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Abstract 
This article emphasizes that the Einstein and Debye models of specific heats of solids 
are correlated more tightly than currently acknowledged. This correlation is evi-
denced without need of additional hypotheses on the early Einstein model. The re-
sults are also extensible to the case of a system of fermions; as an example, the specif-
ic heat of the electron sea in metals is inferred in the frame of the proposed approach 
only. 
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1. Introduction 

Einstein’s aims are summarized by one of his most celebrated sentences: “I want to 
know all God’s thoughts; all the rest are just details”. With this intent, he set about ela-
borating a model of specific heat of solids to test the new Planck idea of energy quanti-
zation. For this reason Einstein implemented the quantization hypothesis of indepen-
dent harmonic oscillators vibrating in a crystal lattice with a unique frequency. Of 
course he knew that this was an oversimplification of the problem; yet his primary at-
tention was focused on the new born energy quantization, rather than on the actual vi-
brational spectrum of coupled oscillators. The Einstein naive model [1] is so well 
known that any further remark is superfluous: it is only worth quoting that the result 
was a brilliant validation of the energy quantization, able to predict the vanishing of 
specific heat at low temperatures and the empirical Dulong-Petit law of classical me-
chanics at high temperatures. 

Shortly later, Debye [2] added the necessary “details” to the elementary Einstein ap-
proach: he refined the model introducing the statistical distribution of allowed vibra-
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tional frequencies, reasonably expected on the basis of the Born-Von Karman ideas [3]: 
their model of proper oscillations of linear chains of atoms with coupled motion im-
plied the existence of lattice waves with periodic boundary condition. The group veloc-
ity of these waves introduced next the concept of phonon and the band structure of 
solids, which are in fact the most interesting consequences of these early studies; the 
characteristic temperature Θ  is the key concept to correlate the elastic oscillations 
with the thermal, optical and electric properties of solids. 

Next, the Fermi statistics extended these achievements to the electrons of the lattice. 
A comprehensive exposition of these seminal papers and their subsequent evolution 

are found in several textbooks, for example [4]. 
The present article concerns in particular the first step of the path shortly outlined, 

i.e. that from Einstein to Debye. Usually the former model is acknowledged as a crucial 
contribution to the birth of the quantum physics; the latter model is a significant step 
forward not only for the accuracy with the specific heat which is calculated at low tem-
peratures but also mostly for emphasizing the correlation between oscillation frequen-
cies and elasticity constants of solids. Yet, simple considerations show that actually 
these models are more interconnected than their standard assessment taken for 
granted. The importance of elucidating this correlation is clear: Einstein’s reasoning has 
essentially quantum basis, as it is also emphasized below in this paper that, Debye’s 
reasoning regards a continuum body of solid matter described according to the classical 
elasticity theory. If these models could be someway linked, then even the oscillator fre-
quency spectrum would automatically result entirely as a consequence of quantum 
principles. Just these considerations highlight the motivations of the present paper: 

-to infer the Debye specific heat directly from that of the Einstein model without 
need of additional “ad hoc” hypotheses; 

-to show that the present approach can be also extended to a system of fermions. 
For sake of simplicity, the present paper assumes a monoatomic lattice of any sym-

metry. 

2. Einstein’s Theoretical Model and Its Extension 

In the Einstein model of monoatomic perfect lattice, the energy of an oscillator is in fact 
nothing else but the mere BE energy statistical distribution  

( )
,

exp 1E E
h

h kT
νε β

ν
=

−
                      (1) 

where Eβ  is the degeneracy factor of the distribution function. As the frequency is 
unique by assumption, the degeneracy is in fact given by the number of oscillators in 
the lattice; at the thermal equilibrium, all of them have the same energy. So, as the 
number of freedom degrees yields the number of possible oscillations, it follows 

3 6 3E N Nβ = − ≈ , being N  the number of lattice atoms. Here the Equation (1) is 
reasonably regarded as a starting point because of its general validity, direct manifesta-
tion of the quantum statistics. It is worth emphasizing that actually the lattice energy 
and specific heat at constant volume  
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have been inferred by Einstein himself, whereas the appropriate statistical distribution 
law was introduced much later by Bose in 1920 [5]. The Equation (2) are conveniently 
rewritten as follows for Avogadro’s number of oscillators  
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( )
( )( )
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3 3 .
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− −
= = =

Θ− −
        (3) 

The specific heat is expressed as a correction of the asymptotic classical quantity 3R  
via a function of the parameter ζ  only; also, EΘ  is uniquely defined by the given ν . 

Actually, however, the real lattice consists of coupled oscillators. To introduce the 
coupling mechanism, consider the vibration of one atom that propagates to the first 
neighbors by direct interaction, and then from these latter to the next neighbors and so 
on. In general one atom triggers a cooperative vibrational process that involves pro-
gressively an increasing number neighbor atoms; so the progressive coupling of oscil-
lators is described by the number of neighbors involved and by the time necessary to 
spread the initial perturbation, which define the wavelength of the resulting collective 
wave and its propagation rate throughout the lattice. Indeed the frequency vν λ=  is 
related to the modulus of velocity v  defining the wavelength λ ; it suggests that just 
this v  describes the propagation velocity with which the vibrational interaction 
spreads an oscillation wave throughout the whole crystal lattice. The fact that the veloc-
ity is a vector explains intuitively the progressing of the initial vibrational perturbation 
all around the trigger atom without additional hypotheses. All this is compatible with 
the unique frequency ν  simply rewriting kT hvζ λ=  in vector form  

( )
3 3

2 2 2 2

1 1
i i

i i
kT h v vζ λ

= =

= = Λ =∑ ∑v Λ                   (4) 

that in turn splits into the three components of the respective vectors  

( )
3

2 2

1
1, 2,3.i

i i i i
ii

vv kT h iζ λ ν ν ν
λ =

= = = =∑  

The components of the former Equation (4) define three orthogonal waves having 
different wavelengths iλ  and propagating through the lattice along orthogonal direc-
tions with related rates iv  and frequencies iν . In fact this is nothing else but the actu-
alization of the previous reasoning: the vibration of the reference atom perturbs next 
neighbors regularly aligned along three space regular sequences of the lattice, as realis-
tically expected in a 3D model. So, no further hypothesis has been actually introduced 
with respect to the original Einstein approach: in the unique frequency ν  are actually 
hidden three frequencies related to the components inherent its propagation rate vector 
throughout the lattice. 

In principle it is reasonable to guess that each iλ  is related to the cell parameters of 
the crystal lattice along the respective direction; the extent of iλ  corresponds thus to 
the number of elementary cells whose atoms concur to propagate the vibrational mo-
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tion. On the one hand iλ  are expectedly different, being related to the different spac-
ing of crystal planes along the propagation directions of the respective vibrational 
waves; on the other hand, even the respective propagation rates iv  are in general dif-
ferent depending on the symmetry properties of the crystal lattice. Consequently, owing 
to the different energies inherent the respective iν  of the three lattice waves, it is rea-
sonable to rewrite the Equation (3) as the sum of three energy equations corresponding 
to the components of v ; hence  

( )
3

1 1
3.

exp 1
i

E i i E
ii

h
h kT
νε β β β

ν=

′ = = =
−∑ ∑  

If iT h kν , the right hand side of the first equation tends to iikT β∑ ; so the 
second equation ensures the consistency with the asymptotic behavior of the Equation 
(1) for T h kν . Proceeding exactly as before, the first Equation (2) turns now into  
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whence  

( )
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in this way the early Einstein equation turns into a linear combination of three func-
tions having the same form and weighed by the arbitrary coefficients iβ  coming from 
the unique Eβ , whereas the Equation (3) are a particular case of these equations for 

iΘ  and iβ  all equal. To give this result a reasonable physical meaning, consider that if 
the crystal lattice is homogeneous and isotropic there is no reason to expect that the 
three orthogonal waves should appear with different coefficients in the linear combina-
tion; this would mean assigning “a priori” a preferential statistical weight to one of 
them, i.e. to one propagation direction of the initial vibrational perturbation along one 
specific sequence of lattice atoms. This however seems unjustifiable. Rather, consider-
ing that the lattice directions involved by the vibrational perturbation are physically 
equiprobable as concerns the total energy, the hypothesis that 1 2 3β β β= =  is plausi-
ble; so, owing to the Equation (6), 1iβ = . Strictly speaking, the position 1 2 3β β β= =  
is in principle rigorous for an infinite single crystal with perfect lattice; however it is 
reasonably assumed true, at least statistically, even for real polycrystalline materials 
with point and line lattice defects and grain boundaries. Moreover, defining  

,i i
i i

i i i

hkT kT T
h h k

ν ν νζ ξ
ν ν ν ξ ν

Θ
= = = Θ = = =

Θ Θ
          (7) 

the initial ratios iT Θ  turn into an average quantity T Θ  times the direction de-
pendent quantities iξ , which result proportional to the ratios iν ν ; also, the Equa-
tion (1) splits into a new equation where the three frequencies that define ν  of Eε  
appear explicitly. The explicit expression of the specific heat results thus to be  
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Also now the temperature still appears through the ratio T Θ  times the quantities 

iξ  expectedly different for the three waves. In practice this expression is defined as the 
sum of functions of iξ ζ , with ζ  regarded as arbitrary parameter; yet it is explicitly 
calculable as a function of T , and thus comparable with the experimental data, once 
knowing the three values of iξ . 

3. Comparison with the Debye Model 

A possible way to assess these results, is to compare the Equation (8) with the specific 
heat of the Debye model. After the early approach of Einstein, who did not introduce 
the frequency spectrum actually allowed in the lattice, this is the most famous and sim-
plest model to calculate the specific heat of solids. As it is known, in this model the 
unique Einstein lattice frequency ν  determining ε  is replaced by a frequency distri-
bution according to the 2ν  law; also, the interval of frequencies allowed to ν  is up-
per bounded by a postulated maximum frequency mν , i.e. 0 mν ν< ≤ . This model, in 
agreement with that based on the Born-Von Karman theoretical background almost 
simultaneously developed, is so known that the basic results only are reported here 
without further comments. Owing to the actual existence of several frequencies in prin-
ciple admissible, the lattice vibrational energy is obtained integrating Eε  over the giv-
en frequency spectrum  
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here Dβ  is still the degeneracy factor of the BE distribution. Trivial manipulations of 
these formulas yield thus the well known result  
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Also in this case T  is expressed in DΘ  units. Normalizing Dβ  to obtain again 
the classical asymptotic limit 3R  for 1ζ  , one finds 9D Nβ =  and thus  

( ) ( )( )
1 3

3
1

0

d 33 12 .
exp 1 exp 1

VDc R
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ξ ζ ζ

−

−

 
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∫              (10) 

The Equations (3) and (10) differ for two reasons: because of their different ζ  pro-
files, especially at 1DT Θ  , and because of their different inflexion temperatures 
calculated via 2 2 0Vc ζ∂ ∂ = . Indeed  

inf inf

0.223 0.164,
E D

T T
= =

Θ Θ
                    (11) 

with notation emphasizing that the values are calculated at the inflexion points of the 
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curves VEc  and VDc  vs ζ . In general the inflection point of Vc  vs ζ  has significant 
physical meaning, as it marks the transition between quantum and classical behavior of 
the oscillators: correspondingly, the rising rate of specific heat Vc ζ∂ ∂  for inf0 ζ ζ< <  
attains its maximum value just at infζ ζ= , beyond which it decreases and tends to va-
nish asymptotically when Vc  reaches the classical Dulong-Petit limit for ζ → ∞ . The 
Figure 1 emphasizes that the respective curves not only have different ζ  profiles but 
are also shifted along the ζ  axis, although tending both to the same asymptotic limit 
for 1ζ  . On the one hand, the physical reasons of the intrinsic disagreement of VEc  
and VDc  especially at low T  are well known, in particular as concerns D EΘ ≠ Θ . 
On the other hand, however, the question arises: does the modified Equation (8) over-
come both discrepancies without need of any “ad hoc” hypothesis, e.g. taking advantage 
of the fact that expectedly EΘ ≠ Θ ? 

Assessing comparatively the Equations (8) and (10) needs a general reasoning to 
guess the numerical values of the amounts iξ  and to calculate both equations for arbi-
trary values of the free parameter ζ  only; this latter becomes thus the unique variable 
as a function of which are compared VEc′  and VDc . Assuming that the energies of the 
oscillators are quantized, it is reasonable to expect that one of them, say 3ν , accounts 
for the zero point energy in the lattice, whereas the remaining two, 1ν  and 2ν , ac-
count for the ground vibrational energy level of the lattice; i.e. 3hν  should be 
 

 
Figure 1. Specific heats Vc  of the Debye and Einstein models vs Tζ = Θ . 
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one half of 1 2h hν ν= . In effect this conclusion is expectable at 0T > , because the lat-
tice can be in the plain zero point energy state at the absolute zero only. So the actual 
vibrational level of the lattice is still one only, 1ν , exactly as in the early Einstein mod-
el; yet it appears here with the zero point energy too, as it is reasonably understandable. 
Since a free oscillator is characterized by the frequencies 2 nν ν+ , assume that the 
frequencies iν  fit the condition (7) putting  

1 2 0 3 0 2 1,2, ;n nν ν ν ν ν= = = =                   (12) 

if so, then  

0 0 0
1 2 1 3

2
.

n nν ν ν
ξ ξ ξ ξ

ν ν ν
= = = =  

In the following we take 1n =  to implement in the next calculations the condition 
of minimum vibrational energy. The third Equation (7) reads thus  

0 0 0
1 2 1 3 1

2
2;

ν ν ν
ξ ξ ξ ξ ξ

ν ν ν
= = = = =               (13) 

so the Equation (8) results expressed as the sum of one zero point wave, function of 

1 2ξ , and two identical vibrational waves, both at the ground energy level, functions of 

1ξ . It turns therefore into  
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(14) 

In principle, even without specifying the constant parameter 1ξ Θ , a universal 
curve of specific heat is still obtained as a function of the ratio 1ξ ζ  only  
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in practice, however, assessing the validity of the Equation (14) by direct comparison 
with the experimental data of various materials as a function of T  requires knowing 

1ξ Θ . In this respect, note that for the parameter 1ξ ζ  holds the boundary condi-
tion 2 2 0Vc ζ′ ′∂ ∂ =  at the inflexion point infζ ′  of the curve Vc′  vs ζ ′ . A trivial cal-
culation yields  

1 1
inf

inf

5.66ξζ
ζ

−′ = =  

A simple chance to assess the Equation (14) is to compare it with the Debye Equation 
(10): this is possible if 1ξ  is known, so that both equations are calculable as a function 
of ζ  only. To this aim regard preliminarily 1ξ  as best fit parameter, whose numeri-
cal value will be justified in the next section together with the physical meaning of 0ν  
and ν  to which is related Θ . Put therefore  

1 0.905,ξ =                            (15) 

which yields  
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inf
inf 0.16.Tζ = =

Θ
                        (16) 

Of course this intentional choice of 1ξ  makes Θ  consistent with the Debye 
temperature DΘ  in the Equation (11), whence the importance of justifying below the 
Equation (15) from a theoretical point of view. The Equations (8) and (14) calculated 
with the given value of 1ξ  have been plotted together in the range 0.01 1ζ≤ ≤ , which 
seems appropriate to compare lattice specific heats and experimental data. As DΘ  
ranges typically between about 100 K (alkali metals) and 2000 K (diamond), 0.01ζ ≈  
corresponds to T  not greater than a few tens K degrees only; thus below 0.01ζ ≈  
the electron specific heat becomes comparable or predominant with respect to the mere 
lattice contribution. 

The result reported in the Figure 2 shows that Vc′  overlaps reasonably well the 
whole Debye curve, at least in the range of temperatures where the lattice specific heat 
alone realistically represents the experimental data. It appears in particular that even 
the 3T  dependence of lattice specific heat is correctly reproduced by the Equation (14) 
in the range inf0.1 ζ ζ< <

 

, directly comparable with the experimental data: 0.1ζ ≈  
corresponds indeed to T  of the order of about ten to hundred K degrees, where the 
lattice specific heat overcomes in general the electron contribution. The Figure 2 makes 
superfluous the direct comparison of the Equation (14) with the experimental data at  
 

 
Figure 2. Specific heats calculated from the Equation (14) (continuous line) and 
Debye (circle) Equation (10) vs ζ . 



S. Tosto 
 

117 

temperature range where the reliability of the Debye model is well acknowledged. 
Note that this agreement does not represent a mere numerical result of best fit be-

tween the linear combination of three Einstein functions (6) and the Debye function, 
for at least four reasons: 

1) since the Equation (15) is justifiable, see the next Equation (26), the Equation (13) 
express a specific physical idea, rather than fulfilling a mere numerical purpose; 

2) the coefficients iβ  have not been calculated according to standard best fit algo-
rithms; 

3) no “ad hoc” physical hypothesis has been purposely introduced to force this result, 
which has full theoretical character; 

4) since the unique Einstein frequency waives the vibrational spectrum of the Debye 
model, the mere elaboration of the Equation (1) that yields (14) has in fact nothing to 
do with the elasticity theory. 

Hence the conversion from the Equation (3) to the Debye-like Equation (8) cannot 
have numerical worth only, as it will be stressed in the next section. With these clarifi-
cations, the Equation (14) has its own self-contained physical meaning. The compari-
son with the Equation (10) has validation purpose only. The next section clarifies the 
reasons of this general agreement, while explaining also the small deviation between the 
curves observable in the Figure 2 at 0.01ζ <  only: yet this deviation is still compati-
ble with the experimental data in a region of temperatures where the total specific heat, 
experimentally measurable, is essentially controlled by the electron properties. 

4. Discussion 

The Equation (15) is definable in the frame of the present quantum model only, and 
not outside it e.g. via ancillary considerations involving classical hints. According to the 
Equation (13), one oscillator is actually an atom randomly delocalized in a crystal plane 
and vibrating normally to this plane: so, as expected, its zero point energy is direct 
consequence of its position uncertainty on one plane of the elementary cell. Consider 
that p h λ=  yields 2 2 2 2 2 32 2 2p m h m h mVλ= = , being from a mere dimensional 
standpoint 3V λ= . Strictly speaking, however, is more appropriate to regard 2λ  for 
example as x yλ λ , in which case the atom vibrates along the z direction. Actually the 
crystal plane defining the zero point energy is not rigidly fixed or uniquely definable; 
rather, the cyclic permutation of the indexes ,  ,  x y z  implies three delocalization 
chances on the planes xy , xz  and yz  and corresponding orthogonal vibration di-
rections, in agreement with the fact that the number of oscillators is three times that of 
the atoms. Moreover, as the three planes describe in fact the lattice volume of the ele-
mentary cell, the zero point energy fulfills both properties inherent its quantum nature: 
on the one hand it is naturally associated to the vibrational energy of the propagating 
wave, in agreement with the standard description of the quantum oscillators; on the 
other hand it also appears as expected consequence of the confinement of any particle 
in a volume of space, whose size is defined by the distance between neighbor atoms 
consistently with the lattice parameters of the elementary cell. 
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Four remarks summarize the present outcomes. 
-The Equation (14) has general validity: no specific hypothesis about the kind of ma-

terial has been introduced; the features of the lattice oscillator are defined by three iξ  
only, in order to account for its zero point energy and ground vibrational level regard-
less of the specific kind of atom. 

-The conversion of the plain Equation (3) into the form (8) does not require assum-
ing a continuous body of matter and does not involve thermodynamic quantities, like 
for example the compressibility, which are unnecessary and bypassed. 

-The Debye-like formula (14) has full quantum meaning, without reference to clas-
sical concepts; rather, reverting the conceptual path of Debye, it is possible to infer as a 
corollary of this equation his background considerations about elastic constants of the 
material and vibrational spectrum. In effect the position (15) yields DΘ ≡ Θ , as it 
appears comparing the Equations (15) and (16). 

-The Figure 2 does not require the detailed analysis about the longitudinal or trans-
versal character of the lattice waves nor about the microscopic interaction mechanism 
between atoms introduced by the Equation (4); it is enough to admit that the coupling 
of lattice oscillators is induced by propagating the perturbation of one trigger atom, in 
turn due to its position uncertainty in the lattice site. 

The next considerations of this section highlight further these positions. 
The Debye approach refined the early Einstein model of specific heat at the concep-

tual cost of several approximations, first of all postulating an upper cutoff frequency 

mν  to bypass the consequence of an infinite number of proper oscillations in principle 
admissible in a continuous body of matter. Clearly the key assumption of “continuum” 
is senseless for high frequencies, whose vibrational wavelengths are so short to be 
smaller than or comparable with the crystal spacing of atom lattice; also, the 2ν  spec-
trum is sensible for low vibrational frequencies only, i.e. whose wavelengths are so ex-
tended to involve several atoms. Eventually, the lower integration limit = 0ν  is of 
course a numerical extrapolation rather than a real physical value. Yet the successful 
intuition of Debye was that just these low energy waves that overcome the interatomic 
distances in the lattice are related to the elastic properties of solids: at low T  the den-
sity of spectral lines described by the frequency distribution function is a satisfactory 
approximation. This point, well discussed in the Debye original paper, is shortly reap-
praised here considering the amount m  of matter contained in a volume of lattice 
given by  

1 .yx z
x y z

vv vVλ λ λ λ
κ ν ν ν

= =                     (17) 

The notation emphasizes that the lattice volume defined in this way is just that in-
cluding all atoms oscillating with wavelengths jλ , i.e. it is the volume including 
coupled oscillators. As previously highlighted, the wavelengths are reasonably related to 
the lattice parameters of the elementary cell via the respective average velocities jv  
describing the displacement rate of atoms around the equilibrium lattice sites; κ  is an 
appropriate proportionality factor added for sake of generality. If, for example, κ  is 
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defined by the product of three integers  

1 ,y x y zx z

x y z x y z x y z

vV v v
n n n n n n n n n

λ λ λ λ
κ

ν ν ν
= = =  

then one obtains two equations  
3

, , .j j
x y z j

x y z j

v
V n n n a j x y z

v v v nλ

λν
ν

= = = =              (18) 

In the second equation, ja  are the shortest lengths that repeated jn  times repro- 
duce the jλ  periodicity; these positions account for the actual extent of Vλ  via the 
arbitrary jn , as in fact ( )( )( )x y z x x y y z zn a n a n aλ λ λ =  whatever ja  might actually be. 
This suggests that ja  are elementary cell parameters and that the largest one among 
the three ratios j jv a ν=  is identifiable with the Debye cutoff m mν ν= , which 
here appears in a natural way. In the Debye model 3V Fν  (with Author’s notation) 
defines the number of proper frequencies below the upper threshold mν  via the func-
tion F  of elasticity constants and density ρ : in effect, putting ( ) 1

x y zF v v v
−

=  be-
cause F  has physical dimensions 3velocity−  and normalizing x y zn n n  to 3N  for 

mν ν≡ , the first Equation (18) yields 33 mN V Fλν= . This check supports the va-
lidity of the Equation (17). 

In the Equation (17) the vibrational wavelengths determine the size of Vλ , which 
therefore defines the local density ρ  and energy density η  due to all lattice oscilla-
tors involved by the extent of jλ . So Vλ  represents the size of the coupling volume. 
Let be then  

3 3 2 2 2 2 2 ,x y z
x y z x y z

m m v v v v v
v v v v v v
κ κερ ν η ν ε= = = = + +       (19) 

being m  the total mass in Vλ  and 2v  the average square velocity of vibrational 
displacement of lattice atoms in the coupling volume; ε  takes into account the virial 
theorem, whereas 2v  links these considerations to the lattice T . Note now that 

2
x y zv v v v  has physical dimensions of reciprocal velocity, so that the energy density 

can be rewritten as  

3
0 2

0

.x y zv v vm v
v v

η ν
κ

= =  

Moreover, putting ( ) 3
0 m mv m η ν=  in the Equation (18), one finds  

3

3 3
0

,m
m

m m

m
v

ν ηη η
ν ν

= =  

which implies that mν  must be finite. Eventually, since the energy density per unit 
volume of solid is by definition proportional to the number of oscillators contained in 
V , which is in turn representative of the amount of oscillating mass and thus related to 

2vρ , the lattice energy is  

( )3

0

.mV V
vλ λε η ν ε ε ν= = =                  (20) 



S. Tosto 
 

120 

As expected, specific properties of the material appear in ε ; thus, whatever 0v  
might be,  

3 2

0

3 mVy y y
v

λδ δ ν ν δ ν ν δ ν
ν ν
∂ ∂

= = + =
∂ ∂


           (21) 

being 0 1δ ν δ ν ξ=  according to the Equations (13). Clearly δ ν  is the frequency 
range around the average value ν  to which is related, at the first order, the given 
interval δ  of local lattice energy. 

The Equation (21) is crucial to explain the Figure 2: assuming that the former ad-
dend is negligible with respect to the second one, i.e. if y  is approximately indepen-
dent of ν  or even constant, then δ  reduces to the form of the integrand in the 
Equation (9). In effect the frequency spectrum 2ν δν , here regarded as 2ν δ ν , 
agrees with that of the Debye model, but implies that the dynamics of lattice atoms is 
approximately independent of the average wave frequency. This is intuitively reasona-
ble only for vibrational wavelengths comparable or small enough with respect to the 
lattice parameters, when in effect the interaction between neighbor atoms in contiguous 
lattice sites becomes negligible; the fact that in this case Vλ  concerns independent 
Einstein oscillators explains why at high T  the curves VEc  and VDc  tend to merge 
into the unique classical limit. In effect the most significant deviation of the Einstein 
curve with respect to the Debye curve is at low T , when the low vibrational energies 
become significant: as previously emphasized, long range wavelengths necessarily imply 
by definition coupled oscillators. This appears in the Equation (17): on the one hand 
Vλ  decreases at increasing ν , i.e. T , until its size is of the order of the volume of 
the elementary cell, on the other hand mν  corresponds just for this reason to this 
minimum value of Vλ . 

The lattice energy was implemented by Debye via the number 3z FVν=  of oscilla-
tors with a given frequency inferred from the elasticity theory, as previously found in 
the Equation (18); normalizing then 33 mN FVν= , with 33 mFV N ν=  Debye calculates 

2d 9 dz Nν ν≈ . So the unique hν  of Einstein turns into 39 dNhν ν  times the Bose 
function, to be integrated between 0ν =  and mν ν= . However x y zV v v vλ  not nec-
essarily constant stimulates comparing the approximations of dz  either with 2dν ν  
only or with ( )3 3d d d dy yν ν ν ν∼ =  only; this last term can be calculated knowing 
the function y . Accordingly, once normalizing again ( ) 33 mmN FV ν= , the lattice 
energy distribution that weights the Einstein unique frequency implements now the 
approximation 4dh yν  alternative to that of Debye. In principle, when significant 
deviations from the 2ν  law are expected, the first addend of the Equation (21) should 
provide the appropriate correction to the approximate Debye spectrum. As actually is 
realistically expectable in general a concurrent contribution of both terms, these con-
siderations explain the small discrepancy between VDc  and Vc′  visible in the Figure 2 
at very low values of ζ , where however in most cases the lattice specific heat alone 
does not represent the experimental specific heat, e.g. in metals. 

Approaching quantitatively this kind of problem requires details about the thermo-
dynamics of matter: this topic, inherent y , leads to the domain remarkably explored 
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by the Debye and Born-von Karman models. In effect, further physical information is 
necessary on ε ν∂ ∂  to assess separately the two addends of the Equation (21) and 
understand when the first one is actually negligible with respect to the second one. 

To this aim put nh Xε ν∂ ∂ = + , where ( )=X X ν  could be for example the 
series expansion of an unknown function X  whose zero order term is just nh . 
Whatever the analytical form of X  might be, the Equations (20) and (21) yield  

3
3

1

d const
d const ,k

k
k

nh X
nh X y y X b

ν ν
ε ν ν ν ν

ν

∞

=

+ +∫= + + = = =∫ ∑  

being const  the integration constant; thus  

3 2const d const d
2 d 3 3 3 3 .

X Xy nh X y nh
ν ν

ν ν ν
ν ν ν

+ +∂ ∫ ∫= − + − = +∫
∂

 

The addends of the Equation (21) are now compared to understand in particular 
when  

3 2 3 23 or 3 ,y yy yν ν ν ν
ν ν
∂ ∂
∂ ∂

                (22) 

since both inequalities are in principle possible. The first inequality reads  

2 3 d 3const d const
3 .

nh X X X nhν ν ν ν
ν ν

− + − − + +∫ ∫


 

The comparison is immediate considering preliminarily, for simplicity of notation 
only, X  at the first order, i.e. putting 1X nh b ν≈ + ; so  

2 2
1 12 2 3const 2 2const3 .

2
nh b nh bν ν ν ν

ν ν
+ + + +

−   

Put now purposely 2
13const 2 2D Dnh bν ν= − − , being Dν  an arbitrary con-

stant value among those allowed for ν ; with this value of const  the left hand side 
of the inequality is by definition close to zero for Dν ν≈ , whereas the right hand 
side reads  

( ) ( )2 2 2
1 12 2

,
D Dnh b nh bν ν ν ν ν ν

ν

+ + − + −
 

i.e. it remains finite even at Dν ν≈ . This shows that in an appropriate range of 
ν  around the fixed Dν  the finite value ( )2

12nh bν ν ν+  overcomes the 
vanishing value at the left hand side, thus fulfilling the first inequality (22). It is also 
evident that this reasoning holds in principle even considering all series terms of the 
function ( )X ν . The reasonable conclusion is that the inequality representing the 
Debye spectrum approximation is actually fulfilled in a well-defined range of frequen-
cies only, in particular at low T  where ν  is expectedly small. The notation Dν  
emphasizes this chance. Moreover, repeating exactly this reasoning, one finds that the 
second inequality (22) holds in a range of ν  around a new frequency oν : the idea 



S. Tosto 
 

122 

is still to define oν  as that where the right hand side vanishes, but not the left hand 
side. Hence around the boundaries of the range o Dν ν ν≤ ≤  allowed to ν , 
the frequency spectrum is governed by ( )3 yν ν δ ν∂ ∂  or by the familiar 

2ν δ ν . Strictly speaking, therefore, the approximation 23 Dyδε ν δ ν≈  is legi-
timate only in a small range of frequencies ν  around Dν  that defines Dy . Un-
fortunately Debye did not find both alternatives because of his classical way to infer the 

2dν ν  law via the elasticity theory, while acknowledging however its inherent approx-
imate character. All this implies that the 3T  dependence of the specific heat is to be 
expected only in the range of temperatures where holds the Debye spectrum; in the 
range of temperatures where prevails the ( )3 yν ν δ ν∂ ∂  frequency spectrum, 
however, the 3T  law does not hold. The Figure 2 agrees with the idea that this law is 
actually not extensible down to the absolute zero. 

Nevertheless the Debye approach, as it is, represents valuable enhancement of the 
early Einstein mode, particularly significant at low T ; its acknowledged accuracy 
represents therefore reliable reference to assess the physical significance of the steps 
from the Equations (3) to (8). 

As concerns the Equation (15), regard the second addend of the Equation (21) as 
2const ν δ ν  only; introducing it in the Equation (1), including const  into Eβ  

and then integrating as done in the Equation (9) means just replicating the Debye ap-
proach, for which holds therefore the second Equation (11). This is indeed an obvious 
condition to overlap successfully the Equations (9) and (14). Next, solving 

2 2 0Vc ζ′∂ ∂ =  at infT T=  with respect to 1ξ , which is now the only unknown once 
having calculated inf 0.164ζ = , one finds that 1ξ  is of course just that of the Equation 
(15): indeed just this latter yields the Equation (16). 

Despite these steps from (17) to (21) do not involve classical hints, this way to infer 
the Equation (15) is however indirect: it requires implementing the link just exposed of 
the Equation (14) with the Debye Equation (10), and is thus unsatisfactory. Below, a 
more fundamental way is proposed to show that the physical background of the second 
Equation (11) has full quantum base directly related to the Equation (13) regardless of 
the frequency distribution spectrum: in this way the Equation (15) shows its inherent 
physical meaning, rather than being mere numerical result of calculations. 

To describe how the lattice atom interacts with the neighbors, let us introduce its 
momentum transferred towards an arbitrary surface surrounding the equilibrium lat-
tice site: the momentum exchanged with neighbor atoms accounts for its coupling and 
shows that the ratio 0ν ν  of the Equations (12) and (13) is related just to the con-
cept of coupling process. According to the Equations (17) and (18), let v  be the aver-
age displacement velocity of an atom oscillating around its equilibrium position and 

m=p v  its average momentum; i.e. the components of v  are that previously intro-
duced to define 2v  of the Equation (19). Also, consider the surface element 

dsδ =s n  around the equilibrium site; the local unit vector n  is oriented outwards 
normally to the local surface. As d ds s⋅ = ⋅p p n  reads d ds m s⋅ = ⋅p v n , dividing both 
sides by λ  one finds that ( ) ( )d ds m sλ λ⋅ = ⋅p v n  yields  
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( )2 d d .h s m s p h vλ ν λ ν λ= = ⋅ = = ⋅ = ⋅p n v n v n            (23) 

The left hand side of the first equation defines the element of solid angle 2d ds λΩ = ; 
the right hand side reads ( ) dm h sν . Put by dimensional reasons ( )2 *1m h ν=  , be-
ing ( )m=   an arbitrary length function of m  and *ν  a frequency that by de-
finition does not depend upon dΩ , as instead ν  does by reasons that will appear just 
below. Therefore the first Equation (23) yields  

2
*d d d d .sν

ν
′ ′Ω = Ω Ω =   

These positions are possible because all related quantities are arbitrary. Integrating 
both sides, one finds *4π dν ν ′= Ω∫ . The reasonable conclusion is  

* 1 d :
4π

ν ν ′= Ω∫  

indeed if ν  would be constant, then *ν ν≡ . Let us rewrite the last equation as  

* d2 .
2π
νν

ν ν

′Ω
= ∫                            (24) 

At this point, let us try to plug *ν  in the frame of the model hitherto formulated; 
the fact that it is arbitrary, and thus purposely definable, avoids the difficulty of re-
garding it as new frequency hardly explainable in the present frame. Accordingly, link 
this result with 1ξ ζ  of the Equation (14), of interest for the present purposes and 
expected recalling the form of the Equation (13). Let be at the inflexion point of the 
curve Vc′  vs ζ   

*
inf 0

1 1 :
2π 2

ζ ν ν= =                         (25) 

in effect 1 2π  is just the value of the second Equation (11), whereas the second posi-
tion follows thinking that in general the zero point energy 0 2hν  is merely due to the 
random delocalization of any particle confined in a region of space. As 1 1 1vν λ=  and 

2 2 2vν λ=  are related to the propagation directions of the respective waves, according 
to the Equation (12) one concludes that 3 0 2ν ν=  is the only frequency consistent 
with the property * *d dν νΩ = Ω∫ ∫ . So the Equation (24) reads  

1

inf

d
5.66,

νξ
ζ ν

′Ω
= =∫                         (26) 

whence  

1
5.66 0.905 :
2π

ξ = =  

the value of 1ξ  results to be just that previously introduced in the Equation (15). This 
shows that in effect both positions (25) fit 1ξ  and *ν  to the three vibrational and ze-
ro point iξ  (13) without introducing further frequencies. Moreover note that in gen-
eral h hv pvν λ= = , with p  and v  defined in the Equation (23); hence the Equa-
tion (26) reads  
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1

d
:

2π
pv

pv
ξ

′Ω
= ∫  

if const⋅ =p n , then pv pv=  would yield 1 2ξ = ; the fact that actually 1 0.905ξ =  
shows that the momentum p  is not uniformly transferred all around the oscillating 
atom. This is reasonable: the interaction driven coupling preferentially points towards 
specific lattice directions where other atoms are found to which the vibrational mo-
mentum is effectively transferred. So the integration of momentum transfer across the 
surface element defined by d ′Ω  is smaller than that expected for a continuous solid or 
amorphous microstructure. 

At this point integrating at constant volume it is possible to find the lattice internal 
energy dVc T′∫ , i.e.  

1 1
1 1

2
1

1 e 1 2 e 1 ,
2

U R
ξ ξ
ζ ζξ

− −    
 = Θ − + −           

 

and entropy ( )dVc T T′∫ , i.e. 

1 1
1 1

1 1

2
2 1 1

2

e elog e 1 2 log e 1 ,
2

e 1 e 1
S R

ξ ξ
ξ ξζ ζ
ζ ζ

ξ ξ
ζ ζ

ξ ξ
ζ ζ

 
    

= − − + − − +       
    − − 

 

from which one calculates the Helmholtz lattice free energy U TS U Sζ− = − Θ . 
As a closing remark, note that at very low T  the Equation (14) can be also rewritten 

thinking one vibration wave only and two zero point terms; in other words, it is also 
physically admissible the following formula of specific heat, obtained simply moving 
the coefficient 2 from the second to the first addend,  

( ) ( ) ( )
( )( )

( ) ( )
( )( )

2 2 11 1 1
1 12 2

1 1

exp 2 exp
2 2

exp 2 1 exp 1
sf

Vc R
T

ξξ ζ ξ ζ ξξ ζ ξ ζ
ζξ ζ ξ ζ

  Θ = + =
 − − 

 

to which are related the energy  

( )
1 1

1 1

2
1 e 1 e 1sfU R

ξ ξ
ζ ζξ

− −    
 = Θ − + −           

 

and entropy  

( )

1 1
1 1

1 1

2
2 1 1

2

e e2 log e 1 log e 1 .
e 1 e 1

sfS R

ξ ξ
ξ ξζ ζ
ζ ζ

ξ ξ
ζ ζ

ξ ξ
ζ ζ

 
    

= − − + − − +       
    − − 

 

The notation reflects preliminary indications, according which these quantities could 
be related to the superfluid state, of course with different 1ξ  and ν  and Θ . 
Further investigation is in progress on this possible implication of the present model. 

5. Further Implications of the Present Model 

The main purpose of the present paper was to highlight that the Einstein and Debye 



S. Tosto 
 

125 

approaches are directly correlated when accounting appropriately for the zero point 
energy of the crystal lattice: the Equation (5) describes the thermal oscillators of the lat-
tice introducing the Einstein initial Equation (1) as a straightforward consequence of 
the Bose statistics and allows to infer the Debye-like Equation (14) calculable as a func-
tion of T . Yet a similar kind of approach, owing to its generality, should be in prin-
ciple adequate to describe even a system of fermions, for example the free electron gas 
in the lattice. Indeed this section shows that to this purpose it is enough to start from  

( )
,

exp 1F F
h

h kT
νε β

ν
=

+
                     (27) 

with the same physical meaning of degeneracy factor Fβ  and still with the unique 
frequency ν . Besides the intrinsic importance of this topic, the following considera-
tions are significant to confirm further the validity of the steps leading from the Equa-
tion (1) to the Equation (5). In fact the extension proposed here of the present ap-
proach implies merely finding how the physical differences between either statistical 
distribution compel reformulating the Equations (6) to (8) once having replaced the 
Equation (1) with the Equation (27). Let us rewrite first the Equation (5) with the same 
notations as  

( )
3

1
1 exp 1

i i i
F i i

i ii

hTR
k

β νε ζ
ζ −

=

Θ
= = Θ =

Θ+
∑              (28) 

Now the limit value of Fε  for iT Θ  is different from iiRT β∑ ; so, without 
chance of obtaining this limit case, is also missing the necessity of 3iiβ =∑  and thus 

1iβ = . Furthermore fails also the idea of replacing iΘ  with a unique Θ , as the 
three waves must be in different quantum states: this of course implies different iΘ . 
Instead still holds the idea of equivalence of the three space directions along which is 
transmitted the interaction between particles; it is irrelevant in this respect that, actual-
ly, in this case the Coulomb electron interaction replaces vibrational interaction of lat-
tice oscillators. While expecting reasonably equal iβ , whose unique value is expressed 
now with the notation i elβ β= , in general 1elβ ≠ ; should hold by consequence the 
position  

( ).el el kTβ β=  

As elβ  is no longer a constant, it can be nothing else but a function of the only 
quantity, kT , that does not depend on the index i . So  

1 :i i
el i i el i i el i

h
T kT

νβ ζ β ν β ν− ′ ′Θ ′ ′= = Θ = Θ =                (29) 

owing to the coefficient elβ , appear in the Equation (28) both iν ′  and iν . It is inter-
esting the fact that i el ih kβ ν′Θ =  yields el i iR Nβ ′Θ = Θ  with elN Nβ′ = ; i.e. even 
the effective number of oscillators is changed with respect to the initial N . Neverthe-
less the primed and unprimed quantities are correlated, the correlation function being 
just elβ . Let be therefore  

( )
3

1
1 exp 1

i
F el

i i

Rε β
ζ −

=

Θ
=

+
∑                       (30) 
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and then  

( )
( )
( )( )

13 3

21 2 11 1

exp
.

exp 1 exp 1

iel i
VF el

i ii i i

c R R
T

ζβ β
ζ ζ ζ

−

− −= =

∂ Θ
= +

∂ + +
∑ ∑          (31) 

The form of the function elβ  must fulfill three boundary conditions: 
1) the limit ( )0

Fε  of Fε  for 0T →  cannot be zero, because of the zero point energy; 
2) the limit ( )0

VFc  of VFc  for 0T →  must be zero; 
3) the limit ( )

VFc ∞  of VFc  for T →∞  must not diverge. 
Owing to the terms ( )exp i TΘ  at denominator, the Equation (30) requires  

( )1 1 2 1 3exp ,el el Tβ β ′= Θ Θ < Θ Θ < Θ                 (32) 

in order that  

( )
( ) ( )

13 1

1
1

exp
.

exp 1
i

F el el el
i i

R kT
ζ

ε β β β
ζ

−

−
=

Θ
′ ′ ′= =

+
∑                (33) 

The reason of having introduced in the Equation (32) the smallest one among the 
three iΘ  is coherent with the chance of defining uniquely elβ  independently of the in-
dex i ; so, for 0T →  in one term only of the sum the ratio ( ) ( )( )1 1exp exp 1TΘ Θ −  
is different from zero, whereas the remaining two vanish according to ( )( )1exp i TΘ −Θ . 
Also now one wave accounts for the zero point energy. Hence  

( )
( ) ( )

3
1 0

11
1

exp
0 :

exp 1
i

F el F el
i i

T
R Rε β ε β

ζ −
=

Θ Θ
′ ′= = Θ

+
∑             (34) 

owing to the positions (32), this is a minimum zero point energy; hence elβ ′  does not 
vanish at 0T = . It is formally convenient now to express  

2 2 1 3 3 1,q qΘ = Θ Θ = Θ  

being 2q  and 3q  multiplicative proportionality constants to express 2Θ  and 3Θ ; 
both constants are by definition > 1  according to the Equation (32). So the first Equa-
tion (34) reads explicitly  

( ) ( ) ( ) ( )
32

1 1
1 2 1 3 1

1exp ,
exp 1 exp 1 exp 1F el

qqR T
T q T q T

ε β
 

′= Θ Θ + +  Θ + Θ + Θ + 
 (35) 

whereas VFc  follows by consequence. 
Despite the function elβ ′  is still unknown, let us express it through its series expan-

sion 2
el a bT cTβ ′ = + + + ⋅⋅⋅ , via appropriate coefficients ,  ,  a b c  of the series. Now let 

us account for the three boundary conditions. It is clear that the highest power cannot 
be 2> , otherwise 2

el iβ ζ  in the second addend of the Equation (31) would diverge 
with T . Since the power up to 2T  is in principle admissible, we have three chances 
to check. Trivial calculations yield:  

( ) ( ) ( ) ( )0 0 1
1 1 2 31

2el F VF VF
Rba bT aR c bR c q qβ ε ∞ Θ′ = + → = Θ = Θ = + +  
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( ) ( ) ( )0 02
1 1 .el F VF VFa bT cT aR c bR cβ ε ∞′ = + + → = Θ = Θ = ∞  

( ) ( ) ( )0 02
1 0 .el F VF VFa cT aR c cβ ε ∞′ = + → = Θ = = ∞  

Owing to the zero order coefficient a , the zero point energy is correct in all cases. 
The first case yields sensible ( )

VFc ∞  but wrong ( )0
VFc . In the third case holds exactly the 

contrary. In the second case both limits are wrong. As the term 2T  only accounts well 
for VFc  at low temperatures, whereas T  only accounts well for its high temperature 
limit, these results suggest that the correct form of elβ ′  is the one that interpolates ap-
propriately both chances:  

( ) ( ) ( ) ( )
2

0 0 1
1 2 30 1 .

2el F VF VF
RbbTa aR c c q q

c T
β ε ∞ Θ′ = + → = Θ = = + +

+
 

In conclusion, replacing just the last form of elβ ′  in the Equation (35) and deriving 
with respect to T , one should find the correct form of Fε  and thus of VFc . This 
formula is not quoted explicitly for brevity. To check this conclusion in a crucial case, 
i.e. at low T , it is enough to expand in series this VFc  calculated from the Equation 
(35), taking advantage of the fact that the limits for 0T →  of VFc T∂ ∂  and  

2 2
VFc T∂ ∂  around 0T =  are in fact finite in the present model: i.e.  

( )
0

lim 2ep
VT

c T R b c
→

∂ ∂ = Θ  and ( )2 2 2

0
lim 6ep

VT
c T R b c

→
∂ ∂ = Θ . The result is thus  

21 1
2

2 6
,VF

Rb Rbc T T
c c
Θ Θ

≈ − + ⋅⋅⋅                   (36) 

where the constant c  plays the role of reduced temperature. In conclusion, the Fermi 
statistics compels at the first order the linear T  dependence of the specific heat, as it is 
known. 

Of course several considerations are possible about how the constants appearing in 
this expression are related to the physical properties of metals. However these consid-
erations, going back to Fermi’s time, are omitted here for brevity: the purpose of this 
extension is simply to demonstrate that the Equation (27) only is inherently enough to 
obtain the well known Equation (36), likewise as the Equation (1) only is inherently 
enough to obtain the well known Debye-like Equation (14). 

6. Conclusions 

Unfortunately neither Einstein nor Debye realized that actually their theoretical models 
coincide merely handling appropriately a unique lattice frequency, even without need 
of implementing the classical theory of elasticity. 

In this respect, the key point to improve the early Einstein result is not the frequency 
distribution spectrum 2ν  but the quantum zero point energy, being actually the for-
mer, a consequence of the latter. 

The conceptual basis of all Debye considerations and its implications on the link be-
tween thermodynamic and elastic properties of solids have actually full quantum origin, 
once regarding the latter as a mere corollary of the Equation (14). 

The Equations (5) and (6) are easily generalizable to the case of a system of fermions. 
Eventually it is noted that the model is easily generalizable to describe phenomena 
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like the superfluidity as well, simply admitting that in the case of a fluid 1ξ  of the Eq-
uation (15) is not necessarily a constant; more specifically, the Equation (14) shows that 
if 1ξ  decreases then Vc′  increases. If a good physical reason exists to demonstrate that 

1ξ  is allowed to decrease at an appropriate value of * *Tζ = Θ , then simple calcula-
tions show that at this particular *T  the Equation (14) is in fact compatible with the 
analytical form of the so called λ -point. In principle this conclusion is physically ex-
pectable in the present model without additional hypotheses; it simply follows from the 
chance of defining the transition between a thermodynamic state with energy and en-
tropy U  and S  to another state characterized by ( )sfU  and ( )sfS . Accordingly, just 
the change of zero point energy and vibrational wave energy consistent with either 
chance of regarding the components of the position (4) could be the key concept to de-
scribe the low T  behavior of 3 He  and 4 He , of course in agreement with the va-
nishing of both Vc  and ( )sf

Vc  at the absolute zero. Activity is in advanced progress on 
this topic. 
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