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ABSTRACT 
 

Aim: To investigate quantum characters of the microRNA (miRNA) gene as the disease memory 
device, at the beginning, a novel quantum scoring method was developed and its usability was 
confirmed by valuating miRNA–miRNA interaction. 
Background: In general, activated miRNAs participate in regulation of gene expression via mainly 
inhibiting translation of messenger RNAs (mRNAs) into proteins. miRNAs select their target 
mRNAs by the degree of sequence complementarity between miRNAs and target sites on mRNA. 
Therefore, a precious prediction of miRNA–mRNA interaction would be useful for clear up miRNA–
protein functions in biological processes. However, although many computer algorisms for miRNA 
target prediction have been developed and improved, they still have shown many incorrect results. 
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Thus, much more precise prediction tool in silico by using computers and databases is necessary.   
Methods: First, the miRNA–miRNA synergism was investigated according to modified previous 
algorism, and some synergistically-working miRNA pairs were collected. Next, we developed two 
new quantum scores, Static Nexus Score (SNS) and then Dynamic Nexus Score (DNS), and 
calculated them for each synergistic miRNA pair. SNS and DNS were derived from the miRNA-
miRNA matrix that calculates quantum interaction between miRNAs from quantum energy in each 
single miRNA nucleotide. The synergistic activities of the miRNA functional pairs were evaluated 
upon the fold changes as synergistic effect (SE).  
Results: The relation of SE in miRNA functional activity was subsequently examined with DNSs. 
As a result, positive correlation (R = 0.55, P < .06) was observed between DNS and strength of SE 
of each synergistic miRNA pair which is related to oncogenesis or tumor suppression. 
Conclusions: The single miRNA-miRNA synergism would be important to predict biological 
function of miRNAs in cancer. This is the first report arguing that miRNA synergism could be 
showed through calculating DNS of each miRNA pair as miRNA memory device. 
 

 

Keywords: MicroRNA (miRNA); noncoding RNA; algorism; quantum; synergism; cancer. 
 

ABBREVIATIONS 
 

SE Synergistic Effect 
SNS Static Nexus Score 
DNS Dynamic Nexus Score 
TSS Transcription Start Site 
FMO Fragment Molecular Orbital method 
 

1. INTRODUCTION 
 
MicroRNAs (miRNAs), which are approximately 
20 nucleotides long, belong to the small non-
coding RNAs [1]. These RNAs were once 
considered RNA fragments, but it has recently 
been revealed that miRNAs are gene, which is 
able to regulate biological processes in humans 
and other species, such as cell cycle, apoptosis, 
cell proliferation, immunoreaction, and 
tumorigenesis [2–7]. The functional miRNA 
complex is composed of the Argonaute protein 
binding to both the mRNA and miRNA, and this 
complex is able to suppress gene expression 
post-transcriptionally [8,9]. However, in vivo and 
in vitro experiments demonstrated that certain 
miRNAs may augment gene expression [10].  
Individual miRNAs can interact with hundreds of 
mRNAs, and a single mRNA is controlled by 
numerous miRNAs; however, the binding affinity 
is different between each miRNA and mRNA 
[3,11,12]. Although interactions between miRNA 
and mRNA can be predicted using the seed 
theory-based algorithm, in vitro or in vivo 
experiments is not always confirmed by the 
predicted binding [13]. 
 
Web services and databases based on seed 
theory algorithms are available for miRNA target 
prediction, and these tools enable the 
comparison of results calculated with various 
algorithms (Table 1). For instance, the 

TargetScan, miRanda (miRBase), and miRDB 
systems are based on sequence 
complementarity between the miRNA seed 
region and target site in the mRNA [14–16].  
DIANA-microT and PicTar use thermodynamics 
to calculate the stability or free energy of the 
miRNA–mRNA complex, and RNAhybrid utilizes 
both a statistical model and thermodynamics for 
prediction [15–18]. However, these target 
prediction systems suggest many incorrect 
candidates such as false positive and incorrect 
targets [13,19]. 
 
Original scores are now filtered, thus improving 
the results of prediction tools (Table 1). However, 
predictions investigating a one-to-one interaction 
between a miRNA seed and an mRNA target 
cannot predict multiple interactions of miRNAs 
and mRNAs. Therefore, high quality predictions 
cannot be obtained by improving the filtering 
alone. 
 
Synergies between miRNAs regulate miRNA–
mRNA interactions, and in numerous cases, 
these collaborations caused a more profound 
effect compared with that caused by a single 
miRNA [20,21]. miRNA–miRNA synergies may 
have a key function in regulating biological 
processes because they have potential to reveal 
the unexplainable target selection mechanisms, 
such as non-canonical and cell-specific targeting.  
Indeed, it is reported that interactions between 
miRNAs have been observed not only in co-
target relations but also in multiple mode of 
function [22]. This suggests that there is room for 
allowing existence of miRNA–miRNA synergies.   
Therefore, to improve miRNA target prediction, 
scoring of miRNA–miRNA interactions would be 
beneficial, which has been reported in only a few 
publications [23]. 
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Table 1. Existing target prediction services for miRNA 
 

Service name Base algorism Filtering option References 
TargetScan seed complementarity conservation, target site 

abundance 
[15,16] 

miRanda complementarity thermodynamics [15,16] 
miRDB support vector machine conservation, expression profile, 

functional annotation  
[14-16] 

DIANA-microT thermodynamics seed complementarity, 
conservation, target site 
abundance 

[15-17] 

PicTar thermodynamics complementarity, co-expression, 
cross-species comparison 

[15,16] 

RNAhybrid thermodynamics statistical model [16,18] 
 
In our previous study, to elucidate miRNA 
biological functions at the nucleotide level, we 
developed an RNA wave model and annotated 
the RNA sequences using quantum theory and 
electrostatic potential according to RNA bases 
[24,25]. We constructed a matrix for simulating 
quantum interaction between RNAs and 
subsequently showed that a miRNA can 
transform the binary notation with qubit, and 
miRNA–viral RNA complexes can be expressed 
using the matrix [26]. Here, we introduce a novel 
quantum scoring method based on the quantum 
computing algorithm to investigate single 
miRNA–miRNA interactions. Using this technique, 
we found a positive correlation between quantum 
scoring and synergistic effects (SEs) of miRNAs 
in malignant diseases. Finally, we discuss the 
benefits of quantum scores in disease prediction, 
and in interpretation of microRNA as memory 
device. The G-based quantum superposition and 
entanglement of miRNAs could record, transmit, 
and even inherit biological statuses in cells, like 
memory devices in computers [25]. 
 

2. MATERIALS AND METHODS 
 
2.1 microRNA Sequence Data 
 
Sequences of mature miRNAs were downloaded 
as microRNA.dat and mature.fa from miRBase 
[27]. This data was Release 21 (date: June 2014) 
and the database contained 28,645 of all mature 
miRNA sequences.  We extracted 2,588, 1,915, 
466, 434, and 427 of human, murine, Drosophila, 
C. elegans and Arabidopsis mature miRNA 
sequences from above mature miRNAs, 
respectively. 
 

2.2 Conversion of Sequence 
 
All miRNA sequences downloaded from 
miRBase were converted into respective binary 

codes (ket alignments). According to the previous 
report, electrical potential of four basic 
nucleobases in RNA (Guanine, Adenine, 
Cytosine, and Uracil) were calculated by referring 
to FMO of each atom in nucleobase and by 
integrating them with quantum entanglement [24].  
As a result, only G showed positive numeric 
value and the others showed negative ones, 
therefore, to consider about the basis state of 
spanning sets of bits in vector subspace of 
miRNA-FMOs, the binary transformation was 
performed into the state 1 and 0. G was 
transformed as 1 and the rest, U, A, and C as 0 
[24]. 

 
2.3 The Quantum Matrix Construction 
 
The matrix for quantum computation was made 
with Microsoft Office Excel 2013 (Microsoft 
Japan Co., Ltd., Tokyo, Japan) using its macro 
and function systems. The matrix is comprised of 
three parts; the upper part for loading miRNA pair 
sequences, the left and lower parts for arranging 
sequences, and the central part for calculating 
miRNA–miRNA interactions (Fig. 1). miRNA 
sequences set in the upper part will be loaded 
into the left and lower parts with the windows of 3 
nucleotides, then interactions between each 
nucleotide and each its opposite nucleotide will 
be calculated at corresponded intersecting points 
on the central part. Although the relation of 
nucleobase binding is flexible phenomenon 
which occur in sufficiently tiny environments, we 
have previously reported the existence of 
quantum energy between or among miRNAs 
[24–26]. Original sequences of miRNAs are 
translated by binary notation based on the 
quantum energy of nucleotide (Fig. 1A), set in 
upper part of the matrix (Fig. 1C), and loaded 
into left and lower parts of matrix separately by 
the rule shown in Fig. 1B. Then matrix calculated 
and visualized the quantum state
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Fig. 1. The matrix for quantum calculation 

 
between coupled miRNAs (Fig. 1C). The matrix 
architecture is derived from analogy of quantum 
computation [28]. 

 
2.4 The Quantum Calculation 
 
Since information is physics and the miRNA gene 
is information, we here selected the matrix as the 
Hilbert space, which is a vector space 
possessing the structure of an inner product, of 
the Tensor products. The ket modules of two 
miRNAs in matrix, for instance, A and B are 
expressed as follows 

 

 
(1, 0) 

 
(a ⊗  b)(|� > ⊗  |� >) = �|� > ⊗  �|� >  

   (1, 1) 

 
From (1, 0) and (1, 1), A ⊗ B of the inner product 
spaces are represented the vector space of an 
intersecting point between |A> and |B> in the 
matrix. 

(∑ ��|� > ⊗ �� >, ∑ ��|�� > ⊗ ��� > �  ≡

 ∑ �� ∗ �� < ����� >< ����� >         (1, 2) 
 

Since RNA quantum code with the fragment 
molecular orbital method (FMO) of two miRNAs 
were calculated according to the binary notation 
of electro spin as previously described [24].  
From (1, 2), miRNA–miRNA interaction was 
calculated in the matrix as a vector space. The 
coherent of sample miRNA values are applied 
into a matrix in the order with both rows and 
columns.  When the f(x) is register y for a miRNA 
and the register x is the other miRNA the values 
of superpose samples are shown as amplitude 
vectors of an intersecting point between |x> and 
f(x) in the matrix. These calculation were 
performed by the original macro program, MESer 
[29]. An integer of the amplitude vectors, each 
superposition (SP) in the intersecting points on 
the decreasing diagonal of the matrix (1, 3) was 
summed up as Static Nexus Score (SNS) (1, 4). 
 

SP� = ∑ ����� × ������
���        (1, 3) 

 

SNS = 3 × ∑ (�� × ��)��
���        (1, 4) 
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The RNA wave model 2000 was based on 
circular miRNA electron spin, therefore two 
sample miRNAs were moving and shifting one by 
one and in the counter direction of each other 
[24–26]. Since the torus miRNAs can revolve in 
the matrix, SNS between two torus miRNAs (Ai, 
Bj) usually showed different values in each 
relative location shifting. Subsequently, they were 
summed up as Dynamic Nexus Score (DNS)     
for further experiments (i = 0, …, 23; j = 0, …, 23) 
(1, 5). 
 

DNS = 3 × ∑ ��� × ∑ ��
��
��� ���

��� = 3 × ∑ ��
��
��� ×

∑ ��
��
���     (1, 5) 

 
In the case of different nucleotide length of two 
miRNAs, the surplus space of 3’ end region of 
miRNA was filled up with zeros. 
 

2.5 Evaluation of Synergistic Effects of 
miRNAs 

 
The biological activity of synergistic effects was 
investigated from previous reports about miRNA 
synergism. When a specific numerical value was 
shown in above reports as miRNA synergism, we 
directly applied the specific value to the 
comparison to the miRNA-miRNA quantum 
scores. Otherwise, the single miRNA activity unit 
(E) and synergistic miRNA activity unit (S) were 
calculated as follows, 
 

 
 

 
 

Total amounts mean an amount of miRNA that is 
applied to sample in each research, such as ng 
and mol.   
 

A synergistic effect (SE) between miRNAa and 
miRNAb was calculated as follows, 
 

 
 
When a single miRNA pair has multiple 
synergistic activities, these synergistic effects 
were averaged as multiple SE unit (SEU) (i = 1, 
2…, n), 
 

Multiple SE unit (SEU) =
∑ SE�

�

n
  

3. RESULTS 
 

3.1 MicroRNAs with the Binary Quantum 
Code 

 
According to a previous report that compared 
electrical states among the four types of nucleic 
acid bases, only G has a positive electrical 
potential; the others have a negative one.  We 
performed a new RNA evaluation by transforming 
the original RNA sequences into binary codes 
substituting Gs with 1 and the others with 0. 
Using this quantum theory, we transformed the 
hsa-let-7b and hsa-miR-34a miRNA sequences 
into a quantum code as a sample and defined 
these quantum codes as ket alignment according 
to the quantum mechanics field.  Ket alignments 
of hsa-let-7b and hsa-miR-34a were represented 
with the binary code (Fig. 1A). 
 

3.2 Calculation of SNS and DNS Values 
 
To calculate miRNA-miRNA quantum interaction 
score, the quantum matrix was applied here. Ket 
alignments of miRNA pairs, for example, miRNA1 
and miRNA2, will be loaded into left and lower 
windows of the matrix by the rule shown in                 
Fig. 1B, respectively. Here, hsa-let-7b and hsa-
miR-34a were used as a general sample to 
demonstrate the calculation of SNS.  To calculate 
SNS, we downloaded the mature miRNA 
sequence data from miRBase. Then the 
sequences were transformed to binary data as 
ket alignments.  In addition, hsa-let-7b and hsa-
miR-34a was transformed and arranged in 
parallel (Fig. 1A and 1C). Finally, the SNS value 
between hsa-let-7b and hsa-miR-34a was 
calculated by summing up SPs, values of cells 
on the decreasing diagonal of the matrix (Fig. 
1D). Since the matrix represents the 
entanglement state between the two miRNAs, 
SNS represents the total quantum state of the 
loaded miRNA pair. SNS values of hsa-let-7b and 
hsa-miR-34a were represented using the radar 
chart (Fig. 2) under various situations, such as 
different scales of unit (from 3mer to 5mer), 
different sequence arrangements (parallel or 
antiparallel) (Fig. 2A), and various relative 
locations (Fig. 2B). The results suggested that 
SNS values change according to inner state 
transition of the miRNA pair (one miRNA, blue; 
the other miRNA, purple; SP, green). We 
obtained approximately 40 SNS values for the 
hsa-let-7b and hsa-miR-34a pair (note: some of 
them had same value but showed different SP 
shapes). This indicates that SNS was not 
constant for hsa-let-7b and hsa-miR-34a. 



Fig. 2. Transition of SNS value in single miRNA pair
Top: ket alignment of the miRNA on top side.  Bot: ket alignment of the mRNA on bottom side.  SP: entangle

 

To improve the results, we calculated the DNS 
value using the RNA wave 2000 model, which 
enables miRNAs to form a torus, and therefore, 
the relative location of nucleic acid sequences 
can be shifted. DNS is generated from the sum 
of all SNS values of the shifted miRNA pairs.  
DNS was a constant value either after the 
parallel or antiparallel shifting between the two 
miRNAs. 
 

3.3 Evaluation of miRNA
Interactions 

 
Firstly, miRNA ket alignment homology was 
investigated among 2,588 mature human 
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2. Transition of SNS value in single miRNA pair 
Top: ket alignment of the miRNA on top side.  Bot: ket alignment of the mRNA on bottom side.  SP: entangle

status between top and bot 

To improve the results, we calculated the DNS 
value using the RNA wave 2000 model, which 
enables miRNAs to form a torus, and therefore, 
the relative location of nucleic acid sequences 
can be shifted. DNS is generated from the sum 

hifted miRNA pairs.  
DNS was a constant value either after the 
parallel or antiparallel shifting between the two 

Evaluation of miRNA–miRNA 

Firstly, miRNA ket alignment homology was 
investigated among 2,588 mature human 

miRNAs. Complete ket homologies of miRNAs 
were detected in a total of 107 alignments 
containing 259 miRNAs, which belong to the 
same family, subtype, or isomiR. Since 2,426 of 
2,588 (93.7%) miRNA kets displayed different 
individual characteristics, it is obvious
of miRNA kets are heterogeneous. SNS and 
DNS values were calculated for different miRNA 
pairs to evaluate miRNA–miRNA interactions.  
Human mature miRNA sequences (2,588) were 
extracted from miRBase, and SNS and DNS 
general distributions of 3,347,578 miRNA
miRNA pairs were computed.  In this experiment, 
SNS was calculated based on the basic state 
shown in Fig. 1C. Because all SNS and DNS 
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Top: ket alignment of the miRNA on top side.  Bot: ket alignment of the mRNA on bottom side.  SP: entanglement 

. Complete ket homologies of miRNAs 
were detected in a total of 107 alignments 
containing 259 miRNAs, which belong to the 
same family, subtype, or isomiR. Since 2,426 of 
2,588 (93.7%) miRNA kets displayed different 
individual characteristics, it is obvious that most 
of miRNA kets are heterogeneous. SNS and 
DNS values were calculated for different miRNA 

miRNA interactions.  
Human mature miRNA sequences (2,588) were 
extracted from miRBase, and SNS and DNS 

,578 miRNA–
miRNA pairs were computed.  In this experiment, 
SNS was calculated based on the basic state 

1C. Because all SNS and DNS 
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values were in multiples of 3, we divided them by 
3 in order to draw a graph.  Human miRNA SNS 
values ranged from 0 to 14 and peaked at 1             
(Fig. 3A), and human miRNA DNS values ranged 
from 0 to 288 and peaked at 29 (Fig. 3B). To 
compare the distributions of SNS and DNS, they 
were plotted on the same graph, which revealed 
a much wider range for DNA than for SNS              
(Fig. 3C). This result indicates that DNS values 
are more suitable for evaluating miRNA–miRNA 
interactions. Furthermore, DNS distributions of 
murine, Drosophila, Caenorhabditis elegans, and 
Arabidopsis miRNA–miRNA interactions were 

investigated individually, and then were 
compared to each other (Fig. 3D). In murine, 
Drosophila, C. elegans, and Arabidopsis species, 
the maximum values of DNS were 272, 147, 172, 
and 168, respectively, and DNS peaked at 24 in 
all species, except for C. elegans (30) (Table 2).  
Although dominant ranges are similar to each 
other in all 5 species, proportions of miRNA pairs 
in dominant range are greatly different.  
Intriguingly, all of them showed a similar 
distribution in spite of their various sample sizes 
(Fig. 4). This indicates that RNA language may 
be common among plural species.   

 

 
 

Fig. 3. Contrasts between SNS and DNS, or Human and other species 
 

Table 2. Profiles of miRNA count and DNS distribution in 5 species 
 

Counts of miRNAs 2588 (hsa) 1915 (mmu) 466 (dme) 434 (cel) 427 (ath) 

Counts of miRNA pairs 3321753 1832655 108345 93961 90951 
Peak DNS value 
(its count) 

24 
(170397) 

24 
(94858) 

24 
(7905) 

30 
(6717) 

24 
(6150) 

Min-max of range 0 – 290 0 – 272 0 – 147 0 – 172 0 – 168 
Dominant range of DNS 20 – 40 12 – 40 12 – 40 12 – 42 12 – 42 
Counts of miRNA pairs 
included in dominant range 

1291767 
(38.6%) 

941590 
(51.4%) 

68793 
(63.5%) 

67438 
(71.8%) 

63936 
(70.3%) 

Dominant range means the extent between minimum and maximum DNS values which occupy more than 4% 
count in that of whole DNS 
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Fig. 4. DNS distributions of 4 different species 
X axis: value of DNS, Y axis: count 

 
3.4 Relationship between DNS and SE 
 
We collected scientific papers which report 
miRNA SEs, then extracted 18 reports that 
describe about miRNA-miRNA SE. Fifteen 
reports were related to cancer, 13 of the 18 
reports were chosen as samples to examine 
synergisms between miRNAs (Table 3) [22,27–
38]. We built ket alignments of all miRNAs 
present in these reports, then calculated DNS of 

these miRNA combinations (Table 4).  Finally, the 
strength of SE for all miRNA pairs were 
calculated, and 31 DNS and 11 SE values were 
obtained (Table 5). We observed a positive 
correlation between 11 of the DNSs and SEs 
related to malignant diseases (R = 0.55, P < .06, 
R

2
 = 0.2982) (Fig. 5A). For SNS, 31 data were 

obtained, but no correlation was observed 
between SNSs and SEs (Table 6 and Fig. 5B). 
 

 

 
 

Fig. 5. DNS and SE correlate to each other 
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Table 3. Synergy-associated miRNA combinations 
 

Biofunctions Common targets miRNAs miRBase ID Sequences References 

Lung cancer C-MYC let-7b-5p MIMAT0000063 UGAGGUAGUAGGUUGUAUAGUU [30] 

miR-34a-5p MIMAT0000255 UGGCAGUGUCUUAGCUGGUUGU 

MDSC induction SHIP-1 miR-21-5p MIMAT0000076 UAGCUUAUCAGACUGAUGUUGA [31] 

miR-155-5p MIMAT0000646 UUAAUGCUAAUCGUGAUAGGGGU 

proliferation / invasion MMP-2, EGFR, PDCD4 miR-21-5p MIMAT0000076 UAGCUUAUCAGACUGAUGUUGA [32] 

miR-10b-5p MIMAT0000254 UACCCUGUAGAACCGAAUUUGUG 

colon cancer - miR-491-5p MIMAT0002807 AGUGGGGAACCCUUCCAUGAGG [33] 

miR-221-3p MIMAT0000278 AGCUACAUUGUCUGCUGGGUUUC 

miR-342-3p MIMAT0000753 UCUCACACAGAAAUCGCACCCGU 

proliferation / survive WEE1 miR-381-3p MIMAT0000736 UAUACAAGGGCAAGCUCUCUGU [34] 

miR-424-5p MIMAT0001341 CAGCAGCAAUUCAUGUUUUGAA 

cell viability - miR-21-5p MIMAT0000076 UAGCUUAUCAGACUGAUGUUGA [23] 

miR-1-3p MIMAT0000416 UGGAAUGUAAAGAAGUAUGUAU 

tumor growth EphA2 miR-520d-3p MIMAT0002856 AAAGUGCUUCUCUUUGGUGGGU [35] 

si-Eph2A-2 (Eph2A: 
NM_004431.3) 

CCAUCAAGAUGCAGCAGUA 

p63 cell cycle Cyclin D1, E2, CDK4, 6, E2F3, Bcl2, etc. miR-34a-5p MIMAT0000255 UGGCAGUGUCUUAGCUGGUUGU [36] 

miR-34c-5p MIMAT0000686 AGGCAGUGUAGUUAGCUGAUUGC 

glioma - miR-21-5p MIMAT0000076 UAGCUUAUCAGACUGAUGUUGA [37] 

miR-23b-5p MIMAT0004587 UGGGUUCCUGGCAUGCUGAUUU 

miR-181d-5p MIMAT0002821 AACAUUCAUUGCUGUCGGUGGGU 

milk fat synthesis - miR-23a-3p MIMAT0000078 AUCACAUUGCCAGGGAUUUCC [38] 

miR-27b-3p MIMAT0000419 UUCACAGUGGCUAAGUUCUGC 

miR-103-3p MIMAT0000101 AGCAGCAUUGUACAGGGCUAUGA 

miR-200a-3p MIMAT0000682 UAACACUGUCUGGUAACGAUGU 

tumor growth PDCD4 miR-21-5p MIMAT0000076 UAGCUUAUCAGACUGAUGUUGA [39] 

BTG2 miR-23a-3p MIMAT0000078 AUCACAUUGCCAGGGAUUUCC 
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Biofunctions Common targets miRNAs miRBase ID Sequences References 

NEDD4L miR-27a-3p MIMAT0000084 UUCACAGUGGCUAAGUUCCG 

proliferation - miR-19b-3p MIMAT0000074 UGUGCAAAUCCAUGCAAAACUGA [40] 

miR-21-5p MIMAT0000076 UAGCUUAUCAGACUGAUGUUGA 

miR-148a-3p MIMAT0000243 UCAGUGCACUACAGAACUUUGU 

Carcinoma E2F5 miR-196a-5p MIMAT0000226 UAGGUAGUUUCAUGUUGUUGGG [41] 

miR-337-3p MIMAT0000754 CUCCUAUAUGAUGCCUUUCUUC 

let-7c-5p MIMAT0000064 UGAGGUAGUAGGUUGUAUGGUU 

MCM4 miR-196a-5p MIMAT0000226 UAGGUAGUUUCAUGUUGUUGGG 

miR-337-3p MIMAT0000754 CUCCUAUAUGAUGCCUUUCUUC 

miR-99a-3p MIMAT0004511 CAAGCUCGCUUCUAUGGGUCUG 

TP53 miR-328-3p MIMAT0000752 CUGGCCCUCUCUGCCCUUCCGU 

let-7c-5p MIMAT0000064 UGAGGUAGUAGGUUGUAUGGUU 

SKP2 miR-337-3p MIMAT0000754 CUCCUAUAUGAUGCCUUUCUUC 

let-7c-5p MIMAT0000064 UGAGGUAGUAGGUUGUAUGGUU 

CDK1 miR-196a-5p MIMAT0000226 UAGGUAGUUUCAUGUUGUUGGG 

miR-337-3p MIMAT0000754 CUCCUAUAUGAUGCCUUUCUUC 
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Table 4. miRNA kets and its combination and DNS 
 

Biofunctions miRNAs Ket alignments Combinations DNSs 
lung cancer let-7b | 010110010011001000010000 > let-7b / miR-34 64 

miR-34a | 011001010000010011001000 > 
MDSC induction miR-21 | 001000000010001001001000 > miR-21 / miR-155 35 

miR-155 | 000001000000101000111100 > 
Proliferation / 
invasion 

miR-21 | 001000000010001001001000 > miR-21 / miR-10b 25 
miR-10b | 000000100100001000001010 > 

Colon cancer miR-491-5p | 010111100000000000101100 > miR-491 / miR-221 48 
miR-221-3p | 010000000100010011100000 > miR-491 / miR-342 24 
miR-342-3p | 000000000100000100000100 > miR-342 / miR-221 18 

Proliferation / 
survive 

miR-381 | 000000011100010000001000 > miR-381 / miR-424 25 
miR-424 | 001001000000001000010000 > 

Cell viability miR-21 | 001000000010001001001000 > miR-21 / miR-1 35 
miR-1 | 011000100001001000100000 > 

Tumor growth miR-520d-3p | 000101000000000110111000 > miR-520d-3p / 
siRNA 

35 
Eph2A-siRNA | 000000010010010010000000 > 

p63 cell cycle miR-34a | 011001010000010011001000 > miR-34a / miR-34c 64 
miR-34c | 011001010010001001000100 > 

Glioma miR-21 | 001000000010001001001000 > miR-21 / miR-23b 35 
miR-23b | 011100000110001001000000 > miR-21 / miR-181d 35 
miR-181d | 000000000010010011011100 > miR-23b / miR-181d 49 

Milk fat synthesis miR-23a | 000000001000111000000000 > miR-23a / miR-27b 24 
miR-27b-3p | 000000101100001000010000 > miR-103 / miR-200a 35 
miR-103-3p | 010010000100001110000100 > miR-27b / miR-200a 40 
miR-200a | 000000010001100001001000 > 

Tumor growth miR-21 | 001000000010001001001000 > miR-21 / miR-23a 20 
miR-23a-3p | 000000001000111000000000 > miR-21 / miR-27a 25 
miR-27a-3p | 000000101100001000010000 > miR-23a / miR-27a 20 

proliferation miR-19b-3p | 010100000000010000000100 > miR-19b / miR-21 20 
miR-21 | 001000000010001001001000 > miR-19b / miR-148a 16 
miR-148a | 000101000000010000001000 > miR-21 / miR-148a 20 

Carcinoma miR-196a-5p | 001100100000010010011100 > miR-196a / miR-337 16 
miR-337-3p | 000000000100100000000000 > miR-196a / let-7c 72 
let-7c-5p | 010110010011001000110000 > let-7c / miR-337 18 
miR-196a-5p | 001100100000010010011100 > miR-196a / miR-99a 48 
miR-337-3p | 000000000100100000000000 > miR-337 / miR-99a 12 
miR-99a-3p | 000100010000000111000100 > miR-196a / miR-337 16 
miR-328-3p | 001100000000100000001000 > miR-328 / let-7c 36 
let-7c-5p | 010110010011001000110000 > 
miR-337-3p | 000000000100100000000000 > miR-337 / let-7c 18 
let-7c-5p | 010110010011001000110000 > 
miR-196a-5p | 001100100000010010011100 > miR-196a / miR-337 16 
miR-337-3p | 000000000100100000000000 > 

 

4. DISCUSSION 
 
There is an increasing need for the prediction of 
miRNA function and synergy. Many current 
studies explore miRNA targets using computing 
methods, and similarly, these approaches are 
used for detecting novel miRNAs and predicting 
miRNA functions or synergisms. These methods 
are based on the mRNA–miRNA interaction 
theory and various miRNA target databases 
(Table 1) [15,16]. TargetScan, miRanda, and 
miRDB are the most frequently used miRNA 

target prediction tools, and they are primarily 
based on sequence complementarity, and thus 
binding strength and stability between the mRNA 
target site and the miRNA or its seed region 
[14,42,43]. DIANA-microT, PicTar, and 
RNAhybrid are other common miRNA target 
prediction tools, but they are based on 
thermodynamic data of the mRNA–miRNA 
complex such as stability and free energy state 
[17,18,42-44]. Ordinarily, differential theory-
based algorithms are used in combination to 
improve the precision of predictions [45,46]. 
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Table 5. DNS values and SE strengths 
 

Biofunctions Combinations DNSs SEs 
lung cancer let-7b / miR-34a 64 1.85 
MDSC induction miR-21 / miR-155 35 NA 
proliferation / invasion miR-21 / miR-10b 25 1.65 
colon cancer miR-491 / miR-221 48 1.45 
colon cancer miR-491 / miR-342 24 1.45 
colon cancer miR-342 / miR-221 18 1.45 
proliferation / survive miR-381 / miR-424 25 1.86 
cell viability miR-21 / miR-1 35 2.2 
tumor growth miR-520d-3p / siRNA 35 1.8 
p63 cell cycle miR-34a / miR-34c 64 2 
glioma miR-21 / miR-23b 35 NA 
glioma miR-21 / miR-181d 35 NA 
glioma miR-23b / miR-181d 49 NA 
milk fat synthesis miR-23a / miR-27b 24 NA 
milk fat synthesis miR-103 / miR-200a 35 NA 
milk fat synthesis miR-27b / miR-200a 30 NA 
tumor growth miR-21 / miR-23a 20 1 
tumor growth miR-21 / miR-27a 25 1 
tumor growth miR-23a / miR-27a 20 1.28 
proliferation miR-19b / miR-21 20 NA 
proliferation miR-19b / miR-148a 16 NA 
proliferation miR-21 / miR-148a 20 NA 
Carcinoma miR-196a / miR-337 16 NA 
Carcinoma miR-196a / let-7c 72 NA 
Carcinoma let-7c / miR-337 18 NA 
Carcinoma miR-196a / miR-99a 48 NA 
Carcinoma miR-337 / miR-99a 12 NA 
Carcinoma miR-196a / miR-337 16 NA 
Carcinoma miR-328 / let-7c 36 NA 
Carcinoma miR-337 / let-7c 18 NA 
Carcinoma miR-196a / miR-337 48 NA 

NA means that any synergistic effect was not obtained as specific value 
 

Although these computational techniques have 
been improved and now produce more accurate 
results, false positive results are still obtained.  
Prediction algorithms have a technical limitation 
whereby it is difficult to improve prediction 
accuracy by regarding only complementarity, 
homology, and thermodynamics. Therefore, 
novel approaches are necessary to improve and 
calibrate prediction algorithms.  
 
To improve the accuracy of miRNA target and 
synergy prediction algorithms, contribution of 
new factors, such as miRNA clusters, 
conservations, and transcription start sites 
(TSSs), are now considered [7,47–49].  
MicroTSS integrates RNA sequence data, active 
transcription marks, and DNase I hypersensitive 
site sequencing results, and this concept enabled 
the identification of various tissue-specific pri-
miRNAs and intergenic miRNAs [49].  
Furthermore, miRNAs can interact with 

themselves, for example, via miRNA–miRNA 
bindings [50,51]. Certain miRNAs form 
homologous or heterologous miRNA pairs, which 
suggests that miRNA synergism is caused not 
only by co-expression and co-target relationships 
but also by direct interactions. We also tried to 
add novel factors to generate a more accurate 
computation method by adopting the RNA wave 
2000 model, which includes numerous new 
factors, such as quantum energy, torus, miRNA 
pairs, and G potential.  
 
Among the four types of nucleotides, G is the 
only one that has a positive FMO-electric charge 
[24]. This specific characteristic is linked to 
certain clinical and technical aspects. G is a 
prominent target for mutations in cancer and 
inherited diseases [52], and G quartets enable 
the ultrasensitive detection of miRNAs [53].  
Additionally, G bases may have unknown roles in 
gene regulation, and they may be a critical factor  
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Table 6. SNS values and SE strengths 
 

Biofunctions Combinations SNSs SEs 
lung cancer let-7b / miR-34a 2 1.85 
MDSC induction miR-21 / miR-155 2 NA 
oncogene miR-21 / miR-10b 2 1.65 
colon cancer miR-491 / miR-221 2 1.45 
colon cancer miR-491 / miR-342 1 1.45 
colon cancer miR-342 / miR-221 1 1.45 
proliferation / survive miR-381 / miR-424 0 1.86 
cell viability miR-21 / miR-1 2 2.2 
tumor growth miR-520d-3p / siRNA 1 1.8 
p63 cell cycle miR-34a / miR-34c 5 2 
glioma miR-21 / miR-23b 4 NA 
glioma miR-21 / miR-181d 3 NA 
glioma miR-23b / miR-181d 2 NA 
milk fat synthesis miR-23a / miR-27b 2 NA 
milk fat synthesis miR-103 / miR-200a 0 NA 
milk fat synthesis miR-27b / miR-200a 0 NA 
tumor growth miR-21 / miR-23a 1 1 
tumor growth miR-21 / miR-27a 1 1 
tumor growth miR-23a / miR-27a 2 1.28 
proliferation miR-19b / miR-21 0 NA 
proliferation miR-19b / miR-148a 2 NA 
proliferation miR-21 / miR-148a 1 NA 
Carcinoma miR-196a / miR-337 0 NA 
Carcinoma miR-196a / let-7c 2 NA 
Carcinoma let-7c / miR-337 0 NA 
Carcinoma miR-196a / miR-99a 3 NA 
Carcinoma miR-337 / miR-99a 0 NA 
Carcinoma miR-196a / miR-337 0 NA 
Carcinoma miR-328 / let-7c 1 NA 
Carcinoma miR-337 / let-7c 0 NA 
Carcinoma miR-196a / miR-337 0 NA 

 

for the bona fide construction of miRNA–miRNA, 
mRNA–miRNA, or DNA–miRNA interaction 
models [54]. 
 

Preliminarily, we examined the context + score 
values of all co-target genes present in Table 3 
using TargetScan. Only 3 mRNAs, RAS, CDK, 
and Rho were found, and their context+ score 
value was −0.35 (let-7b), −0.25 (miR-491), and 
−0.22 (miR-21), respectively. Curiously, DNS of 
let-7b/miR-34a, miR-491/miR-221, and miR-
21/miR-10b, is 64, 48, and 25, respectively; 
therefore, these context+ scores were directly 
proportional to the DNS values, even though the 
context + score is based on mRNA–miRNA 
interactions and DNS is based on miRNA–
miRNA interactions. This implies that miRNA 
synergism and mRNA targeting may be coupled.  
Context+ score is associated with human 
diseases according to the polymiRTS database 
[55], and miRNA-related single nucleotide 
polymorphisms are scored by the context+ score.  
Therefore, further investigations using DNS are 

crucial for building an integrated model of 
miRNA–miRNA interactions as miRNA memory 
device and to identify mRNA–miRNA interactions 
based on human disease databases. 

 
5. CONCLUSION 
 
In our analysis, we could utilize only a very 
limited sample size because there are still few 
reports about miRNA synergisms. However, we 
found a synergistic effect in miRNA–miRNA 
interactions from the perspective of quantum 
energy as miRNA memory. We suggest that 
more precise cancer-related prediction could be 
achieved using specific G-based DNS analysis in 
addition to conventional mRNA-miRNA 
interaction factors such as thermodynamic 
stability. 

 
CONSENT  
 
It is not applicable.   



 
 
 
 

Yoshikawa et al.; JAMPS, 5(4): 1-16, 2016; Article no.JAMPS.22134 
 
 

 
14 

 

ETHICAL APPROVAL  
 
It is not applicable.   

 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. David B. MicroRNAs: Genomics, 

biogenesis, mechanism, and function. Cell. 
2004;116:281–297. 

2. Kim VN, Han J, Siomi MC. Biogenesis of 
small RNAs in animals. Nat Rev Mol Cell 
Biol. 2009;10:126–139. 

3. Grey F, Tirabassi R, Meyers H, Wu G, 
McWeeney S, Hook L, Nelson JA. A viral 
microRNA down-regulates multiple cell 
cycle genes through mRNA 5′UTRs. PLoS 
Pathog. 2010;6(6):e1000967. 

4. Xu L, Dai WQ, Xu XF, Wang F, He L, Guo 
CY. Effects of multiple-target anti-
microRNA antisense Oligodeoxyri-
bonucleotides on proliferation and 
migration of gastric cancer cells. Asian 
Pacific J Cancer Prev. 2012;13:3203–3207. 

5. Gama-Carvalho M, Andrade J, Brás-
Rosário L. Regulation of cardiac cell fate 
by microRNAs: Implications for heart 
regeneration. Cells. 2014;3:996–1026. 

6. Fujii YR. Oncoviruses and pathogenic 
MicroRNAs in humans. Open Virol J. 2009; 
3:37–51. 

7. Lewis BP, Burge CB, Bartel DP. Conserved 
seed pairing, often flanked by adenosines, 
indicates that thousands of human genes 
are MicroRNA targets. Cell. 2005;120:15–
20. 

8. La Rocca G, Olejniczak SH, González AJ, 
Briskin D, Vidigal Ja, Spraggon L, 
DeMatteo RG, Radler MR, Lindsten T, 
Ventura A, Tuschl T, Leslie CS, Thompson 
CB. In vivo, Argonaute-bound microRNAs 
exist predominantly in a reservoir of low 
molecular weight complexes not 
associated with mRNA. Proc Natl Acad Sci. 
2015;112:767–772. 

9. Pinder BD, Smibert CA. Smaug: An 
unexpected journey into the mechanisms 
of post-transcriptional regulation. Fly 
(Austin); 2013. 
DOI: 10.4161/fly.24336 

10. Srikantan S, Marasa BS, Becker KG, 
Gorospe M, Abdelmohsen K. Paradoxical 
microRNAs: Individual gene repressors, 

global translation enhancers. Cell Cycle. 
2011;10:751–759. 

11. Laganà A, Acunzo M, Romano G, 
Pulvirenti A, Veneziano D, Cascione L, 
Giugno R, Gasparini P, Shasha D, Ferro A, 
Croce CM. MiR-Synth: A computational 
resource for the design of multi-site multi-
target synthetic miRNAs. Nucleic Acids 
Res. 2014;42:5416–5425. 

12. Meng Q-W, Zhang Z-P, Wang W, Tian J, 
Xiao Z-G. Enhanced inhibition of Avian 
leukosis virus subgroup J replication by 
multi-target miRNAs. Virol J. 2011;8:556. 

13. Heikham R, Shankar R. Flanking region 
sequence information to refine microRNA 
target predictions. J Biosci. 2010;35:105–
118. 

14. Wong N, Wang X. miRDB: An online 
resource for microRNA target prediction 
and functional annotations. Nucleic Acids 
Res. 2014;43:D146–D152. 

15. Mazière P, Enright AJ. Prediction of 
microRNA targets. Drug Discov Today. 
2007;12:452-458. 

16. Ekimler S, Sahin K. Computational 
methods for MicroRNA target prediction. 
Genes (Basel). 2014;5:671–683. 

17. Paraskevopoulou MD, Georgakilas G, 
Kostoulas N, Vlachos IS, Vergoulis T, 
Reczko M, Filippidis C, Dalamagas T, 
Hatzigeorgiou AG. DIANA-microT web 
server v5.0: Service integration into miRNA 
functional analysis workflows. Nucleic 
Acids Res. 2013;41:W169–W173. 

18. Krüger J, Rehmsmeier M. RNAhybrid: 
MicroRNA target prediction easy, fast and 
flexible. Nucleic Acids Res. 2006; 
34:W451–W454. 

19. Ding J, Li X, Hu H. MicroRNA modules 
prefer to bind weak and unconventional 
target sites. Bioinformatics. 2015;31(9): 
1366-1374. 

20. Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, 
Xu L De, Wang YY, Du L, Zhang YP, Jiang 
W, Li CQ, Xiao Y, Li X. MiRNA-miRNA 
synergistic network: Construction via co-
regulating functional modules and disease 
miRNA topological features. Nucleic Acids 
Res. 2011;39:825–836. 

21. Dimitrakopoulou K, Vrahatis AG, 
Bezerianos A. Integromics network meta-
analysis on cardiac aging offers robust 
multi-layer modular signatures and reveals 
micronome synergism. BMC Genomics. 
2015;16:147. 

22. Morozova N, Nonne N, Pritchard L-L, 
Harel-Bellan a, Morozova N, Nonne N, 



 
 
 
 

Yoshikawa et al.; JAMPS, 5(4): 1-16, 2016; Article no.JAMPS.22134 
 
 

 
15 

 

Pritchard L-L, Harel-Bellan  a, Zinovyev  a, 
Zinovyev  a, Zinovyev  a, Gorban A: Kinetic 
signatures of microRNA modes of action. 
RNA. 2012;18:1635–1655. 

23. Zhu W, Zhao Y, Xu Y, Sun Y, Wang Z, Yuan 
W, Du Z. Dissection of protein 
interactomics highlights MicroRNA synergy. 
PLoS One. 2013;8(5):e63342 

24. Fujii YR. The RNA gene information: 
retroelement-MicroRNA entangling as the 
RNA quantum code. In: Ying S-Y, editors: 
MicroRNA Protocols. 2

nd
 ed. Life Sci. 2013; 

47-67. 
25. Fujii YR. Formulation of new algorithmics 

for miRNAs. Open Virol J. 2008;2:37–43. 
26. Fujii YR. RNA wave for the HIV therapy : 

Foods, stem cells and the RNA information 
gene. World J AIDS. 2013;3:131–146. 

27. Kozomara A, Griffiths-Jones S. MiRBase: 
Annotating high confidence microRNAs 
using deep sequencing data. Nucleic Acids 
Res. 2014;42:68–73.  

28. Calderbank aR, Rains EM, Shor PW, 
Sloane NJA. Quantum error correction and 
orthogonal geometry. Phys. Rev. Lett. 
1996;78:405-408. 

29. Fujii YR, Osone T, Yoshikawa M. MESer; 
2014.  
Available:http://meser.mirna-academy.org/ 
(Accessed 28 May 2015) 

30. Kasinski aL, Kelnar K, Stahlhut C, Orellana 
E, Zhao J, Shimer E, Dysart S, Chen X, 
Bader aG, Slack FJ. A combinatorial 
microRNA therapeutics approach to 
suppressing non-small cell lung cancer. 
Oncogene. 2014;34:3547-3555. 

31. Li L, Zhang J, Diao W, Wang D, Wei Y, 
Zhang C-Y, Zen K. MicroRNA-155 and 
MicroRNA-21 promote the expansion of 
functional myeloid-derived suppressor cells. 
J Immunol. 2014;192:1034-1043. 

32. Dong CG, Wu WKK, Feng SY, Wang XJ, 
Shao JF, Qiao J. Co-inhibition of 
microRNA-10b and microRNA-21 exerts 
synergistic inhibition on the proliferation 
and invasion of human glioma cells. Int J 
Oncol. 2012;41:1005–1012. 

33. Tao K, Yang J, Guo Z, Hu Y, Sheng H, Gao 
H, Yu H. Prognostic value of miR-221-3p, 
miR-342-3p and miR-491-5p expression in 
colon cancer. Am J Transl Res. 2014; 
6:391–401. 

34. Chen B, Duan L, Yin G, Tan J, Jiang X. 
Simultaneously expressed miR-424 and 
miR-381 synergistically suppress the 
proliferation and survival of renal cancer 
cells---Cdc2 activity is up-regulated by 

targeting WEE1. Clinics. 2013;68:825–833. 
35. Nishimura M, Jung EJ, Shah MY, Lu C, 

Spizzo R, Shimizu M, Han HD, Ivan C, 
Rossi S, Zhang X, Nicoloso MS, Wu SY, 
Almeida MI, Bottsford-Miller J, Pecot CV, 
Zand B, Matsuo K, Shahzad MM, Jennings 
NB, Rodriguez-Aguayo C, Lopez-Berestein 
G, Sood AK, Calin GA. Therapeutic 
synergy between microRNA and siRNA in 
ovarian cancer treatment. Cancer Discov. 
2013;3:1302–1315. 

36. Antonini D, Russo MT, De Rosa L, Gorrese 
M, Del Vecchio L, Missero C. 
Transcriptional repression of miR-34 family 
contributes to p63-mediated cell cycle 
progression in epidermal cells. J Invest 
Dermatol. 2010;130:1249–1257. 

37. Li R, Li X, Ning S, Ye J, Han L, Kang C, Li 
X. Identification of a core miRNA-pathway 
regulatory network in glioma by 
therapeutically targeting miR-181d, miR-21, 
miR-23b, β-Catenin, CBP, and STAT3. 
PLoS One. 2014;9(7):e101903. 

38. Lin X, Luo J, Zhang L, Zhu J. MicroRNAs 
synergistically regulate milk fat synthesis in 
mammary gland epithelial cells of dairy 
goats. Gene Expr. 2013;16:1–13. 

39. Frampton AE, Castellano L, Colombo T, 
Giovannetti E, Krell J, Jacob J, Pellegrino 
L, Roca-Alonso L, Funel N, Gall TMH, De 
Giorgio A, Pinho FG, Fulci V, Britton DJ, 
Ahmad R, Habib N a, Coombes RC, 
Harding V, Knösel T, Stebbing J, Jiao LR. 
MicroRNAs cooperatively inhibit a network 
of tumor suppressor genes to promote 
pancreatic tumor growth and progression. 
Gastroenterology. 2014;146:268–277. 

40. Wang P, Phan T, Gordon D, Chung S, 
Henning SM, Vadgama JV. Arctigenin in 
combination with quercetin synergistically 
enhances the antiproliferative effect in 
prostate cancer cells. Mol Nutr Food Res. 
2015;59:250–261. 

41. Xiong H, Li Q, Liu S, Wang F, Xiong Z, 
Chen J, Chen H, Yang Y, Tan X, Luo Q, 
Peng J, Xiao G, Jiang Q. Integrated 
microRNA and mRNA transcriptome 
sequencing reveals the potential roles of 
miRNAs in stage I endometrioid 
endometrial carcinoma. PLoS One. 2014; 
9(10):e110163. 

42. Lewis BP, Shih IH, Jones-Rhoades MW, 
Bartel DP, Burge CB. Prediction of 
mammalian MicroRNA targets. Cell. 2003; 
115:787–798. 

43. Wuchty S, Fontana W, Hofacker IL, 
Schuster P. Complete suboptimal folding of 



 
 
 
 

Yoshikawa et al.; JAMPS, 5(4): 1-16, 2016; Article no.JAMPS.22134 
 
 

 
16 

 

RNA and the stability of secondary 
structures. Biopolymers. 1999;49:145–165. 

44. Hofacker IL. How microRNAs choose their 
targets. Nat Genet. 2007;39:1191–1192. 

45. Krek A, Grün D, Poy MN, Wolf R, 
Rosenberg L, Epstein EJ, MacMenamin P, 
da Piedade I, Gunsalus KC, Stoffel M, 
Rajewsky N. Combinatorial microRNA 
target predictions. Nat Genet. 2005;37: 
495-500 

46. Kiriakidou M, Nelson PT, Kouranov A, 
Fitziev P, Bouyioukos C, Mourelatos Z, 
Hatzigeorgiou A. A combined 
computational-experimental approach 
predicts human microRNA targets. Genes 
Dev. 2004;18:1165–1178. 

47. Leung W-S, Lin MCM, Cheung DW, Yiu 
SM: Filtering of false positive microRNA 
candidates by a clustering-based approach. 
BMC Bioinformatics. 2008;9(Suppl 12):S3. 

48. Marin RM, Vanicek J. Optimal use of 
conservation and accessibility filters in 
MicroRNA target prediction. PLoS One. 
2012;7(2):e32208 

49. Georgakilas G, Vlachos IS, 
Paraskevopoulou MD, Yang P, Zhang Y, 
Economides AN, Hatzigeorgiou AG. 
microTSS: Accurate microRNA 
transcriptional start site indetification 
reveals a significant number of divergent 
pri-miRNAs. Nat Commun. 2014;5:5700.  

50. Lai EC, Wiel C, Rubin GM. 
Complementary miRNA pairs suggest a 
regulatory role for miRNA:miRNA duplexes. 
RNA. 2004;10:171–175. 

51. Maiti M, Nauwelaerts K, Lescrinier E, 
Schuit FC, Herdewijn P. Self-
complementary sequence context in 
mature miRNAs. Biochem Biophys Res 
Commun. 2010;392:572–576. 

52. Bacolla A, Temiz Na, Yi M, Ivanic J, Cer RZ, 
Donohue DE, Ball E V., Mudunuri US, 
Wang G, Jain A, Volfovsky N, Luke BT, 
Stephens RM, Cooper DN, Collins JR, 
Vasquez KM. Guanine holes are prominent 
targets for mutation in cancer and inherited 
disease. PLoS Genet. 2013;9(9):e1003816. 

53. Yan L, Yan Y, Pei L, Wei W, Zhao J. A G-
quadruplex DNA-based, label-free and 
ultrasensitive strategy for microRNA 
detection. Sci Rep. 2014;4:7400. 

54. Koo CX, Kobiyama K, Shen YJ, LeBert N, 
Ahmad S, Khatoo M, Aoshi T, Gasser S, 
Ishii KJ. RNA polymerase iii regulates 
cytosolic RNA: DNA hybrids and 
intracellular MicroRNA expression. J Biol 
Chem. 2015;290:7463-7473. 

55. Bhattacharya A, Ziebarth JD, Cui Y. 
PolymiRTS Database 3.0: Linking 
polymorphisms in microRNAs and their 
target sites with human diseases and 
biological pathways. Nucleic Acids Res. 
2014;42:D86–D91. 

_________________________________________________________________________________ 
© 2016 Yoshikawa et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 

 
 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://sciencedomain.org/review-history/12414 


