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1. Introduction

M any physical, biological and chemical phenomena can be modeled using partial differential equations
(PDEs) and differential-difference equations (DDEs). So, in the last decades, many researchers have

been interested in obtaining exact solutions of PDEs and DDEs. Many methods were proposed for achieving
this task. Some of these methods are: the tanh method [1], the extended tanh-function method (ETM) [2],
the simplest equation method [3], the integral bifurcation method [4], the extended mapping transformation
method [5,6] and the Backlund transformation of Riccati equation method (BTREM) [7–12]. Our objective in
this paper is to investigate the equivalence between the BTREM and the ETM.

2. Description of the two methods

In the following two subsections we give a brief description of the two methods.

2.1. The extended tanh-function method [2]

Consider a given partial differential equation with some independent variables, say, x and t and
dependent variable u:

H(u, ut, ux, uxx, uxt, ...) = 0, (1)

where u = u(x, t) is an unknown function, ux and ut are the derivatives of u with respect to x and t respectively.
It is assumed that the Equation (1) has the following traveling wave solution:

u = u(z), z = kx + ct + z0, (2)

where k, c and z0 are some constants. Substituting Equation (2) into Equation (1), we get the following reduced
ordinary differential equation:

H(u, u′, u′′, ...) = 0, (3)

where the primes denote the derivative with respect to z. The solution of the Equation (3) can be expressed as:

u =
n

∑
i=0

aiφ
i(z), (4)
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where ai, i = 0, 1, 2, , n are some constants that will be computed later, n is a positive integer computed by the
balance between the highest-order derivative term and the nonlinear terms in the Equation (3) and φ satisfies
the following Riccati equation:

φ′(z) = σ + φ2(z), (5)

where σ is a constant. The Riccati Equation (5) has the following solutions:

1. If σ < 0
φ(z) = −

√
−σ tanh(

√
−σz), (6)

φ(z) = −
√
−σ coth(

√
−σz), (7)

2. If σ = 0
φ(z) = − 1

z + ω
, ω = const. (8)

3. If σ > 0
φ(z) =

√
σ tan(

√
σz), (9)

φ(z) = −
√

σ cot(
√

σz). (10)

Substituting Equation (4) into Equation (3) and making use of Equation (5), then setting the coefficients of
φi(z), i = 0, 1, ... to zero, we get a set of algebraic equations for ai, i = 0, 1, 2, ..., n . Solving this obtained system
will lead to the values of ai, i = 0, 1, 2, ..., n.

2.2. Backlund transformation of Riccati equation method [10]

In this method the solution of the Equation (3) is given in the form:

u =
n

∑
i=0

biΦi(z), (11)

where Φ(z) is given by:

Φ(z) =
−σB + Dφ(z)

D + Bφ(z)
, (12)

bi, i = 0, 1, 2, , n are some constants that will be computed later, n is a positive integer computed by the
balance between the highest-order derivative term and nonlinear terms in the Equation (3), φ(z) are the known
solutions of Ricatti Equation (5), B and D are arbitrary constants. Substituting Equation (11) into Equation (3),
then setting the coefficients of φ(z) to zero, we get some algebraic equations for bi, i = 0, 1, 2, ..., n. Solving this
system of algebraic equations will lead to the values of bi, i = 0, 1, 2, ..., n.

3. Equivalence of the two methods

Case 1: when φ(z) = −
√
−σ tanh(

√
−σz). In this case, we have

Φ(z) =
−σB− D

√
−σ tanh(

√
−σz)

D− B
√
−σ tanh(

√
−σz)

=
√
−σ

B
√
−σ

D − tanh(
√
−σz)

1− B
√
−σ

D tanh(
√
−σz)

. (13)

By assuming that
(
− B
√
−σ

D

)
= tanh(k1), k1 is a constant, we get k1 = tanh−1

(
− B
√
−σ

D

)
. Therefore,

Φ(z) = −
√
−σ

tanh(
√
−σz) + tanh(k1)

1 + tanh(k1) tanh(
√
−σz)

= −
√
−σ tanh(

√
−σz + k1). (14)

It is clear that Φ(z) and φ(z) are only differed by the constant phase shift k1.
Case 2: when φ(z) = −

√
−σ coth(

√
−σz). In this case, we get

Φ(z) =
−σB− D

√
−σ coth(

√
−σz)

D− B
√
−σ coth(

√
−σz)

=
√
−σ

1− D
B
√
−σ

coth(
√
−σz)

D
B
√
−σ
− coth(

√
−σz)

. (15)
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By setting
(
− D

B
√
−σ

)
= coth(k2), k2 is a constant, we obtain k2 = coth−1

(
− D

B
√
−σ

)
. Therefore,

Φ(z) = −
√
−σ

1 + coth(k2) coth(
√
−σz)

coth(
√
−σz) + coth(k2)

= −
√
−σ coth(

√
−σz + k2). (16)

It is clear that Φ(z) and φ(z) are only differed by the constant phase shift k2.
Case 3: when φ(z) = − 1

z+ω , σ = 0. In this case, we have

Φ(z) =
D
(
− 1

z+ω

)
D + B

(
− 1

z+ω

) =
−D

Dz + Dω− B
=

−1
z + ω− B

D
. (17)

It is clear that Φ(z) and φ(z) are only differed by the constant − B
D .

Case 4: when φ(z) =
√

σ tan(
√

σz). In this case, we get

Φ(z) =
−σB + D

√
σ tan(

√
σz)

D + B
√

σ tan(
√

σz)
=
√

σ
− B
√

σ
D + tan(

√
σz)

1 + B
√

σ
D tan(

√
σz)

. (18)

Assuming that
(
− B
√

σ
D

)
= tan(k3), k3 is a constant, we get k3 = tan−1

(
− B
√

σ
D

)
. Therefore,

Φ(z) =
√

σ
tan(
√

σz) + tan(k3)

1− tan(k3) tan(
√

σz)
=
√

σ tan(
√

σz + k3). (19)

It is clear that Φ(z) and φ(z) are only differed by the constant phase shift k3.
Case 5: when φ(z) = −

√
σ cot(

√
σz). In this case, we get

Φ(z) =
−σB− D

√
σ cot(

√
σz)

D− B
√

σ cot(
√

σz)
= −
√

σ
1 + D

B
√

σ
cot(
√

σz)
D

B
√

σ
− cot(

√
σz)

. (20)

By setting
(
− D

B
√

σ

)
= cot(k4), k4 is a constant, we get k4 = cot−1

(
− D

B
√

σ

)
. Therefore,

Φ(z) = −
√

σ
cot(k4) cot(

√
σz)− 1

cot(
√

σz) + cot(k4)
= −
√

σ cot(
√

σz + k4). (21)

It is clear that Φ(z) and φ(z) are only differed by the constant phase shift k4.

4. The Drinfeld-Sokolov-Wilson equation

The Drinfeld-Sokolov-Wilson equation is given by [10]

ut + Pvvx = 0, vt + ruvx + suxv + qvxxx=0, (22)

where p, q, r and s are some nonzero constants. The authors in [10] have introduced the traveling wave
transformation:

u(x, t) = U(z), v(x, t) = V(z), z = k(x− ct), (23)

where k and c are constants. Substituting Equation (23) into Equation (22), we obtain the following ordinary
differential equations:

− kcU′ + pkVV′ = 0, −kcV′ + rkUV′ + skU′V + qk3V′′′ = 0. (24)

After applying the BTREM in [10], the authors have obtained four solutions for the Equation (22). These
four solutions are the same solutions obtained in [13] as will be shown in the following discussion.

The first solution is given by:
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u1(x, t) =
6c

r + 2s


√
−c

2qk2 B− D tanh
(√

−c
2qk2 (k(x− ct))

)
D−

√
−c

2qk2 B tanh
(√

−c
2qk2 (k(x− ct))

)


2

=
6c

r + 2s

−
√
−c

2qk2
B
D + tanh

(√
−c

2qk2 (k(x− ct))
)

1−
√
−c

2qk2
B
D tanh

(√
−c

2qk2 (k(x− ct))
)


2

. (25)

Assume that
(
−
√
−c

2qk2
B
D

)
= tanh(k5), k5 is a constant. Therefore,

u1(x, t) =
6c

r + 2s

 tanh(k5) + tanh
(√

−c
2qk2 (k(x− ct))

)
1 + tanh(k5) tanh

(√
−c

2qk2 (k(x− ct))
)


2

=
6c

r + 2s

(
tanh

(√
−c

2qk2 (k(x− ct) + k5)

))2

, (26)

v1(x, t) = ±

√
12c2

p(r + 2s)


√
−c

2qk2 B− D tanh
(√

−c
2qk2 (k(x− ct))

)
D−

√
−c

2qk2 B tanh
(√

−c
2qk2 (k(x− ct))

)


= ±

√
12c2

p(r + 2s)

(
tanh

(√
−c

2qk2 (k(x− ct) + k5)

))
, (27)

which is the same solution given in [13]. They are only differed by the phase shift constant k5.
The second solution is given by:

u2(x, t) =
6c

r + 2s


√
−c

2qk2 B− D coth
(√

−c
2qk2 (k(x− ct))

)
D−

√
−c

2qk2 B coth
(√

−c
2qk2 (k(x− ct))

)


2

=
6c

r + 2s

 1−
√
−2qk2

c
D
B coth

(√
−c

2qk2 (k(x− ct))
)

−
√
−2qk2

c
D
B + coth

(√
−c

2qk2 (k(x− ct))
)


2

. (28)

Let
(
−
√
−2qk2

c
D
B

)
= coth(k6), k6 is a constant. Therefore,

u2(x, t) =
6c

r + 2s

1 + coth(k6) coth
(√

−c
2qk2 (k(x− ct))

)
coth(k6) + coth

(√
−c

2qk2 (k(x− ct))
)


2

=
6c

r + 2s

(
coth

(√
−c

2qk2 (k(x− ct) + k6)

))2

, (29)



Open J. Math. Sci. 2020, 4, 56-62 60

v2(x, t) = ±

√
12c2

p(r + 2s)


√
−c

2qk2 B− D coth
(√

−c
2qk2 (k(x− ct))

)
D−

√
−c

2qk2 B coth
(√

−c
2qk2 (k(x− ct))

)


= ±

√
12c2

p(r + 2s)

(
coth

(√
−c

2qk2 (k(x− ct) + k6)

))
, (30)

which is the same solution given in [13]. They are only differed by the phase shift constant k6.
The third solution is given by:

u3(x, t) =
−6c

r + 2s

−
√

c
2qk2 B + D tan

(√
c

2qk2 (k(x− ct))
)

D +
√

c
2qk2 B tan

(√
c

2qk2 (k(x− ct))
)


2

=
−6c

r + 2s

−
√

c
2qk2

B
D + tan

(√
c

2qk2 (k(x− ct))
)

1 +
√

c
2qk2

B
D tan

(√
c

2qk2 (k(x− ct))
)


2

. (31)

Assume that
(
−
√

c
2qk2

B
D

)
= tan(k7), k7 is a constant. Therefore,

u3(x, t) =
−6c

r + 2s

 tan(k7) + tan
(√

c
2qk2 (k(x− ct))

)
1− tan(k7) tanh

(√
c

2qk2 (k(x− ct))
)


2

=
−6c

r + 2s

(
tan

(√
c

2qk2 (k(x− ct) + k7)

))2
, (32)

v3(x, t) = ±

√
−12c2

p(r + 2s)

−
√

c
2qk2 B + D tan

(√
c

2qk2 (k(x− ct))
)

D +
√

c
2qk2 B tan

(√
c

2qk2 (k(x− ct))
)


= ±

√
−12c2

p(r + 2s)

(
tan

(√
c

2qk2 (k(x− ct) + k7)

))
, (33)

which is the same solution given in [13]. They are only differed by the phase shift constant k7.
The forth solution is given by:

u4(x, t) =
−6c

r + 2s


√

c
2qk2 B + D cot

(√
c

2qk2 (k(x− ct))
)

−D +
√

c
2qk2 B cot

(√
c

2qk2 (k(x− ct))
)


2

=
−6c

r + 2s

−1−
√

2qk2

c
D
B cot

(√
c

2qk2 (k(x− ct))
)

−
√

2qk2

c
D
B + cot

(√
c

2qk2 (k(x− ct))
)


2

. (34)

Let
(
−
√

2qk2

c
D
B

)
= cot(k8), k8 is a constant. Therefore,

u4(x, t) =
−6c

r + 2s

−1 + cot(k8) cot
(√

c
2qk2 (k(x− ct))

)
cot(k8) + cot

(√
c

2qk2 (k(x− ct))
)


2
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=
−6c

r + 2s

(
cot
(√

c
2qk2 (k(x− ct) + k8)

))2
, (35)

v4(x, t) = ±

√
−12c2

p(r + 2s)


√

c
2qk2 B + D cot

(√
c

2qk2 (k(x− ct))
)

−D +
√

c
2qk2 B cot

(√
c

2qk2 (k(x− ct))
)


= ±

√
−12c2

p(r + 2s)

(
cot
(√

c
2qk2 (k(x− ct) + k8)

))
, (36)

which is the same solution given in [13]. They are only differed by the phase shift constant k8.

5. The equivalence between the two methods when solving differential-difference equations

In this section, we also prove that the BTREM is equivalent to the ETM when applied to
differential-difference equations. To achieve this task we choose the following example.

5.1. The discrete mKdV equation

The discrete mKdV equation is given by [14]:

∂un(t)
∂t

= (θ − u2
n)(un+1 − un−1), (37)

where θ is a constant. To get the traveling wave solutions for Equation (37), the following transformation was
introduced [14]:

un(t) = u(ξn), ξn = dn + c1t + c0, (38)

to transform Equation (37) into:

c1u′(ξn) = (θ − u2
n(ξn))(un+1(ξn)− un−1(ξn)) (39)

where d, c1 and c0 are constants. After using the BTREM, the authors in [14] have obtained the following
solutions:

The first solution is given by:

u1(ξn) = a0 + a1
−rb + a

√
r tan

(√
rξn
)

a + b
√

r tan
(√

rξn
) = a0 + a1

√
r
−rb
a
√

r + tan
(√

rξn
)

1 + b
√

r
a tan

(√
rξn
) , (40)

where a, b, r, a0 and a1 are constants. Let
(
−rb
a
√

r

)
= tan(m1), m1 is a constant. Therefore,

u1(ξn) = a0 + a1
√

r
tan(m1) + tan

(√
rξn
)

1− tan(m1) tan
(√

rξn
) = a0 + a1

√
r tan

(√
rξn + m1

)
, (41)

which is a solution in the form of the tan function only with a constant phase shift m1.
The second solution is given by:

u2(ξn) = a0 + a1
−rb− a

√
r cot

(√
rξn
)

a− b
√

r cot
(√

rξn
) = a0 − a1

√
r
−a
b
√

r cot
(√

rξn
)
− 1

cot
(√

rξn
)
− a

b
√

r

. (42)

Let
(
−a
b
√

r

)
= cot(m2), m2 is a constant. Therefore,

u2(ξn) = a0 − a1
√

r
cot(m2) cot

(√
rξn
)
− 1

cot
(√

rξn
)
+ cot(m2)

= a0 − a1
√

r cot
(√

rξn + m2
)

, (43)

which is a solution in the form of the cot function only with a constant phase shift m2.
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The third solution is given by:

u3(ξn) = a0 + a1
−rb− a

√
−r coth

(√
−rξn

)
a− b

√
−r coth

(√
−rξn

) = a0 − a1
√
−r

−a
b
√
−r coth

(√
−rξn

)
+ 1

coth
(√

rξn
)
− a

b
√
−r

. (44)

Let
(
−a

b
√
−r

)
= coth(m3), m3 is a constant. Therefore,

u3(ξn) = a0 − a1
√
−r

coth(m3) coth
(√
−rξn

)
+ 1

coth
(√
−rξn

)
+ coth(m3)

= a0 − a1
√
−r coth

(√
−rξn + m3

)
, (45)

which is a solution in the form of the coth function only with a constant phase shift m3.

6. Conclusion

We have proved that the the BTREM is equivalent to the ETM. We demonstrated this fact using two
examples from partial differential equations and differential-difference equations.
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