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Abstract 
 

An innovative approach that treats prime numbers as raw experimental data and as elements of larger and 
larger finite sequences {Pm} ≡{P(mp)} is shown in the present report. The modified chi-square function 
Xk

2(A,mp/xo) with its three parameters A, k and xo=xo(k) is the best-fit function of the finite sequences 
{ ρm}≡{lgPm/lgmp} from the analytical viewpoint thus showing that the property of scale invariance does 
not hold for the finite sequences of this prime variable and so for primes themselves. In addition an 
injective map can be set between these {ρm} sequences and the {mα} progressions with domain N and co-
domain R+ being α∈(–1,0)⊂R– through the parameter k=2+2α of their common fit function Xk

2(A,mp/xo). 
All that leads to induction algorithms and to relationships of the kind Pm≈P(mp), though within the 
precisions of the calculations and holding locally.  
 

 
Keywords: Prime number sequences; modified chi-square function; numerical progressions; computational 

mathematics. 
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1 Introduction  
 
The problem of prime numbers in number theory has always been a challenge to face and still nowadays it 
remains one of the major open problems notwithstanding the many theoretical successes achieved both 
historically and recently [1-13]. The main problem concerns the fact that, unlike all the numerical 
progressions, neither an exact relationship that links the value of a prime Pm to its counter mp i.e.  Pm=P(mp)  
has yet been found at present (or simply it does not exist) nor there is an analytical law that links any prime 
number Pm to its preceding Pm-1. In other words it is not possible at present to state that the induction 
principle holds for prime numbers. Moreover, there are strong doubts about the nature itself of prime 
numbers, whether deterministic or stochastic, in that prime numbers on one hand seem to obey to firm laws 
on the other they seem to appear in a random way one after another. Thus the present article is aimed at 
introducing a new viewpoint on prime numbers which makes use of an innovative methodology, never 
adopted before now, that can describe prime numbers and that, being at its initial stage, can lead, after due 
refinements, to more precise calculations of their values thus maybe saving computer memory. Besides, this 
methodology might lead in the future to further unexpected results and findings in addition to that already 
found of the scale non-invariance of the finite sequences of prime numbers.  
 
In previous articles and reports by the same author [14-17] the finite sequences of prime numbers {Pm} have 
been examined from both the statistical viewpoint and the analytical one fitting their differential distribution 
functions and the finite sequences of their frequencies {fm} ≡{mp/Pm} by the modified chi-square function 
Xk

2(A,mp/xo) thus finding remarkable unexpected results among which the scale non-invariance [18,19] of 
the finite sequences of primes, their scaling laws and their correspondence with the finite progressions {mα}.  
 
In addition, the same methodology as applied to the truncated progressions {n–α} and their summations {∑n–

α} has led to find an elementary (that is not using the theory of complex functions) and general (that is valid 
for all the non-trivial zeroes of the ζ(s) function up to ∞) proof of Riemann’s hypothesis [20,21] by means of 
the modified chi-square function. 
 
In the present report this same innovative approach is suggested again, starting from the computational 
viewpoint [22-26] and making use of the modified chi-square function with k degrees of freedom     
 

Xk
2[A,mp/xo(k)] = A/(2·Γk/2)·[mp/2xo(k)] (k/2–1)

·e–mp/2xo(k)                                                                    (1)  
 

with  k∈(1.0, 2.0)⊂R+ as the best-fit function along the whole study to match the finite sequences  of  
{ ρm} ≡{lgPm/lgmp} from the analytical viewpoint, that is fitting/interpolating the actual data points  ρm = 
ρ(mp)  by the analytic function (1).  
 

The aim is to construct a computational model of the finite sequences {ρm} ≡{ ρ(mp)} ≡{lgPm/lgmp}.  
 

The function (1) is used as the best-fit function along the whole study to match the finite sequences {ρm} and 
the truncated progressions {mα} having domain N and co-domain R+ with α∈(–1, 0)⊂R– which can also be 
written as {m–α} with –α∈(–1, 0)⊂R–. The rationale underlying the entire matter has been to use this function 
taking advantage of the adjustment of its three parameters k, A, and xo(k)  which allow to optimize the fits as 
much as possible up to 99% and even more whenever possible. In other words a plot&fit  algorithm has been 
set up.   
 
Furthermore the inverse 1/Xk

2[A,mp/xo(k)] of this function (1) can fit both the progressions {m+α} with α∈(0, 
+1)⊂R+  and the prime sequences {ρm

–1} ≡{lgmp/lgPm} with the values of its parameters A, k and xo=xo(k) 
equal to those of the corresponding  {ρm} sequences and {m–α} progressions fitted by Xk

2[A,mp/xo(k)] what 
proves all its flexibility and efficacy. This is not a trivial concern, as it might look, but an important topic of 
the research as shown later on.  
 

The accuracy and precision (i.e. uncertainties), random and systematic errors, error sources, error 
propagations and reliability of the results have been investigated, being these issues crucial to the whole 
algorithm as explained in detail in the Methods section.  
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After all, what has been done is just what is usually done in treating experimental raw data [27-29], a 
procedure that is common to all the fields of experimental physics. The only difference has been to treat the 
data points ρm=lgPm/lgmp just like a set of experimental data, in a broad sense, to which all these concepts 
and criteria can be applied, with the further undisputable advantage of having zero inaccuracy (i.e. no 
systematic errors) and zero imprecision (no random errors) on the base data, whereas zero inaccuracy though 
not zero imprecision (owing to the approximations of the calculations and of the fits) are present in the final 
results. In such a manner a computer simulation model has been set up and applied to the truncated 
numerical progressions {m–α} and the finite prime sequences {ρm}. Some websites have been used to get the 
values of the Γ function [30,31].  
 
However, while for any finite progression {m±α} the results in no way depend on the number of the terms 
(apart from the usual improvements of the fit values, an evidence of the improvement of the statistics) what 
is a consequence of the scale invariance of any single progression, in the case of prime numbers larger and 
larger finite sets of them have been taken into account one at a time. The reason for such an unconventional 
choice is a strict consequence of the scale non-invariance of primes and an evidence of the existence of  
scaling laws holding for them, as shown later on.  
 

2 Methods    
 
The modified chi-square function (1) with k degrees of freedom has been already examined and described in 
the previous works by the same author with all its features; here it is enough to remark that in the plane 
(x,X2) the coefficient A (which usually is at one’s own choice in all the calculations) shifts rigidly the 
corresponding curve up or down, the decay parameter xo stretches or compresses it along the  x  axis and the  
k  parameter (the number of degrees of freedom) determines the shape of the curve (more or less rounded).   
 
The entire methodology is applied to the analysis of the prime number sequences {ρm} and of the finite 
progressions {mα} with m∈N and α∈(–1, 0)⊂R– getting remarkable results. Larger and larger finite 
sequences of prime numbers, subsets of their whole infinite sequence, have been examined that is sequences 
of the kind: {2  3  5  7  11 ..….. Ph-1  Ph} ≡ ≡ {Ph} ⊂ {Pi} ⊂ {Pj} ⊂……..⊂ {Pn} ⊂……. being of course  h < 
i < j <….……..< n <…….. and afterwards the finite sequences {ρm} ≡{lgPm/lgmp} that is {ρh} ⊂ {ρi} ⊂ {ρj} 
⊂…....⊂ {ρn} ⊂…….  being Pm = P(mp) ≈ mp

ρ(mp) have been investigated. Apart from the usual 
improvements of the statistical values, the reason for such an unconventional choice is a strict consequence 
of the scale non-invariance of prime finite sequences and of scaling laws holding for them as shown later on. 
Of course, just few (typically n∆=200) equally spaced data points have been examined for any {ρm} 
sequence, being mp=n∆·∆=200·∆  and having verified that this choice does not  affect the reliability of the 
results.  
 
Also any {mα} progression with a finite number of terms has been examined at n∆ (again typically 200) 
equally spaced data points and it has been fitted, at n∆ data points, by the modified chi-square function with 
the appropriate values of the parameters  k,  A and of the decay parameter xo = xo(k). Speaking in a rigorous 
and formal way any {mα} progression can be analytically continued from the N domain to the R domain, 
that is to the function f(x)=xα and also to the function F(x)=Xk

2[A,mp/xo(k)]. Both functions are analytic on 
the whole R+ plane.  
 
Maximizing the two statistical markers, R  and I, means making both of them to approach the value of  1– as 
much as possible by adjusting the value of  xo  for any value of  k  in order to match the data points C=ρm 
and the fitting curve F=Xk

2[A,mp/xo(k)] as much as possible, as well as to balance their average values 
<C>=<ρm>=<F>=<Xk

2[A,mp/xo(k)]> up to the 12th decimal digit, as already said. In addition, even the two 
standard deviations of the means σcounts=σc and σfit=σF have been examined in order to ascertain that each of 
them would be much lower than its respective mean <C> and <F> and that σc ≈ σF. Finally, two further 
gauges of the fit have been minimizing the values of the Least Square Sum (LSS) according to the principle 
of maximum likelihood and of the X2test-value  in that both of these variables measure the goodness of the fit. 
Just to summarize, many statistical tools have been used in order to do the best fits at the utmost statistical 
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reliability. Though complex and time-consuming, this fitting procedure has proven all its effectiveness and 
reliability in finding out not only the best values of k and of the decay parameter xo for any data set but even 
the two fundamental relationships  k=k(α)=kα  and  k=k(mp)=kp for the progressions {mα} and the sequences 
{ ρm} respectively, as well  as  xo=xo(α)  and  xo=xo(mp), showing that this basic parameter k depends only on 
α and mp respectively while the xo decay (or growth in other cases) parameter can be regarded just as a local 
parameter.    
 
Hence for most cases it is possible, by this methodology, to reduce the problem of prime numbers to a 
problem of precision of the calculations, though still hard and not yet fully solved. However, in comparison 
to other approximate methods of prime number evaluation, the present one has the advantage of showing a 
wide spectrum of possibilities, about six or seven or more, among which it is possible to choose according to 
the best results. In addition, using a mainframe and acting on the initial fits, there is the possibility to 
increase the precisions of the final results, i.e. of the Pm values got in such a manner, as much as possible.    
 
One of the backgrounds of the study has been the use of the principle of extrapolation and interpolation of 
the data points by means of the fits that has been widely used all over the report whenever required and 
possible even though not explicitly cited, a principle widely applied in all experimental science.  
 

3 Analytical Treatments    
 
The attention has been focused on the prime number finite sequences {ρm}≡{ ρ(mp)} ≡{lgPm/lgmp}  and on 
the {mα} truncated progressions having m∈N and α∈(–1, 0) ⊂R– also written as {m–α} with –α∈(–1, 0)⊂R– 
with the purpose of fitting them by the modified chi-square function and linking the former to the latter from 
the analytical viewpoint. The analytical aspects observed in the frame of computational mathematics 
represent an attempt to reach an algorithm of the kind Pm≈P(mp) for the construction of a prime number 
starting from its own counter mp by the present method, though approximate and valid locally.   
 
The plot of the actual values of  {ρm}  for the first  mp ≈ 100-200  primes (not shown) displays wide damped 
oscillations or fluctuations which tend to disappear completely henceforward that is exhibiting a much more 
regular trend at higher values as in the two plots of Fig. 1 where the actual Pm values vs. mp (a) and the 
actual ρm vs. mp (b) are shown for all the prime numbers studied from mp=100 up to mp=2E15 [32,33]. It is 
just this regularity that leads to examine the trend of ρm versus mp starting from the alleged relationship Pm = 
P(mp) ≈ mp

ρ  being  ρ = ρm = ρ(mp) ≈ lg(Pm)/lg(mp).    
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Fig. 1. The actual values of prime numbers Pm  (a) and of  ρm=ρ(mp)  (b)  vs. mp from 100 up to 2·1015 
 
Looking at these two plots of data points it would seem that each of them is fitted by just one single curve 
(whatever it might be) i.e. that each of these two data sets may be interpolated by just one single analytic 
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function. It is not so. As a matter of fact one can look at the two plots of the next Fig. 2 showing the huge 
difference between the two cases of:  
 

a) The progression {mα} ≡{m1.6357} (α=1.6357 is a randomly chosen value) with n∆=200 for  
m=500→100,000 and for m=2T=2E12→400T=400E12;   

b) The two prime number finite sequences (n∆=200) for the sequence mp=500→100K that is 
Pm=3,571→1,299,709 and for the sequence mp=2T=2·1012

→400T=4·1014 that is Pm = 
61,427,839,512,229 → 14,472,680,634,646,931 [34].  
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Fig. 2. The actual values of the progression {mα} ≡ {m1.6357} (a) and of prime numbers {Pm} (b) both for 

the two cases m=500→100K and m=2·1012
→400T 

 
While in the first plot (a) there is no difference at all between the two sequences of data points, apart from 
the scale of course, and their perfect superposition can be easily checked despite the huge difference of their 
values, in the second plot (b) there is a clear evidence of the difference between the two data point sequences 
of primes. This is the proof of the scale non-invariance of prime numbers, a property already found in the 
previous works by the same author. Such a property appears still more evident in examining the finite 
sequences of the prime variable {ρm} ≡{ ρ(mp)}≡{lg(Pm)/lg(mp)} as shown in the next Fig. 3 which reports 
some sequences of  {ρ(mp)} ≡{ ρm} vs. the ordinal number that is the counter of the data points from 1 up to 
n∆=200 the number of the cells of the spread-sheet used for all the calculations. Thus, otherwise from any 
progression {mα} which can be fitted by just one analytic function independently from the number of its 
terms, that is f(x)=xα of course and also  F(x)=Xk

2[A,x/xo(k)] as shown later on (as a matter of fact 
lg(mα)/lgm=α), in the case of prime numbers any finite sequence  {ρm}≡{lg(Pm)/lg(mp)}  has to be fitted by a 
different analytic function, that is Xk

2[A,mp/xo(k)]  with the ad-hoc values of  k and xo  being the value of  A  
at one’s own choice and having chosen A=1 once for all in the present study. 
 
Thus, again the same algorithm as already used in previous cases [14-17] has been applied in the current 
case, i.e. choosing larger and larger sets of {ρh}⊂{ ρi}⊂{ ρj}⊂…...⊂{ ρl}⊂ …….⊂……..⊂{ ρm} ……. ⊂{ρ2P} 
with {ρ2P} ≡{ ρ1 ρ2 ρ3 … ρh… ρi… ρj….. ρl ….. ρm ….. ρ2P}, fitting the relationship ρm=ρ(mp) and the 
associated plot vs. mp for any of them by the modified chi squared function Xk

2[A,mp/xo(k)] where again 
k<2–. Of course, as already told, for any sequence {ρm} ≡ {ρ∆  ρ2∆  ρ3∆  ρ4∆ ………… ρ200∆}  being  m = n∆·∆ 
= 200·∆   ∀m.  
 
In addition, also the finite progressions {m–α} with  –α∈(–1, 0)⊂R–  m=mp∈N  k=2+2·α  have been identified 
as well-fitting the  {ρm} sequences though with a coefficient  Cα=C(α)  so that   
 

{ ρm} ≈ Xk
2[A,mp/xo(k)] ≈ Cα·{m

–α} ≡ {Cα·m
–α}  
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and the previous scheme of Fig. 4 can be highlighted where –α∈(–1, 0)⊂R–  m=mp∈N  k=2+2·α  and the 
single arrows reveal the one-way correspondence, that is the injection map, while the double one reveals the 
one-by-one correspondence, i.e. the bijection map.  
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Fig. 3. Some sequences of the actual prime ρ values {ρm}≡{lg(Pm)/lg(mp)} vs. the ordinal counter  n∆ 

 

 
 

Fig. 4. Fits of the sequences {ρm}}≡{lg(Pm)/lg(mp)} with k = 2 + 2α 
 
Thus the aim of the whole research is to fit, that is to interpolate and locally extrapolate, any of the 63 
sequences of {ρm} examined (this number has been considered adequate to plot final reliable fits) by the 
analytic functions identified as the modified chi-square function  Xk

2[A,mp/xo(k)]  and  x–α.   
 
Some examples are reported and discussed in the following pages and in Fig. 5. 
 
The first example concerns the first 40G values of {ρm} and it is shown in Fig. 5a where the parameters of 
the fit by the modified chi-square are A=1 xo=1.95028704889E+102 k=1.9922444  Γk/2=1.00225325280911   
R=0.998706    I=0.997413   <C>=<F>= =1.138583181049570   σc=0.004232   σF=0.004227   LSS=0.257949   
X2

test-value=8.02996E–6 while the linked parameters for the fit by the progression {Cα·mα} ≡ 
{1.246867803387·m–0.0038778} are: R=0.998706   I=0.997413   LSS=0.257949   X2

test-value=8.024956E–6.    



 
 
 

Lattanzi; BJMCS, 20(5): 1-19, 2017; Article no.BJMCS.31589 
 
 
 

7 
 
 

0,0 5,0G 10,0G 15,0G 20,0G 25,0G 30,0G 35,0G 40,0G
1,130

1,135

1,140

1,145

1,150

1,155

1,160
a)

m
p

A
ct

ua
l ρ

   
   

   
 X

k2    
 k

 =
 1

.9
92

24
44

0 
  

1,130

1,135

1,140

1,145

1,150

1,155

1,160 C
α  * m

α =
 1.246867803387 * m

- 0.0
038

7780 

  

0,0500,0G1,0T 1,5T 2,0T 2,5T 3,0T 3,5T 4,0T 4,5T 5,0T 5,5T 6,0T 6,5T 7,0T
1,116

1,118

1,120

1,122

1,124

1,126

1,128

1,130

1,132

1,134

1,136

b)

m
p

A
ct

ua
l ρ

   
   

   
 X

k2    
k 

=
 1

.9
94

32
78

0 
  

1,116

1,118

1,120

1,122

1,124

1,126

1,128

1,130

1,132

1,134

1,136 C
α  * m

α =
 1.214790079786 * m

 - 0
.00283610      

 
Fig. 5. Fits of the first {ρ40G} (a) and of the first {ρ7T} (b) by the Xk

2[1,mp/xo(k)] and by {Cα·m
α} 

 
The same Fig. 5b shows the first 7T values of {ρm} with the parameters of the fit by the modified             
chi-square function are A=1 xo=7.72278352265E+135 k=1.99432780 Γk/2=1.0016450175479   R=0.999107    
I=0.998214 <C>=<F>=1.120166459749330 σc=0.003042 σF=0.003039 LSS=0.177957 X2

test-value=2.91714E–
6 while  the same parameters for the fit by the {Cα·m

α}  function are: Cα=1.214790079786  α= –
0.002836108   R=0.999107   I=0.998214   LSS=0.177957   X2

test-value=2.916049E–6.  
 
It is interesting to remark, just in these few examples, that the fit parameters tend to improve in choosing 
larger and larger sequences of {ρm} what is a clear evidence of the improving of the fits, of course, and of 
the goodness  of the method.  
 
In such a manner many (i.e. 63) sets of values of the parameters  k  and  xo  have been gathered, anyone for 
any set of {ρ(mp)}, which can be plotted as reported in Fig. 6 showing the trends of k=k(mp) (a) and of 
lgxo=lgxo(lgmp) (b)  for the 63 sequences of  {ρm}  examined.  
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Fig. 6. Data points and fits of k (a) and of the decay parameter xo (b) of Xk

2[1,mp/xo(k)] ≈ {ρm} 
 
It is remarkable to highlight that both trends k=k(mp) and xo=xo(mp) resemble those previously found in 
other cases [14-17] with the same limit values  
    
              a)      limmp

�
+∞k(mp) = 2–                                    b)   limmp

�
+∞xo(mp) = ∞                                      

              a)      limmp
�

+∞[∆k(mp)/∆mp] = 0+                        b)   limmp
�

+∞[∆xo(mp)/∆mp] = ∞   
 
The best fit of the 63 data points gives the following relationship of k vs.  mp (Fig. 9a):  
 

k = k(mp) ≈ 1.87715 + 0.03982·mp – 0.00598·mp
2 + 4.77556E–4·mp

3 –1.95679E–5·mp
4 + 

+3.23842E–7·mp
5  
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with     R2 = 0.99997      σ = 6.000E–5     N = 63      p < 1E–4 
 
As for the decay parameter xo=xo(mp)  (Fig. 9b) it is possible to see that the following relationship holds on a 
log-log scale:  
 

log(xo) = log[xo(mp)] ≈ 14.13218 – 2.49815·(logmp) + 1.99429·(logmp)
2 – 0.15574·(logmp)

3 + 
+0.00758·(logmp)

4 – 1.47285E–4·(logmp)
5   

 
where      R2 = 1.000000000000      σ = 0.06784      N = 63      p < 1E-4   
 
where nonetheless it should be kept into account that the six coefficients depend again on mp what means 
that both for k and for xo scaling laws hold. Of course, in both the relationships the coefficients are affected 
by uncertainties which are approximately between some ‰ and some %.  
   
The variable Γk/2 is highly dependent on k, its law being well-known. However in the present context, being 
the plots of the data points as reported in the next two graphs of Fig. 7a and 7b, it can be approximated that 
is fitted by the local (i.e. holding for 1<Γk/2<1.016)  relation of  Γk/2 vs. mp.   
 

Γk/2(mp) ≈ 1.03412 – 0.00992·mp + 0.0123·mp
2 –7.03545E–5·mp

3 + 1.53074E–6·mp
4  

 
with   R2 = 0.998   σ = 4.53E–5   N=63   p<1E–4   and the uncertainties on the coefficients are about 1‰ or 
less. The linear regression of  Γk/2 vs. k  (Fig. 10b)  in the same range leads to the law   
 

Γk/2(k) ≈ (1.59804±0.000728) – (0.29906±0.0003669)·k ≈  
≈ (1.59804±0.455‰) – (0.29906±1.22‰)·k 

 
with   R2 = 0.99995   σ = 2.973E–5   N=63   p<1E–4    
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Fig. 7. Data points and fits of Γk/2 of Xk

2[1,mp/xo(k)]  for the 63 sequences of  {ρm} vs. mp (a)   
and vs. k (b) 

 
Thus, at least in principle, it would be possible to calculate the value of a prime number Pm starting from its 
counter mp using the above reported relations and plots and extrapolating and/or interpolating them, apart 
from precision problems.  
 
What means that the following scheme can be assumed (by means of Figs. 6 and 7):   
 

                            ――――→xo――――→  
                           ↑                                         ↓ 
                                mp ―→ k ―→ Γk/2―→ Xk

2[1,mp/xo(k)] ≈ ρ(mp) ―→ mp
ρ(mp) 

≈ Pm   
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Using the best fit of the data points to evaluate both  xo  and  k  (independently one from each other) from  
mp  in order to get the value of the modified chi-square function  and thus the value of  ρ=ρ(mp)  and of Pm. 
Otherwise, the value of  k  can be attained again as k=k(mp), from which the value of xo = xo(k) can be 
derived, finally getting the value of  Xk

2[1,mp/xo(k)] ≈ ρ(mp) leading to  mp
ρ(mp) 

≈ Pm  according to this 
alternative scheme    
 

mp ―→ k = k(mp)  ―→ xo = xo(k)  ―→  Xk
2[1,mp/xo(k)] ≈ ρ(mp) ―→ mp

ρ(mp) 
≈ Pm      

   
or even according to this further scheme (just interchanging the roles of k and xo)  
 

mp ―→ xo = xo(mp)  ―→ k= k(xo)  ―→ Xk
2[1,mp/xo(k)] ≈ ρ(mp) ―→ mp

ρ(mp) 
≈ Pm    

  
the choice among these options laying on the best precision attained for the final fits of Pm.   
 
Another example of the great flexibility and usefulness of the methodology is given in Fig. 8 where the plots 
of  log(xo) vs. k  (a) and of  k vs. log(xo)  (b)  are shown, once again each with its own polynomial fit and its 
fit parameters.  
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Fig. 8. Plots of log(xo) vs. k  (a) and of  k  vs. log(xo)  (b) 

 
For instance, the fit of plot (b) is (R2=0.99902   σ=3.3517E–4   N=63   p<1E–4)  
 

k ≈ 1.89783 + 0.00403·lgxo – 7.3543E-5·lg2xo + 6.8046E–7·lg3xo – 3.0908E–9·lg4xo + +5.4618E–
12·lg5xo  

 
The two limits limxo→+∞k(xo) = 2–   limxo→+∞[∆k(xo) / ∆xo] = 0+   are noticeable in both plots, though not in 
the fit relations. As a matter of fact, just like in the previous plots 6a and 7a, the fitting function, got 
automatically by the computer code used, is not capable of describing the limit behaviour (for mp→∞ or 
k→2–) of the plots. This aspect of the research will be treated in the future with the aim of correcting it.   
 
It has to be remarked that, though at the present time the precisions of the many methods here shown are not 
very satisfying, nevertheless one of the main advantages of this approach to the problem of primes is given 
just by the many options by which the final values of Pm can be obtained. That leads to get also many checks 
on the final results in addition to the possibility of choosing among the many alternatives of calculating Pm 
from mp, though approximate.   
 
For instance, the latest method here explained gives the two plots (a) and (b) of Fig. 9 where for the former 
the difference between the actual values and the calculated values of ρm (a) is shown vs. the prime counter 
mp, while for the latter (b) the difference between the actual values and the calculated values of Pm  is 
reported versus mp.   
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Nonetheless all these evaluations are still under examination at the present time, in that the error propagation 
from the values of ρm to the final results Pm is very high, that is there are high enhancements of all the 
inaccuracies in passing through the many steps illustrated above. As a matter of fact it is easy to remark that, 
there is a ten-fold increase at least in the two left scales of Fig. 9a and b, while in other cases the situation is 
even worse.   
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Fig. 9. Error propagation from ρm (a) to Pm (b) 
 
Thus another method has been examined. For any sequence {ρ(mp)} the fit has been made also by the finite 
progressions Cα·{m

α}, as already said, thus finding further interesting relationships. 
  
Hence, again for any sequence {ρm} the corresponding progression {Cα·m

α} ≡Cα·{m
α} has been examined 

optimizing the fit, again finding the 63 values of both α and Cα. The next Fig. 10 plots the related 63 data 
points and the two fits for the relationships α=α(mp)  and  Cα = Cα(mp). The first set of data points (a) can be 
fitted by the relationship  
 

α = α(mp) ≈ – 0.0593 + 0.01807·mp – 0.00237·mp
2 + 1.33511E–4·mp

3 – 2.84515E–7·mp
4 – 

2.73375E–7·mp
5 + 7.95901E–9·mp

6
      

 
where    R2 = 0.99997   σ = 2.8805E–5      N = 63    p < 1E-4    
 
while the analogous fit for the 63 data points  Cα vs. mp   (Fig.10b)  is  
 

Cα = Cα(mp) ≈ 1.73777 – 0.0773·mp – 2.1417E–4·mp
2 + 7.58061E–4·mp

3 – 5.82459E–5·mp
4 + 

+1.38533E–6·mp
5    

 
with    R2 = 0.99994   σ = 7.01773E–4      N = 63      p < 1E-4  
 
Once again, the errors (or uncertainties) on the coefficients are between 1‰ and few % and again the limits 
are   
  

        a)     limmp
�

+∞α(mp) = 0–                                     b)        limmp
�

+∞Cα(mp) = +1+ 
               a)     limmp

�
+∞[∆α(mp)/∆mp] = 0+                        b)        limmp

�
+∞[∆Cα(mp)/∆mp] = 0–   
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Fig. 10.  Data points and fits of α (a) and of the coefficient Cα (b) both vs. mp for the 63 sequences of 

{Cα·m
α} 

 
Hence, in this case too, a relationship, though approximate and holding locally, has been found that can be 
used to calculate the value of a prime number Pm from its counter mp, that is   Pm ≈ mp

ρ(mp)  and   
 

ρm = ρ(mp) ≈ Cα(mp) · mp
α(mp) = Cα(mp) · [mp^α(mp)] ≈ [1.73777 – 0.0773·mp – 2.1417E–4·mp

2 + 
7.58061E–4·mp

3 – 5.82459E–5·mp
4 + 1.38533E–6·mp

5]  
· mp^[– 0.0593 + 0.01807·mp – 0.00237·mp

2 
+ 1.33511E–4·mp

3 – 2.84515E–7·mp
4 – 2.73375E–7·mp

5 + 7.95901E–9·mp
6]   

  
Also the relation between Cα(α) and α can be verified as in  the next Fig. 11 leading to the fit  
 

Cα(α) = (1.10405±0.00088) – (46.309±0.469)·α – (2,920.27±77.26)·α
2 – (117,419.8±4,879.6)·α

3 – 
(1.913±0.103)E6·α4   

 
with    R2 = 0.99995   σ = 6.85E–4      N = 63      p < 1E-4  
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Fig. 11. Data points and fits of the coefficient Cα vs. α for the 63 sequences of {Cα·m

α} 
 
The comparison between the factual values and the values calculated by this method  ρ(mp)≈Cα(mp)·mp

α(mp) 
and Pm ≈ mp^(Cα·m

α)  leads to the two plots of Fig. 12 where the former (a) shows the two trends of the 
actual and the calculated  Pm  vs.  mp  on a linear scale (the two plots are undistinguishable on a log-log scale) 
and the latter (b) displays the relative error between  actual

ρm  and  calculated
ρm  that is  %∆ρm  and between 

actualPm  and  calculatedPm that is  %∆Pm  both on the same scale and vs. mp, thus displaying the high error 
propagation from  ρm  to Pm. The relative difference between actual and calculated Pm by this method 
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remains still too large (some %) as well as the error propagation that ranges from  %∆ρm ∈ (–1‰, 0.1‰)  to  
%∆Pm ∈ (–2.7%, 4.6%)  within the range  mp∈(1K, 2P) that is neglecting the first data points  mp<1,000  i.e. 
Pm<7,919.  
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Fig. 12. Comparison between actual Pm values and {Cα·m

α} (a) and error propagation (b) from ρm to 
Pm vs. mp 

 
Thus a further approach has been attempted by examining the trend of the whole function Xk

2[C,mp/xo(k)] ≈ 
ρ(mp) vs. mp with C=1, where in this case mp is the maximum (or end) value of the counter of any prime 
sequence. The Fig. 13 (plot a) shows the result where again a polynomial regression analysis returns the fit 
for the data points    
 

ρ(mp)  ≈ Xk
2[C,mp/xo(k)] = X2

h(mp) ≈ (1.500866±0.0029) – (0.0956±0.00155)·lg(mp) + 
(0.01039±2.87E–4)·(lgmp)

2 – (5.7181±0.221)·E–4·(lgmp)
3 + (1.22892E–5±6.036E–7)·(lgmp)

4 = 
(1.500866±1.932‰) – (0.0956±1.621%)·lg(mp) + (0.01039±2.762%)·(lgmp)

2 – (5.7181·E–
4±3.865%)·(lgmp)

3 + (1.22892E–5±4.911%)·(lgmp)
4  

 
with the following fit values:   R2=0.99989    σ=5.37937·E–4    p<1E–4   N=63     
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Fig. 13. Data points and fits of ρ(mp) ≈ Xk

2[C,mp/xo(k)]  (a) and  error propagation from ρm to Pm  (b) 
both vs. mp 

 
Thus, the value of  ρ = ρ(mp) ≈ Xk

2[1,mp/xo(k)]  can be directly estimated leading to   
 

Pm = P(mp) ≈ mp
ρ(mp) 

≈ mp^Xk
2[1,mp/xo(k)]  ≈ mp^[(1.50086±0.0029) – (0.09506±0.00155)·lg(mp) + 

(0.01039±2.87E–4)·(lgmp)
2 – (5.7181±0.221)·E–4·(lgmp)

3 + (1.22892E–5±6.036E–7)·(lgmp)
4]  
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Of course taking into account, here too, both the errors on the fit coefficients and their propagation as well as 
the scale non-invariance problem. As a matter of  fact the second plot (b) of Fig. 16 shows the error 
propagation from ρm ≈ Xk

2[C,mp/xo(k)]  to  Pm ≈ mp
ρm  vs. mp  that is the comparison between the percentage 

difference between the actual
ρm  values and the calculated

ρm values (%∆ρm ranging from –3.5‰ up to 0.86‰) and 
the percentage difference between the actualPm values and the calculatedPm  values, ranging from %∆Pm=–3.27% 
up to %∆Pm=+3.41% thus displaying the downgrading of the precision, approximately a tenfold increase of 
the uncertainties in passing from ρm to Pm in the range mp∈(1K, 2P).   
 
Despite the fact that the final precision is not so satisfactory, nonetheless it is better than the difference 
between the actual Pm  values and the Pm values calculated by the standard PNT method (that is Pm≈mp·lnmp) 
which ranges from 12.77% up to 6.88% (again from mp=1K up to mp=2P) as shown in Fig. 14 illustrating 
the comparisons among the three different methods: Pm≈ρm^Xk

2[C,mp/xo(k)]  Pm≈ρm^Cα·m
α  and  PNT.  

 
Yet, it should be considered that at the present stage the precisions of the results are not so good as those got 
by other valuable methods [12]. This constraint of the study will be the focus of a further deepening and 
development later on.      
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Fig. 14. Comparisons among the imprecisions of the three methods Pm≈ρm^X k

2   Pm≈ρm^Cα·m
α   Pm ≈ 

mp·ln(mp)  vs. mp 
 
Thus the relationships got in such a way and reported in the present article should be considered just as 
preliminary attempts to evaluate a prime number Pm starting from its counter mp using the method of the 
modified chi-square function.  
 
However, the methodology here shown offers a wide range of different options to calculate the approximate 
value of a prime number Pm from its counter mp with the additional advantage that the precisions of all the 
results can be improved by the use of a more powerful computer, that is a mainframe or even a 
supercomputer, just by acting on both the initial fits of the {ρm} sequences and the final fits of the results as 
well as on the value of n∆.    
 
Moreover, a whole set of further useful relations are obtained in addition to those reported previously. 
  
The relationships between the decay parameters  xo  got by the Cα·m

α method and by the  Xk
2  method are 

shown in the plot (a) of Fig. 15 with the fit given by   
 

lgxo(α) ≈ – 3.29733 + 0.74616·lgxo(X
2) + 4.23628E–4·lg2xo(X

2)   
 
with R2 = 0.99998  σ = 0.18127 N=63  while the plot (b) of Fig. 15 reports the law  k(α)=2+2α as got by the 
calculations that is   
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k(α) = (2 ± 2.925E–17) + (2 ± 2.292E–15)·α 
 
with  R=1.000000000000 and σ=1.333E–16  just a validation of what already told (k = 2+2α) with negligible 
errors.   
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Fig. 15. Plot of lgxo(α)  vs.  lgxo(X
2)   (a)  and plot of  k vs. α   k = 2+2·α  (b)  as got by the calculations 

 
In addition, it can be easily ascertained that also the following scheme of Fig. 16 holds just like the one of 
Fig. 4 yet with the difference that now +α∈(0, +1) and  k=2–2·α  and again the single arrows reveal the one-
way correspondence (injective map) while the double arrow reflects a one-by-one correspondence (bijective 
map). That is not a trivial concern as it might look but an important finding of all the research taking into 
account that both the values of the parameter k and those of the decay or growth parameter  xo are equal in 
the two cases {ρm} and {ρm

–1}. The only difference between the two cases of Fig. 4 and Fig. 16 are that the α 
coefficients obey to the two different laws  k=2+2α  the former and  k=2–2α  the latter.  
 

 
 

Fig. 16. Fits of the sequences {1/ρm}}≡{lg(mP)/lg(Pm)} with k = 2 – 2α 
 
Now, just a trivial remark is due to highlight the fact that the fit of any {m±α} progression by the 
(1/·)Xk

2(A,m/xo) function, according to the range, has fit parameters R=I=1.00000000000000 up to the 12th 
digit i.e. up to the chosen precision, even for so few terms of the progression as 50,000; this is a strict 
consequence of the features of the modified chi-square function. As a matter of fact choosing in (1)  
A=2Γk/2/(2xo)

k/2–1 and being always xo>>m  it is easy to get  xk/2–1=x±α  the natural interpolating function of 
the {m±α} progressions, as already shown [20,21].   
 
Therefore, passing to the geometric representation of the results in the plane (α,k) as in the next Fig. 17, with 
the two half-lines k = 2 ± 2α crossing one each other at the point (α,k)≡(0,2), at this stage of the current 
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study it has been ascertained that the left lower neighbourhood of the point (α,k)≡(0–,2–) is a pillar of the 
whole matter of prime numbers examined in such a way in that capable of directly fitting the finite 
sequences {ρm} by the progressions {mα} with any number of terms and by the fitting function 
Xk

2[(A,mp/xo(k)].   
 
Consequently it is possible to summarize the results and the findings of the present article and of the whole 
research [14-17,20,21] in Fig. 17, where the two half-lines k=2 ± 2·α (according to the ranges  α < 0  or α > 
0) are shown together with all the fits of the {ρm} or {1/ρm} sequences, that is the  Xk

2(A,mp/xo)
  or the 

1/Xk
2(A,mp/xo)

 function as well as the {Cα·m–α} or  {Cα
–1

·m+α} progressions in the left neighbourhood of the 
point (α, k) ≡ (0–, +2–) and in the right neighbourhood of the same point (α, k) ≡ (0+, +2–) respectively. In 
Fig. 17 the neighbourhoods of the point (α, k)≡(0, 2) that is (α, k)≡(0±, 2–) are enhanced for clearness.  
 

 
 

Fig. 17. The plane (α,k) in the ranges  α ∈∈∈∈ (–1, +1)  and  k ∈∈∈∈ (0, +2)  with k = 2 ± 2α 
 
It is interesting to remark that, while the fits of {ρm} or  {1/ρm}  sequences by the Xk

2(A,mp/xo)
  or the 

1/Xk
2(A,mp/xo)

  functions are valid just in the left or right neighbourhoods of the point (α, k)≡(0±, 2–), the fits 
of the finite sequences {m–α} or {m +α} by the functions Xk

2(A,m/xo)
  or 1/Xk

2(A,m/xo)
  are valid in the whole 

ranges α∈(–1, 0) and k∈(0, 2) or α∈(0, +1) and k∈(0, 2)  respectively. This feature has been used as the 
starting point for an elementary proof of Riemann’s hypothesis [20,21] at the point (α,k)≡(–1/2,+1). 
Additionally, Fig. 17 is interesting in that already used in the fits of the finite sequences of prime number 
frequencies {fm} ≡{mp/Pm} [16,17] again by the modified chi-square function and by {m–α} progressions in 
the ranges α∈(–0.25, 0–)⊂(–1,0) and k∈(1.5,+2)⊂(0,+2) along the half-line k=2+2·α while the examination 
of the frequency inverses {fm

–1}≡{Pm/mp} ≈1/Xk
2(A,mp/xo)≈ ≈{m+α} in the ranges α∈(0, +0.25)⊂(0, +1) and 

k∈(1.5, 2)⊂(0, 2) is still in progress with the goal of reaching a more refined version of the PNT.  
 
Lastly, many ways of approximating, that is interpolating and locally extrapolating, the values of  prime 
number finite sequences are possible by the methodology presented here, a methodology which, though still 
at its early stage, is liable of many interesting future developments and that deserves to be further deepened 
in the next future.    
 

4 Conclusions and Future Developments    
 
The algorithm presented in this report as applied to both the finite sequences of {ρm}≡{lgP(mp)/lgmp} and 
the progressions {m–α} by the modified chi-square function Xk

2(A,mp/xo) constitutes an innovative 
methodology for the former and the latter that with no doubt can be applied to many other cases. In the same 
manner such an algorithm, that makes a wide use of the modified chi-square function Xk

2(A,m/xo) is suitable 
to fit some basic structures of the finite sequences of prime numbers.  
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Therefore, the major findings of the present article can be summarized as the following ones also looking at 
the previous Fig. 17:  
 

- The finite sequences {ρm}≡{lgPm/lgmp} of prime numbers Pm do not show the property of scale 
invariance holding for them the scaling laws given by the modified chi-square function 
+Xk

2(A,mp/xo) and by the progressions {m–α};  
- The sequences {ρm} ≡{lgPm/lgmp} are best fitted by the function +Xk

2(A,mp/xo) with  k=2+2α  i.e.  
α=k/2–1 in the lower left neighbourhood of (α, k) ≡ (0–, 2–) and also by the progressions {m–α};  in 
other words {ρm}≈Xk

2(A,mp/xo) ≈{Cα·m
–α};  

- The sequences {ρm
–1} ≡{lgmp/lgPm} are best fitted by the modified chi-square function 

+1/Xk
2(A,mp/xo) = +1/X2–2α

2(A,mp/xo) with  α = 1–k/2 in the lower right neighbourhood of 
(α,k)≡(0+,2–) and also by the progressions {m+α}; in other words {ρm}≈ ≈1/Xk

2(A,mp/xo)≈{Cα
–

1
·m+α};  

- The present methodology allows to get the value of a prime number Pm from its counter mp in an 
approximate way and valid locally however in many different ways, five or six using the scheme of 
Fig. 4 and double using also the scheme of Fig. 16;  

- One of the main advantages of the methodology is that the final fit uncertainties can be reduced by 
more precise determinations of all the initial fits and also increasing the value of n∆ thus leading to 
more precise estimates of the Pm values.  

 
In addition to these conclusions and final results concerning just the present article, the following ones 
should be considered as a summary of the main findings of the whole study, at this early stage, having 
examined the problem of prime numbers from a statistical and analytical viewpoint:   
     

1- Prime numbers have not, from either the statistical or the analytical viewpoint, the property of scale 
invariance holding for them the scaling laws given by k=k(mp) of the modified chi-square function 
Xk

2(A,x/xo) [14-17];     
2- Both the statistics of the progressions {mα} and the statistics of prime numbers {Pm} are best fitted 

by the modified chi-square function Xk
2(A,x/xo) with the ad-hoc parameters  A  k  xo  so that the 

statistics of prime numbers {Pm} are best fitted by the statistics of the progressions {mα} with 
α∈(1+, 1.12)  [14,15];  

3- The progressions {m±α} are analytically best-fitted, according to the range α, by one of the four 
forms, either (±1·) or (±1/), of the modified chi-square function Xk

2(A,m/xo) with the appropriate 
parameters A, k and xo holding k=2±2α according to the range (α<0  α>0) examined [20,21];   

4- The finite sequences of prime number frequencies {fm} ≡{mp/Pm}  are analytically best fitted by the 
modified chi-square function Xk

2(A,x/xo)  with k∈(1.50, 2) hence by the progressions {mα} with 
α∈(–0.25, 0–) holding k = 2 + 2α   [16,17];    

5- The finite sequences {ρm} ≡{lg(Pm)/lg(mp)} are best fitted analytically by the function Xk
2(C,mp/xo) 

with k∈[1.952, 2–) thus also by {mα} with α∈[–0.024, 0–) being k=2 + 2α;  
6- It is possible to find many inductive algorithms which allow to get the value of a prime Pm  starting 

from its counter mp i.e. such that Pm ≈ P(mp) though with values affected by uncertainties and usable 
locally;  

7- As a matter of fact all that holds just taking into account all the approximations adopted, as well as 
the inaccuracies and propagations of the errors as usually done in experimental physics. However 
future researches and refinements of the method will be capable to reduce all the uncertainties.    

8- An elementary (that is not using the theory of complex functions) proof can be given of Riemann’s 
hypothesis implementing this methodology to the progressions {n–α}, { ∑n–α}  and  {N–α+1/(α+1)}  
[20,21].   

 
However much more is still to be done in the matter while in any topic here shown many aspects must be 
developed and deepened, first of all the accuracy of the calculations. Anyhow it is the author’s opinion that 
the algorithm and the methodology here shown can open a new field of study in number theory and 
computational mathematics which can reveal all its power more and more in the future.  
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The use of a much more powerful computer, that is a mainframe, would increase the final precisions a great 
deal, first of all by allowing to increase the value of the  n∆  data points making it as high as reasonably 
attainable (a 1000-fold increase or more). In this frame, further efforts could be focused on the development 
of an ad-hoc computer code capable of automatically sweeping the plane (k,xo) and possibly the 3D space 
(A,k,xo) in order to find, at any point, the parameters of the fit function Xk

2(A,x/xo) and to choose among 
them identifying the best ones.    
 
As for the next future developments, one of the first issues will be the examination of the finite sequences of 
{Pm} ≡Bm·{mp

ρ’(mp)}  or  {Pm} ≡{mp
Dm·ρ’’(mp)}   in order to get more precise evaluations of Pm≈P(mp) and the 

examination of the finite sequences {1/fm}≡{Pm/mp} ≈ ≈1/Xk
2(A,mp/xo)≈{mp

+α} α∈(0, +1)⊂R+ thus obtaining 
a more refined version of the PNT. At the present time this work is in progress on behalf of the author.  
 
Further investigations are still in progress on the entire area especially for what concerns the best 
methodology, among all the described ones and not only, on which to concentrate the efforts to reduce the 
uncertainties in order to get a highly precise formula of Pm ≈ P(mp) at the utmost precision achievable. 
Additional work will be dedicated to the topic of fitting the many decay or growing plots of the final results - 
see Figs. 6a, 7a, 8a and b, 10a and b, 11, 13a, again by the modified chi-square function in one of its four 
forms ±(1·/)Xk

2(Ω,x/ω), instead of a polynomial sum, in that  those plots clearly show a finite limit like 2–, 0– 
and 1+. This is a very interesting topic in that, if so, the area of prime numbers would present a kind of 
iteration and maybe even of self-similarity. Moreover, it is highly probable that these polynomial sums 
themselves may be responsible for the large error propagations and the great uncertainties on the final 
results.    
  
In addition, many further areas of investigation seem to be disclosed by this advanced and original 
methodology concerning also the many integer sequences [35] which can be treated in an innovative way, 
thus maybe revealing undisclosed properties, if any.    
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