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ABSTRACT 
 
In this paper, a metaheuristic algorithm that combines genetic and neighbor search algorithms is 
proposed to solve integer linear programming problems. The individuals of the population are 
binary coded into a sequence of chromosomes (variables). Initially, chromosome length is five bits 
(genes) but if required they grow, up to 21 genes per chromosome, when looking for optima. The 
algorithm includes a test based on systematic neighborhood search to decide if it continues or 
stops. The algorithm is able to solve maximal or minimal integer linear programming problems in 
standard or non-standard form and linear programming problems with a simple adaptation. A 
comparative study was conducted with three algorithms; LINGO, Simplex LP and Evolutionary. 
These last two algorithms are from commercial solver in Excel spreadsheet software. The results 
show that the algorithm was able to find similar solution with LINGO and Simplex LP but better than 
the Evolutionary. A time study using problems from literature with two, three, four, eight and twelve 
variables is included. 
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1. INTRODUCTION 
 
This paper presents and discusses a first effort to 
deploy a piece of software capable of finding 
solution at Integer Linear Programming (ILP) and 
Linear Programming (LP) problems. The test 
examples are limited to simple examples that 
range from two up to four variables and up to six 
constraints. The implementation is based on a 
variation of the classical Genetic Algorithm (GA) 
as first discussed in [1]. Research on this topic 
keeps on going due to the difficulty found                  
when looking for optimal solutions to ILP 
problems [2-4].  
 
This paper reports the results when 
implementing a variation of GA with a set of 
control parameters to search for optima with 
normal or aggressive GA mechanism, not only to 
escape from local optima but also to focus the 
generation of solutions. Furthermore, we deal 
with one of the questions when applying the GA: 
how many generations should the GA must run? 
The answer could be as much as possible, but it 
is a vague response. Usually, implementations 
use a time limit some others terminate after a 
certain number of generations where no 
improving has been found or all individual 
chromosomes are identical [2,3]. In this 
implementation a test applying a systematic 
neighborhood iterated search is conducted [4]. If 
one better solution is found in the neighborhood 
of the current solution then the algorithm is 
triggered again or ends otherwise. 
 
The implementation includes six control 
parameters: the model definition: maximization or 
minimization, number of generations from 100 to 
10000, number of ages from 1 to 40, crossover 
level, mutation level, neighbor range and 
diversity level. The algorithm is able to run in a 
progressive way i.e. if at the end of a run it runs 
again it will use the results from last run to 
continue searching for optima and it is where the 
history tracking control fits, if a completely new 
run is required. 
 
For each age selected, the algorithm runs the 
number of generations specified. The algorithm 
keeps track of fittest individual found on each 
age and the fittest individual of all ages will be 
the solution, the best solution, an approximation 
to the optimal one if not the optimal, along with a 
list of the fittest individuals of all ages. 

 
GAs are an active research topic that has been 
implemented to solve optimization problems from 

non-linear programming, task scheduling, 
computer vision and multi-objective resource 
allocation problems [3,5-7], and of course, 
integer linear programming [8,9], among others. 
The mixing of GA with neighborhood search is 
not new, it has been used to solve problems  
related to resource scheduling, machine cell 
formation and traveling salesman problem, 
among others [10-12],  
 
Section 2 is about the variation of the GA 
mechanisms and how they were implemented. 
Section 3 describes de implementation software. 
Section 4 presents a comparative study with two 
other algorithms from commercial software, 
Microsoft Excel Solver. Section 5 includes a time 
study with problems ranging from two to twelve 
variables, maximization and minimization in 
standard and non-standard from literature. 
Finally, on Section 6 there are conclusions and 
recommendations for further research. 
 

2. THE GENETIC ALGORITHM 
MECHANISMS 

 
In this section, the mechanisms as implemented 
are discussed. For further explanation of the 
classical mechanisms of the GA they can be 
found in [1]. 
 

2.1 Initial Population   
  
On generation zero, population is generated 
randomly but from age one and above the initial 
population for that, is generated based on a 
diversity level. A level of 100% means that 
population is generated at random. If this level is 
set to 50%, for example, there is a 50% chance 
that individuals will be generated at random and 
the other 50% will be a neighbor from current 
best solution, at random but inside a maximum 
neighbor range.   
 
On generation zero, one individual goes through 
chromosome repair if it is not feasible [13]. The 
algorithm uses Equation (1) to compensate a not 
feasible individual and make it feasible. It is the 
same for minimization or maximization but on 
maximization, it decreases the variables values, 
xj, if a less than constraint is not met. On the 
other hand, on minimization, it increases the 
variables values only when a greater than 
constraint is not met. The algorithm computes 
the sum of coefficients cij at the start of a run. It 
has been observed that in this implementation 
the use of equation (1) helps to accelerate the 
convergence of the algorithm.  
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Initial population is size 50 and it remains the 
same through all the optima searching process. 
Every generation ten individuals are generated 
applying crossover and/or mutation and they 
replace ten individuals of the population, the ten 
individuals with lower fitness evaluation. 
 
Once the initial population is ready, the 
reproduction process is called (crossover and 
mutation). By default there is a 50-50% chance 
that a new individual is created using the 
crossover or mutation mechanisms. But it can be 
adjusted to a desirable value with the controls 
provided. 
 

          (1) 
 

 
 

2.2 Crossover 

 
The algorithm selects two individuals from the 
population at random and at least one 
chromosome goes through crossover. A random 
position in the chromosome is selected and the 
new individual inherits all the genes from the 
random position to the right or left of one parent 

followed by all the genes to the left or right of the 
random position, from the other parent. There is 
a 50% chance that the procedure includes all the 
chromosomes and 50% that it uses a subset of 
chromosomes. There is a 50% chance of 
switching who is parent one and who is parent 
two. Fig. 1 illustrates the crossover process. 
 

Parents are selected randomly from population 
where the fittest individual has 1/10 chance to be 
selected for crossover or mutation, while 
individuals ranked from position 2 to 6 have 1/30 
chance and remain individuals have 1/60 
chance. 
 

2.3 Mutation 
 
There are four mutation strategies with equal 
chance to modify a chromosome: one gene 
mutation with value switching, one gene mutation 
with random value setting, multiple gene 
mutation and offset mutation. In offset mutation, 
the algorithm mutates the chromosomes from 
current best solution to another value but inside 
of range limit from current chromosome value. In 
this mutation option, the algorithm generates an 
integer value randomly from zero up to a range 
limit, an offset, and there is 50-50% chance to go 
up or down from current chromosome value. The 
algorithm converts the resulting value of the 
chromosome to its binary equivalent. Fig. 2 
illustrates all four strategies for mutation; the 
dash lines indicate alternatives due to 50% 
chance. The illustration depicts a chromosome of 
13 genes length at the center of the illustration, 
from where new chromosomes could be 
generated using one of the four possible 
strategies. The algorithm assigns same 
probability to all mutation strategies. 

 

 
 

Fig. 1. Example of crossover mechanism with 4 chromosomes and 13 genes 
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Fig. 2. Mutation strategies sample 
 

2.4 Evaluation 
 
Individuals are evaluated using the objective 
function and each time a constraint is not met a 
penalty is considered. The size of the penalty is 
the sum of the quantities but it goes beyond the 
constraints limits times the number of restrictions 
that was not able to meet and times a sensibility 
factor. The algorithm deducts a penalty from the 
objective function value when looking for maxima 
or adds to it when looking for minimal.  
 
The highest value from the objective function 
coefficients and the constraints critical values is 
set as the sensibility but if it is lower than 100 
then sensibility is set to 100 and 10 000 if it is 
greater than 10 000. 
 

3. THE IMPLEMENTATION 

 
The implementation runs on any web browser 
with HTML5 and JavaScript support. All the tests 
were run under Linux Ubuntu platform using 
Firefox web browser. At present time, the 
implementation supports up to twelve variables 
and eleven constraints. All the runs were done 
using a laptop 3.9 GB, Intel® Core™ 2 Duo CPU 

T7250 @ 2.00GHz × 2, Ge Force 9200M, 32-bit 
OS. Fig. 3 shows a screen shot of the 
implementation. The implementation is available 
to install on Android devices at Google Play 
under the name MathGO. 
 
After clicking the find solution button, the 
algorithm creates 50 individuals Each individual 
is set to have equal number of chromosomes as 
the number of variables in the objective function. 
All chromosomes are set to five genes length but 
they will grow if required, small chromosome 
length reduces the searching space [6]. The 
algorithm assigns at random a zero or a one to 
every gene. All individuals go to evaluation 
process and, if model selector is set to maximize, 
the algorithm sorts the population in descending 
order whereas, if selector is set to minimize, the 
algorithm sorts the population in ascending 
order. 
 
The algorithm generates ten new individuals on 
every generation applying the crossover and 
mutation mechanisms. New individuals replace 
the last 10 individuals of the population and 
sorting reorders the population. The best solution 
is at the top of the list. 
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Fig. 3. Implementation display including a partial results list after a run 
 
The implementation displays a coefficient matrix 
where there are input fields and control buttons. 
There is one button to select the model: 
maximize or minimize. When selecting maximize 
or minimize model the operator of the constraints 
will change automatically from less than to 
greater than, or vice versa. However, the 
inequality operators can be change 
independently as required. The algorithm is able 
to solve non-standard problems without the need 
to convert them into standard form. Below the 
constraints matrix there are five fields to define 
the number of generation, ages, crossover, 
mutation and neighbor range. 
 

Once all the coefficients, critical constraint 
values, and algorithm parameters are set, 
clicking on the find solution button will trigger the 
GA will start the search for optima. At the end of 
every age, the algorithm displays a list of the 
population, the fitness value for each individual, 
variables and their values up to that age. It is 
possible to change the parameters values while 
the algorithm is running or stop the running, 
adjust parameters or change coefficients and 
continue the run. 
 

Currently the algorithm solves ILP problems but it 
can be used to solve LP problems without the 

need to change the implementation. If variables 
are required to get one, two or more decimal 
point precision just moving the decimal point of 
the constraint limits, adding zeros to the right or 
move the decimal point one place for each digit 
after the decimal point required. The variables 
values will still be integers but just move the 
decimal point to the left the same number of 
places as in the critical constraints values to get 
a final solution, with decimal point, the same for 
the objective function value. All the problems in 
the set used to test the algorithm where a 
continuous solution was required were solved 
using this adaptation. 

 
4. RESULTS AND DISCUSSION 
 
4.1 Comparative Study 
 
A comparative analysis with commercial software 
was conducted. Eleven four variables problems 
were used in this comparative study, three of the 
problems (9, 10 and 11) are originally LP but 
were solved adapting them to be solved using 
ILP. All the problems are from [14]. LINGO and 
the standard solver in Windows Excel were used 
to compare the solutions of the proposed 
algorithm (ILPGA). The two algorithms in the 
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Excel Solver are Simplex LP and Evolutionary 
[15]. There is another algorithm in the Excel 
solver, the GRG nonlinear but it was not used on 
this comparative study. Table 1 lists the solutions 
obtained from the four algorithms. Column A lists 
the algorithms: Lingo that uses branch and 
bound, SLP is the Simplex LP and E is the 
Evolutionary, for short, both from Microsoft Excel 
Solver, GA1 is the proposed implementation 
based on a variation of the genetic algorithm and 
neighbor search. Column Z is the objective 
function value and the other columns are the 
variables values outcome after running the 
algorithm. 
 
ILPGA is able to find equal solution than LINGO 
and SLP but it takes longer. There are problems 
where alternative variables values result in same 
solution and the ILPG is able to list those 
alternatives. Table 1 lists only two alternatives for 
ILPGA on problem 1 and 4. The list of 
alternatives helps to deduct that any combination 
where x1 plus x3 is equal to 50 is a solution, in 
case of problem 1.  
 
Only in problem 9, the ILPGA and SLP outcome 
was different, but probably SLP requires a 
different setting than the one used in this 
comparative study. Both solutions were different 

than the one given in [14], it seems that ILPGA is 
a better solution because it is lower than the one 
found using SLP and it does not violates any 
constraints as the solution given in [14]. The SLP 
algorithm is based on the branch and bound 
algorithm, which is one of today´s fastest 
algorithms [15].  
 
Lingo also uses branch and bound and the 
outcome is the optimal solution. Branch and 
bound easily outperforms any GA if it is 
compared just based on time and especially in 
this set of simple problems being used here. 
However, as mentioned before, there are other 
characteristics like the one to find different 
solutions where they exist, flexibility, and easy to 
code, among others, that makes GAs 
appropriate but for sure requires more time and 
runs than Lingo or SLP. 
 
In the comparative, the SLP did not take more 
than 7 seconds to find a solution in the worse 
scenarios of Problems 9, 10 and 11. However, in 
Problem 9 the SLP was not able to come out 
with a better solution even after running it 
multiple times. The ILPGA was able and it did 
take, on average, 55, 36 and 97 seconds to find 
the solution of problems 9, 10 and 11, 
respectively. 

 

 
 

Fig. 4. Time dispersion of average time, from five runs, to get the solution of 117 simple “toy 
problems” from literature 
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Table 1. Comparative study outcome 
 

Model A Z x1 x2 x3 x4 
Min. Z = x1 + 2x2 + x3 + 5x4 
s.t.  x1  +  x2  +   x3 +  x4  ≥ 50  
        3x1 +  x2  + 2x3 +  x4  ≥ 100  

Lingo 50 50 0 0 0 
SLP 50 50 0 0 0 
E 63 13 0 50 0 
GA1 50 50 0 0 0 
GA1 50 2 0 48 0 

Min. Z = 0.25x1 + 0.23x2 + 0.22x3 + 0.21x4 
s.t.  x1 + x2 ≥ 350  
       x3 + x4 ≥ 300 
       x1 + x3 ≤ 370  
       x2 + x4 ≤ 290 

Lingo 147.7 60 290 300 0 
SLP 147.7 60 290 300 0 
E 147.7 60 290 300 0 
GA1 147.7 60 290 300 0 

Max. Z = x1 + 2x2 + x3 + 5x4 
s.t.  x1 + 2x2 + x3 + x4  ≤ 50 
       3x1 + x2 + 2x3+ x4  ≤ 100 

Lingo 250 0 0 0 50 
SLP 250 0 0 0 50 
E 230 5 0 0 45 
GA1 250 0 0 0 50 

Max. Z = x1 + x2 + 4x3 + 5x4 
s.t.  x1 + 2x2 + 3x3 + x4  ≤ 115 
       2x1 +  x2 + 8x3 + 5x4  ≤ 200 
       x1 + x3 ≤ 50 

Lingo 200 0 0 0 40 
SLP 200 0 0 0 40 
E 196 4 37 0 31 
GA1 200 0 40 0 32 
GA1 200 0 0 0 40 

Min. Z  = 1.2x1 + 2.1x2 + 1.8x3 + 1.5x4 
s.t.  x1 + x2  = 500; 
       x3 + x4 = 1000; 
       x1 + x3 ≤ 900;  
       x2 + x4  ≤ 700; 

Lingo 2190 5000 0 300 700 
SLP 2190 500 0 300 700 
E 2790 0 500 800 200 
GA1 2190 500 0 300 700 

Min. Z = 14x1 + 22x2 + 12x3 + 10x4 
s.t.  x1 + x2  ≤ 25;  
       x3 + x4  ≤ 30 
       x1 + x3  = 32; 
       x2 + x4  = 20; 

Lingo 628 22 0 10 20 
SLP 628 22 0 10 20 
E 828 2 20 30 0 
GA1 628 22 0 10 20 

Min. Z = 30x1 + 20x2 + 25x3 + 22x4 
x1 + x2  ≥ 3 000;  
x3 + x4  ≤ 5 000 
x1 + x3  ≤ 5 000 
2x1 + 6x2 + 5x3 + 4x4  ≤ 40000 

Lingo 180400 200 2800 2800 2200 
SLP 180400 200 2800 2800 2200 
E 180400 200 2800 2800 2200 
GA1 180400 200 2800 2800 2200 

Min. Z = 30x1 + 20x2 + 25x3 + 22x4 
x1 + x2  ≥ 3 000;  
x3 + x4  ≥ 5 000 
x1 + x3  = 5 000;  
x2 + x4  = 5 000;  
2x1 + 6x2 + 5x3 + 4x4  ≤ 40 000 

Lingo 244400 2200 800 2800 4200 
SLP 244400 2200 800 2800 4200 
E 250000 3000 0 2000 5000 
GA1 244400 2200 800 2800 4200 

Min. Z = 152x1 + 61.44x2 + 884x3 + 23x4 
10.33x1 + 3.29x2 + 2.9 x4   ≥ 400 
11.44x1 + 3.34x2  +100 x3 + 0.26x4 ≥ 2000 
1.04x1 + 4.66x2 + 3.75x4  ≥ 1500; x2  ≥ 30.5 

Lingo 26181.08 0 32 18 361 
SLP 26196.52 0 33 18 359 
E 28623.68 0 322 10 0 
GA1 26181.08 0 32 18 361 

Max. Z = 4.09x1 + 2.37x2 + 2.5x3 + 4.64x4 
263x1 + 14x2 + 448.8x3  + 21x4 ≤ 2600000 
492.5x1 + 36x2 + 5x4  ≥ 2100000 
10.33x1 + 1.62x2 + 0.85x4  ≥ 60000 
 x1 + x2 + x3 + x4 ≤ 40000; x3  ≥ 3125 

Lingo 124047 2430 23581 3125 10864 
SLP 124047 2430 23581 3125 10864 
E 123091 2437 23886 3127 10495 
GA1 124047 2430 23581 3125 10864 

Min.  Z = 215x1 + 884x2 + 38x3 + 60x4 
26x1 + 1.16x3 + 10.51x4  ≥  500000 
 x2 + 8.63x3 + 5.57x4  ≤ 100000 
 6.4x3  ≥ 35 000 and x2  ≥ 450 

Lingo 4434922 15188 450 5469 9398 
SLP 4434922 15188 450 5469 9398 
E 4687827 18987 450 5469 0 
GA1 4434922 15188 450 5469 9398 
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4.2 Time Study 
 
Fig. 4 illustrates the average time from five runs 
of 117 problems: from one to 59 were problems 
with two variables, from 60 to 102 were problems 
with three variables, from 103 to 113 was the set 
of problems with four variables, the ones used in 
the comparative study. Problems range from 
finding maxima and minima with standard and 
non-standard constraints. All these problems 
came from [14], some are from examples and 
others are from the exercises section. Last four 
problems were the alternatives of the CAPLOC 
problem in [16]. This problem was divided into 
four alternatives: three alternatives with eight 
variables and ten constraints and one alternative 
with twelve variables and eleven constraints. 

 
There were problems where no maxima exist. In 
these cases, variables keep increasing their 
value until they reach the maximum limit number 
of genes and the algorithm terminates the search 
for optima with a message indicating that not 
maxima exist and the upper number of genes 
has been reached. The algorithm was set to run 
using 500 generations and 10 ages. 

 
5. CONCLUSION 
 
GA1 algorithm performed better than the 
Evolutionary implementation in Excel Standard 
Solver and was able to find equal solutions than 
the Simplex LP. In one problem, GA1 was able 
to come up with a better solution than the 
Simplex LP. 

 
More research is required to determine the 
parameter values to fine tuning the algorithm for 
a particular set of constraints and the objective 
function. 
 
More research will be conducted taking into 
account bigger problems but the implementation 
until now is able to solve academic problems with 
up to twelve variables and eleven constraints. 

 
The test to find if the algorithm keeps running 
requires more research because as the number 
of variables increases the number of iterations 
required during testing grows exponentially with 
it. At twelve variables, testing was set to look in 
±1 range and this reduces the power of the test 
to find a neighbor solution. For now, in cases like 
this, the alternative is to run one more time or 
many more times as desirable in hope of finding 
a better solution.   

Another line of research is the improving of 
equation (1) to better compensate infeasible 
solutions in the early generations to help 
accelerate the convergence of the algorithm.  
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