auscultation data have to be 
converted in a phonocardiogram.PCG can be 
associated or not to simultaneous registrations of 
blood pressure, SAO2 or ECG by example.
 

As well single heart auscultation treated as a 
PCG includes enough information to authorize 
segmentation of the heart cycle. 
 

Therefore heart rate, duration of syst
diastole detection of pathologic events can be 
easily detected. 
 

The focus of this paper is the PCG signal (Fig. 1) 
obtained from auscultation, first medical step in 
clinical examination, with an electronic 
stethoscope [1,2]. The PCG reveals the 
mechanical activity of the heart and it can be 
considered as non-stationary signal. 
 

For an untrained human ear, it’s not an evidence 
to localize heart sounds, recognize their internal 
components and classify the murmurs and their

Fig. 1. Example of a normal (top) 
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proposed to classify S1 and S2 and other features based on the complexity measu
Frequency (TF) domain are proposed to detect systolic murmurs. 
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blood pressure, SAO2 or ECG by example. 

As well single heart auscultation treated as a 
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Therefore heart rate, duration of systole and 
diastole detection of pathologic events can be 

The focus of this paper is the PCG signal (Fig. 1)  
obtained from auscultation, first medical step in 
clinical examination, with an electronic 

]. The PCG reveals the 
mechanical activity of the heart and it can be 

stationary signal.  

human ear, it’s not an evidence 
to localize heart sounds, recognize their internal 
components and classify the murmurs and their 

origins. For that, the signal processing tools allow 
better estimation and detection of these signals. 
In this respect, different approaches could be 
considered to improve the electronic stethoscope 
[3]: 

 

 • Tools providing embedded autonomous 
analysis, easy to use by the general public 
at home for auto-diagnosis, monitoring and 
warning if need be. 

•  Tools providing sophisticated analysis 
(coupled to a PC, Bluetooth link) for the 
use of professionals in order to make an 
in-depth medical diagnosis and to tr
medical students. 

 

In the past twenty years, many studies have 
interested in the PCG signal processing field 
(see Fig. 2); for the de-noising of the PCG many 
advanced tools of signal processing are used as 
the Kalman filter [4], the wavelets, and more 
recently the Emperical Modal Decomposition 
(EMD).  For the time-frequency representation of 
the PCG signal the famous STFT is used [
Continuous Wavelet Transform (CWT) [
transform [7] and the Wigner-Ville Distribution 
(WVD) [8,9] etc. For the segmentation process 
the methods can be classified depending on the 
domain on which they are applied: time domain 
(Shannon energy [10]), frequency domain 
(homomorphic filter [11], time-frequency domain 
(wavelet transform[12], S-transform [
nonlinear domain (Radial basis function [
the classification of heart sounds: Artificial Neural 
Networks (ANN) [15], K-Nearest Neighbors 
(KNN) [16] and Support Vector Machines (SVM) 
[17,18]. 

 

 

Example of a normal (top) and pathologic (bottom) heart sounds with systolic 
murmur 
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and pathologic (bottom) heart sounds with systolic 



Fig. 2. An overview of the different contributions existing in the literature concerning the PCG 
signal processing algorithms and methods

 
The segmentation is one of the first 
the heart sound analysis. Heart sound 
segmentation partitions the PCG signals into 
cardiac cycles and further into S1 (first heart 
sound), systole, S2 (second heart sound) and 
diastole [3]. Manypapers in the literature that 
tried to segment heart sounds without any help of 
ECG as Shannon energy [10], Hilbert Transform 
[19], high order statistics [20], a hidden Markov 
model [21], among others. 

 
In this paper we present some signal processing 
tools based on time frequency domain to 
segment, classify and extract feature from heart 
sounds. The results are based on some real 
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the heart sound analysis. Heart sound 
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cardiac cycles and further into S1 (first heart 
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In this paper we present some signal processing 
tools based on time frequency domain to 

and extract feature from heart 
sounds. The results are based on some real 

examples used as preliminary validation of the 
proposed methods. 
 

2. METHODS AND MATERIALS
 
2.1 Sounds Collection 
 
The heart sounds have been collected in the 
Hospital of Strasbourg (France) where Different 
cardiologists equipped with a prototype electronic 
stethoscope. The sounds are recorded with 16 
bits accuracy and 8000Hz sampling frequency in 
a wave format. Recruitment was made through 
clinical research project (HUS-PRI 4179) wi
support of the clinical investigation center 
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(INSERM) All of the participants have given a 
written informed consent. The best auscultation 
focus has been registered. Duration of 
registration varied from 8 to 12 s while patients 
controlled their respiration. Just some examples 
are included in this paper to perform a 
preliminary validation of the proposed methods. 
 

2.2 Localization and Segmentation of 
Heart Sounds 

 
2.2.1 Preprocessing  
 
At first the original signal is decimated by factor 4 
from 8000 Hz to 2000 Hz and the a normalization 
process is applied as follows: 
 

( )
( )

max( ( ))
norm

x t
x t

x t


 [1] 
 
2.2.2  Localization and segmentation of heart     

Sounds  
 
The localization algorithms operating on PCG 
data try to emphasize heart sound occurrences 
with an initial transformation that can be 
classified into three main categories: frequency 
based transformation, morphological 
transformations and complexity based 
transformations [1]. 
 
Modified S-transform and Shannon Energy 
(MSSE) localization method: MSSE 
envelope(Fig. 3). 
 
We have proposed a method named SSE in [13] 
to segment the heart sound. This method is 
based on the S-transform and the Shannon 
energy. The SSE method operates on the local 
spectrum calculated by the S-transform.  
 
The proposed SSE method calculates the 
Shannon energy of each column of the extracted 
S-matrix as follows: 
 

( ) ( , ) log( ( , ) )
n n

i x xSSE x S f S f df 




  
 

Where ( , )xS f is the S-transform of the signal 

 x t [22]: 

2( , ) ( ) ( , ) jft
xS f x t w t f e dt 





   

 
The parameter n in equation [23] is usually fixed 
to 2 which is the standard coefficient of the 
Shannon energy measure. The parameter n can 
be fixed to 1.5 for example to enhance the 
detection of low intensities sounds buried in 
noise. This occurs in heart sounds more often 
with S2 when the cardiac frequency is high.    
Fig. 4 shows the compromise of attenuation of 
low and high intensities, as a function of the 
value of n. we note here that for the SSE 
method, the intensities are the local spectrum 
coefficients of the S-transform and not the time 
sample intensities of the signal. 
 
Figs. 5 and 6 shows the SSE envelope extract 
for normal noisy heart sounds and pathological 
heart sounds, respectively. 
When the first and the second heart sounds are 
localized by the SSE method the OSSE [3,13] 
method is applied to segment these sounds.  
 
The block diagram of the OSSE algorithm is 
shown below (Fig. 7). 
 
First it consists to estimate the limit boundaries 
for each located sound by applying a window of 
150 ms. Then the Stockwell transform of each 
segmented bound is optimized. The SSE 
envelope is recalculated based on the new 
(optimized) representation and finally a local 
threshold is applied to estimate the refined 
boundaries. 
 
Figs. 8, 9 and 10 shows figures show the 
process to achieve the signal analysis and 
detection of S1 and S2. 
 

 
Fig. 3. Block diagram of SSE method

(1) 

(2) 

(3) 



Fig. 4. The envelope of normalized signal for values of n=1.5, 2 and 3

Fig. 5. (top) Envelope extraction for two normal PCG signal without and with additive Gaussian 
noise, (bottom) their SSE envelopes

Fig. 6. The SSE Envelope (dashed lines) for a signal with systolic murmur
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The envelope of normalized signal for values of n=1.5, 2 and 3
 

 
for two normal PCG signal without and with additive Gaussian 

noise, (bottom) their SSE envelopes 
 

 
The SSE Envelope (dashed lines) for a signal with systolic murmur
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The envelope of normalized signal for values of n=1.5, 2 and 3 

 

for two normal PCG signal without and with additive Gaussian 

 

The SSE Envelope (dashed lines) for a signal with systolic murmur 
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Fig.  7. The block diagram of the OSSE Method 
 

 
 

Fig. 8. (top) S2 signal with two detected boundaries calculated by the optimized S-transform 
and the standard S-transform (dashed line), S-transform with the optimum valueα=0.5, 

standard S-transform withα=1, (bottom) SSE envelope for the optimized S-transform and 
standard S-transform (dashed line) 

 
 

Fig. 9. OSSE method applied on a normal heart sound (top) and pathological heart sound 
(bottom) 
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Fig. 10. S1 and S2 signals (top), optimized S-transform obtained with α=0.8 for S1 and α=0.5 for 
S2 (bottom) 

 

2.3 Classification of Heart Sounds 
 
2.3.1  S1 and S2 Classification 
 

a. The Gaussian parameter    as discriminant 
feature 
 
A new feature based on the energy concentration 
in time frequency domain is used to classify the 
first and the second heart sounds. This feature is 
used to optimize the energy concentration of the 
S-transform as follows: 

 

argmax( ( ))opt CM


 
 [4] 

Where CM is the energy concentration 
measure that we aim to optimize [13]. 
 
b. The SSE envelope feature: β 
 
A second feature investigated in this study, 
named β, it aims to integrate the normalized SSE 
envelope over time, and it can be given as: 

 

2 2
( , ) log( ( , ) )x xS t f S t f df dt

 

 

  
  

  
 

 [5] 
 

The SSE envelope estimates the frequency 
energy at the local spectrum of the signal. It can 
be considered as a modified instantaneous 

frequency measure. The β feature aims to reveal 
the frequency contribution of each sound over 
time. Mathematically, it can be viewed as the 
integration over time of a modified instantaneous 
frequency measure. Physically, this feature 
reveals in some way the shape morphology of 
the signal. The measure is computed from the 
normalized SSE envelope to avoid the influence 
of the amplitude variations. 

 
Fig. 11 shows an example of the β feature 
calculated on S1 and S2 sounds from their 
normalized SSE envelopes. 

 
Murmurs detection: Normalized Shannon 
Entropy (NSE) 
 
Heart murmurs usually result from turbulence in 
blood flow or the vibration of heart tissues which 
can occur in a systolic or diastolic period. The 
presence of murmurs increases the heart sound 
complexity.  Several recent studies use methods 
for nonlinear and chaotic signals to estimate the 
signal complexity and detect murmurs [20,23]. 
These methods are generally based on the 
reconstructed state space which explores the 
non-linear behavior and the non-Gaussian 
components of the signal. However, even though 
it seems reasonable to expect the nonlinear and 
chaotic characteristics of turbulence in blood 
flowthrough a vessel to be reflected in the 
murmurs, it is well accepted that recorded 

(4) 

(5) 



signals do not necessarily reflect the nonlinear 
and chaotic behavior of the underlying system 
[24,25]. Moreover, application of such methods 
suited for nonlinear or chaotic signals might be 
an unnecessary increase in algorithm complexity 
compared to linear methods based on 
autocorrelation and power spectrum [
Therefore, we apply the complexity measure on 
the TFR plane (ST-Spectrogram) inst
reconstructed state space, to detect murmurs in 
heart sounds. 

 
The Shannon Entropy is a natural candidate for 
measuring the complexity of a signal through 
TFR. It is applicable on the ST

coefficients ( xC ) since the ST

verifies the non-negativity condition. The 
Shannon Entropy is defined as follows:
 

 ftCftCCH xxx ,(log),()( 2

   
To normalize the Shannon entropy, we normalize 
first the coefficients of the ST-spectrogram as 
follows: 
 




dudvvuC

ftC
ftC

x

xnorm
x

),(

),(
),(

                 
   

Fig. 11. S1 (left) and S2 signals (right) and their normalized SSE envelopes with the values of β 
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dtdff )
 

  
To normalize the Shannon entropy, we normalize 

spectrogram as 

                (7) 
   

The maximum of Shannon Entropy, which 
correspond to equiprobable events case, can be 
given as: 
 

log)( 2max CH norm
x 

 

Where, n is the samples number of the signal

)(tx
, m is the number of frequency voices used 

to calculate the ST-spectrogram and 

total number of coefficients in the 
distribution. Therefore, the normalized Shannon 
Entropy can be given as: 
 

)(log

)(
)(

2 mn

CH
CH

norm
xnorm

xnorm




 
The peaky TFRs of signals comprised of small 
numbers of elementary components would yield 
small entropy values, while the diffuse TFRs of 
more complicated signals would yield large 
entropy values. Fig. 12 shows an 
normal and pathologic systolic sounds and their 
NSEs based on ST-Spectrogram
number of component in pathologic sound with 
the presence of murmur is higher than the 
normal systole, which explains the higher NSE 
(0.88) [29].  

  

 
S1 (left) and S2 signals (right) and their normalized SSE envelopes with the values of β 

(bottom) 
 

(6) 
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x
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   (9) 

The peaky TFRs of signals comprised of small 
numbers of elementary components would yield 
small entropy values, while the diffuse TFRs of 
more complicated signals would yield large 
entropy values. Fig. 12 shows an example of 
normal and pathologic systolic sounds and their 

Spectrogram [27,28]. The 
number of component in pathologic sound with 
the presence of murmur is higher than the 
normal systole, which explains the higher NSE 

 

S1 (left) and S2 signals (right) and their normalized SSE envelopes with the values of β 



Fig. 12. NSEs applied on the ST
 

4. CONCLUSION 

 
This paper presented several algorithms and 
methods to segment and classify the heart 
sounds (PCG signal) based on time
domain. Heart sounds are accurate for 
diagnosing some heart diseases. They are non
stationary signals by nature (as most bios
which make the application of Time
based methods intuitive. 

 

The paper focused on the application of the S
transform on heart sounds. Several theoretical 
methods are proposed and applied on real 
signals. Localization, segmentation, featur
extraction and classification schemes of heart 
sounds are explored and discussed. A campaign 
of measurements is in motion in the Hospital 
University of Strasbourg to collect normal and 
pathological heart sounds which will allow us to 
test the proposed signal processing tools on 
large clinical datasets. The classification of 
murmurs from different origin and the assessing 
of their severity, the detection of additional 
sounds as S3 and S4 can be considered as 
future research perspectives to this work.
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