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Since the beginning of 2016, China’s annual emissions of herbal residues (HR)

have exceeded 30 million tons. As a kind of solid waste, HR still contains a large

amount of organic matter, which requires further industrial extraction

procedure. Most of the existing studies are concerned with the feasibility of

utilizing traditional Chinese medicine residues, meanwhile there are very few

studies regarding the kinetics of pyrolysis in the process of resource utilization

of traditional Chinese medicine residues. In this study, we comprehensively

studied the kinetics characteristics of raw materials with various heating rates

(10, 20, 30, and 40°C/min) using a synchronous thermogravimetric analysis, and

we adopted Coats-Redfern model to study the thermal kinetics and thermal

analysis of GBR. A novel method combining Genetic algorithm and Adaboost

algorithm (GA-Adaboost) is proposed to predict the thermogravimetric curve of

the raw plant material with respect to the heating rate and temperature. The

experimental result shows that the activation energy of the raw material was

determined by the Kissinger-Akahira-Sunose (KAS) (E � 148.71kJ/mol), and the

correlation coefficient was greater than 0.99. The optimal reaction mechanism

determined by the Coats - Redfern method was random nucleation and

subsequent growth. The GA-Adaboost model achieved good performance

(with a fitting degree of 99.88% on training data, 99.80% on verification data,

and MSE of3.4173) while predicting the pyrolysis process of ginkgo biloba

residue. This study will provide theoretical basis and technical support for

the efficient resource utilization of pharmaceutical residues and reduce

environmental pressure.
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1 Introduction

The rapid development of global industrialization has led to

extreme dependence on the demand for petrochemical energy,

such as coal and oil (Chen et al., 2017a; Bai et al., 2018; Zhang

et al., 2018). With the massive consumption of petrochemical

energy and the increase of environmental pollution, developing

sustainable energy sources is an extremely urgent need. Biomass

resources are full of carbon matter, and are with large reserves

and in a wide distribution (De Sales et al., 2017). Moreover, the

utilization process of biomass resources has the advantages such

as low pollution, renewable, and thus is considered a potential

alternative to petrochemical energy. Biomass energy refers to the

energy present in biomass, such as wood, straw, vegetable oil and

various industrial wastes. However, currently, biomass resources

have not been fully utilized (Pelaez-Samaniego et al., 2013). Most

of the biomass is used directly for combustion, which is

inefficient and pollutes the environment. Converting biomass

into liquid, solid or gaseous fuel can not only reduce dependence

on petrochemical energy but also alleviate the environmental

pressure caused by greenhouse gas emissions, which have

profound significance for ensuring the energy supply,

improving the environment and sustainable development

(Chen et al., 2017b).

Since the beginning of 2016, China’s annual emissions of

herbal residues (HR) have exceeded 30 million tons (Yu et al.,

2019). As a solid waste, HR still contains a large amount of

organic matter within the industrial extraction procedure. Wang

et al. used catalytic pyrolysis to process HR, and successfully

obtained biological oil, which provided a technical opportunity

for the efficient utilization of HR (Shen et al., 2022). The

experimental result shows that the optimum pyrolysis

temperature of this raw material was449.9℃, and the highest

yield rate of biological oil was 39%. Guo et al. studied the

gasification characteristics of HR. In a pilot-scale circulating

fluidized bed, the air was used as a kind of gasifying agent,

and the calorific value of the product gas exceeded

4.0MJ/N ·m3(Guo et al., 2013). Most of these studies focused

on the feasibility of resource utilization of traditional Chinese

medicine (TCM) residues, but the kinetics of pyrolysis and

related reaction mechanisms of TCM in the resource

utilization process are rarely mentioned.

Adaboost algorithm and genetic algorithm (GA), are usually

used to address nonlinear problems. Adaboost algorithm was

proposed by Freund and Schapire (Freund, 1995). Its main idea is

to use a large number of trained weak classifiers to form a strong

classifier with better classification performance in some way

(Zhang et al., 2021; Lu et al., 2022). GA can directly optimize

structural objects, and is a kind of efficient global search methods

(Wang et al., 2020; Zhou et al., 2021a; Yan, 2021). In this study, in

order to improve the efficiency of ginkgo biloba residue (GBR)

pyrolysis, the kinetics characteristics of raw materials with

various heating rates were comprehensively studied using a

synchronous thermogravimetric analysis. A novel method

combining GA and Adaboost (GA-Adaboost) is proposed to

predict the thermogravimetric curve of the material with respect

to the heating rate and temperature. The contribution in this

work is summarized as:

1) Proposed an novel method for predicting the

thermogravimetric curve of the material with respect to the

heating rate and temperature.

2) A comprehensive survey on the kinetics characteristics of raw

materials with various heating rates were conducted.

3) An experiment based on materials from pharmaceutical

manufacturer was carried out, and the experimental result

shows the proposed method could significantly improve the

efficiency of the reaction mechanism.

2 Related literatures

Genetic algorithm (Holland, 1992) is an adaptive global

optimization algorithm, which is based on a natural

population genetic evolution mechanism. Genetic algorithm is

usually used for multi-objective optimization, and has been

widely adopted in many sectors. E.g., Guerrero et al.

(Guerrero et al., 2018) proposed Non-Dominated Sorting

Genetic Algorithm II (NSGA-II) to optimize the allocation of

containers in cloud architectures. Qiu al (Qiu et al., 2015)

proposed task scheduler for a chip multiprocessor to

efficiently allocate memory usage and improve system

performance. Gai et al. (Gai et al., 2017) proposed Dynamic

Data Allocation Advance (2DA) algorithm for data allocation in

multimedia applications. Mayer et al. (Mayer et al., 2020) used

genetic algorithm to solve multi-objective scaling problems for

building-scale microgrids with regards to the economic and

environmental factors. Besides, Li (Li et al., 2021) et al.

proposed a convenient and fast framework for multi-objective

optimization of proton exchange membrane fuel cell (PEMFC).

Starke et al. (Starke et al., 2018) introduced genetic algorithm to

the context of solar power plant sizing, which allows the

evaluation of the plant performance as well as the optimal

configuration from the obtained data. Panapakidis et al.

(Panapakidis and Dagoumas, 2017) introduced the

combination of genetic algorithm and neural network to

forecast the natural gas demand.

The combination of genetic algorithms and other

technologies can solve practical problems efficiently and

accurately. Zhou et al. (Zhou et al., 2021b) combined genetic

algorithm with hydrodynamic simulations to optimize diesel/

gasoline dual-mode dual fuel combustion in compression-

ignition engines, and it is used to optimize parameters that

have a critical impact on engine performance and emissions.

Singh et al. (Singh et al., 2020) proposed the use of genetic

algorithm combined with structural equation modeling to
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predict commercial aviation fuel combustion and to optimize it.

Paykani et al. (Paykani et al., 2019) used a non-dominated

ranking genetic algorithm combined with an ideal solution

similarity ranking priority technique to solve the problem of

inability of the GRI-Mech 3.0 mechanism to accurately predict

the combustion characteristics of methane fuel mixtures and to

determine the optimal methane fuel mixture ratio. Nazoktabar

et al. (Zhou et al., 2022a) proposed a method combining genetic

algorithm with a thermal dynamics model to optimize the

performance and predict the emissions of homogeneous

compression-ignition engines.

The Adaboost algorithm (Nazoktabar et al., 2018) focuses

on training a dataset to obtain multiple classification results

and integrating them to distinguish samples by weighting the

misclassified samples. Adaboost has been applied in many

contexts. E.g., Adaboost is used with sensors in mobile

devices (Freund and Schapire, 1996) for identifying daily

activities and environments. Esmaeili et al. (Zhou et al.,

2022b) applied Adaboost to detect indoor/outdoor

environments by extracting features from different actions

of users and subsequently using Adaboost integrated with

random forest to classify environment types with an accuracy

higher than 99%, Caiet al (Ferreira et al., 2020) proposed an

improved Adaboost algorithm (named Twi-Adaboost) for

improving indoor localization accuracy. Adaboost can also

be applied to detect false comments (EsmaeiliKelishomi et al.,

2019), which can be analyzed based on text features, such as

Fitzpatrick et al. (Yan et al., 2022a) using verbal and non-

verbal as cues for analysis. Adaboost can also be applied to

medical contexts, e. g., Huang et al. (Barbado et al., 2019)

used Adaboost in combination with machine learning to

reduce the computational complexity of critical care data.

Wang et al. (Zhou et al., 2021c) proposed an enhanced

Adaboost algorithm to tune the weaker classifier

parameters. Besides, Adaboost algorithm is also integrated

with other technologies in various contexts (Fitzpatrick et al.,

2015; Huang et al., 2020; Liang et al., 2021; Wang and Sun,

2021; Yan et al., 2022b).

3 Method

In this study, in order to improve the efficiency of ginkgo

biloba residue (GBR) pyrolysis, a novel method combining

genetic algorithm and Adaboost algorithm (GA-Adaboost) is

proposed to predict the thermogravimetric curve of the material

with respect to the heating rate and temperature. The full

workflow of the method is illustrated in Figure 1.

FIGURE 1
The workflow of the method: (A). Processing the raw plant
materials; (B). Thermogravimetric analysis; (C). GA-Adaboost
based prediction.

FIGURE 2
The main workflow of applying GA to Adaboost parameter
optimization.
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3.1 GA-Adaboost model

GA-Adaboostis designed to predict the quality loss of

biomass pyrolysis process. Through the Adaboost algorithm,

many weak classifiers can be integrated into a strong classifier

for prediction/classification, and finally the predicted results will

be integrated (Ferreira et al., 2017). Its main advantages are

simple and easy-to-use. The upper bound of training error rate

gradually decreases with the increase of iterations, and even

though the training times are large, there will be no “over

learning” phenomenon. The Adaboost algorithm is suitable

for classification tasks (Zhan and Yu, 2020). However, it also

has some disadvantages. For example, it is easy to be impacted by

noise; the computing complexity is high, and it takes a long time

to complete the training; for high-dimension data classification,

the error is at a high level. In this design, GA is used as weak

classifier to form ensemble learning algorithm, and then the

optimized parameters are used to train the Adaboost model to

achieve high-precision regression and prediction. The proposed

method not only makes full use of the advantages of global fast

search by genetic algorithm, but also greatly improves the

efficiency of optimal parameters selection, and finally

improves the prediction accuracy of the model. The main

steps applying GA to Adaboost parameter optimization are

shown in Figure 2.

mm groups of training data are selected from the dataset, and

the weight values of initialization sample data was set

asDt(i) � 1/m. According to Eq. 1, the training data is

normalized to the distribution in [0, 1].

xi � xi − x min

x max − x min
(1)

An initial population was generated randomly, and the

population had characteristic strings with definite length (Li

et al., 2020). The population was iterated until a suitable

population was obtained. In the iteration, the fitness value of

each individual in the population was calculated, and the next

generation population was generated by replication, crossover

and mutation operations.

The individual with the greatest fitness in any generation was

designated as the iterative result of the function. This result can

be used as the optimal solution, and the optimal weight and

threshold can be obtained after decoding.

The GA was used to train the weak predictors and then the

trained weak predictors was used to predict the output value

ht(x) of the training data, and the absolute value of the

prediction error of the weak predictors was calculated. The

formula is defined as:

e(i) � ∣∣∣∣ht(xi) − yi
∣∣∣∣(i � 1, 2,/,m) (2)

where xi denotes the input variables of weak predictors; yi

denotes the actual value of comprehensive score. The error

sum was calculated according to the formula:

εt � ∑Dt(i)(e(i)>φ) (3)

The calculation to obtain the weight coefficients of weak

predictors is formularized as below:

wt � 0.5 ln
1 − εt
εt

(4)

According to the weight coefficients, the weight of the next

round of training samples would be adjusted. The adjustment

formula is defined as:

Dt+1(i) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dt(i)
Bt

expwt(e(i)>φ)
Dt(i)
Bt

(other)
(5)

where Btis a normalization factor, which can summarize the

distribution weights of samples, and keep the weight ratio of each

component unchanged. It outputs the strong predictors. After

training for T times, the T groups weak prediction function was

obtained, and the final strong predictors output F(x) was

obtained by its weighted combination. Its calculation formula

is defined as:

F(x) � ∑T
t�1
wtf(ht(x), wt) (6)

3.2 Kinetic theory

TGA is an important tool for studying the thermal

decomposition process and analyzing the pyrolysis kinetics of

materials. It is designed for measuring the weight loss process of

materials with temperature changes, and predicting pyrolysis

mechanism in this context. Biomass pyrolysis is a complex

process that involves multiple reactions. Generally, a full

kinetic analysis of the complex system is not feasible, but

some types of average kinetic descriptions could be obtained

(Mehmood et al., 2017). In this study, three different kinetic

models were used to study the pyrolysis kinetics of the GBR. The

TGA data for the GBR was analyzed by applying the equal

conversion KAS and Coats-Redfern models. The reaction rate

equation is shown in Eqs 7–9.

dα

dT
� (1

β
)k(T)f(α) (7)

α � m0 −mT

m0 −m∞
(8)

dα

dT
� (A

β
) exp(− E

RT
)f(α) (9)

where a is the conversion value, ß (°C/min) is the heating rate,

k(T) is the temperature relationship of Arrhenius reaction rate

constant, k(T) � A exp[−E/(RT)], f(α) is the reaction
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mechanism function, m0 (mg) is the initial sample mass, mT

(mg) is the sample mass at temperature T, m∞ (mg) is the

remaining mass after reaction, A (min-1) is the frequency factor,

E (kJ/mol) is the activation energy, R (J/(KJ/mol)) is the gas

constant, T (K) is the absolute temperature.

3.3 KAS model

The KAS model, one of the most widely used equal-

transformation methods for calculating pyrolysis kinetics (Collazzo

et al., 2017; Mishra and Mohanty, 2018), is formularized as below:

ln( β

T2
) � ln( AE

RG(α)) − E

RT
(10)

Since the same a is selected under different conditions, G(α)
is a constant value, and the ln [β/T2]-1/T is plotted to obtain a

line, and the activation energy E of the reaction can be obtained

through the slope and intercept of the line. The Coats-Redfern

model is used to deal with the dynamics of Eq. 11. After shifting

the terms and integrating the two sides (Minh Loy et al., 2018),

the result is shown as below:

G(α)
T2

� (AR
βE

)[exp(− E

RT
) − exp(− E

RT0
)] (11)

Where G(α) � ∫α

0
dα
f(α), since exp( E

RT0
) ≈ 0, taking the natural

logarithm on both sides of Eq. 10, Eq. 12 is obtained as below:

ln[G(α)
T2

] � ln
AR

βE
− E

RT
(12)

By plotting ln[G(α)T2 ] − 1
T, the exponential factor A and energy

E can be respectively calculated by the slope and intercept of the

plotted straight line. G(α) can vary according to different

development models and reaction mechanisms (Oluoti et al.,

2018). Commonly used mechanisms are listed in Table 1.

4 Experiment

4.1 Experimental settings

The raw materials used in this experiment were obtained

from SPH Xingling Pharmaceutical Co. The obtained sample

consisted of dry ginkgo leaves. The rawmaterial was immersed in

a 60% aqueous ethanol solution, and water vapor was

continuously introduced. 6 h later, the mixture was filtered

and washed to get the GBR. With the operation of cooling,

the residue was dried at 80 C for 24 h using an electrothermal

oven (101-0BS, Lichen, Shanghai, China). The dried residue was

pulverized using a pulverizer (CY-150, Xiji, Zhejiang, China) to a

diameter of ≤200 μm.

After the proximate analyses of moisture, ash, volatiles and

fixed carbon, the results can be seen in Table 2.

4.2 Thermogravimetric analysis

The pyrolysis characteristics of the GBR were investigated

with a thermogravimetric analyzer. The sensitivity of the

microbalance was less than ±0.1 μg. The sample (10 ±

0.01 mg) was placed in an aluminum crucible, and the sample

weight was continuously measured. In the tube furnace (OTF-

1200X, Kejing, Hefei, China), the sample was heated from 800 °C

at heating rates of 10 °C/min, 20 °C/min, 30°C/min and 40 C/min

under non-isothermal conditions and kept at 105°C for 10 min to

ensure complete removal of moisture; then, it was heated from

105 to 800 C. The data obtained from the TGA experiments were

used for the kinetic parameter analysis. Nitrogen was used as a

type of carrier gas to pyrolyze the sample in an inert atmosphere.

The flow rate of the carrier gas was kept at 80 ml/min. To ensure

the reliability of the experimental results, all experiments

repeated three times to satisfy the reproducibility criteria and

the relative error between the measured values was within 5%.

TABLE 1 Reaction mechanisms, model names with their f(α)and G(α).

Model Code G(α) f(α)

Chemical Reaction, n = 1 F1 −ln(1 − α) (1 − α)
Chemical Reaction, n = 2 F2 (1 − α)−1 − 1 (1 − α)2
One-dimensional diffusion, 1D D1 α2 α−1/2

Two-dimensional diffusion, 2D D2 (1 − α) ln(1 − α) + α [−ln(1 − α)]−1
Three-dimensional diffusion, n = 2 D3 [1 − (1 − α)1/3]2 3/2(1 − α)2/3[1 − (1 − α)1/3]−1
Avrami-Erofeev, n = 2 A1 [−ln(1 − α)]2 1/2(1 − α)[−ln(1 − α)]−1
Avrami-Erofeev, n = 3 A2 [−ln(1 − α)]3 1/3(1 − α)[−ln(1 − α)]−1
Avrami-Erofeev, n = 4 A3 [−ln(1 − α)]4 1/4(1 − α)[−ln(1 − α)]−1
Phase boundary reaction of shrinking cylinder, n = 1/2 R1 1 − (1 − α)1/2 2(1 − α)1/2
Phase boundary reaction of shrinking spheres, n = 1/3 R2 1 − (1 − α)1/3 3(1 − α)2/3
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4.3 Effect of the heating rate on the
thermogravimetric analysis

As shown in Figure 3, when the heating rate of pyrolysis

process changed, the trend of raw materials was nearly not

changed, which indicated that the pyrolysis mechanism of raw

materials was consistent under different heating rates. However,

the heating rate affected the peak value, the position of the

inflection point of the highest temperature and the maximum

decomposition rate of the TGA curve. Samuelsson et al. drew a

similar experimental conclusion when they studied the pyrolysis

of Norway spruce (Samuelsson et al., 2015). When the heating

rates were 10 C/min, 20 C/min, 30 C/min and 40 C/min, the peak

temperatures of the dregs were 337 C, 352 C, 362 C, and 380°C,

respectively, and the maximum point of mass loss rate shifted to

high temperature. This could be due to the limitations of the

heat mass transfer in the sample, which resulted in the

difference between the reference and the sample

temperature. In addition, the poor thermal conductivity of

biomass material also led to the temperature gradient in the

experiment, that is, the temperature inside the sample might be

lower than that of its surface. Furthermore, the maximum mass

loss rate of the DTG curve decreased. The same phenomenon

was observed by other researchers (Fernandez et al., 2016;

Chandrasekaran et al., 2017).

Therefore, when the temperature remained the same, heating

rates was lower, the heat transfer between the biomass particles

was higher. That resulted in the higher degree of pyrolysis and

lower coke ash content. With higher heating rates, the thermal

TABLE 2 Ultimate analysis, proximate analysis, and biochemical analysis of GBR sample.

Ultimate analysis wt% Proximate analysis wt% Biochemical analysis wt%

Carbon 53.72 Volatiles 72.59 Cellulose 42.4

Hydrogen 7.74 Fixed carbon 14.65 Hemicelluloses 15.35

Oxygen 33.68 Ash 8.23 Lignin 29.37

Nitrogen 1.25 Moisture 4.53 Extractives 12.88

Sulfur 0.36

FIGURE 3
(A) TG curve of dregs at different heating rates, (B) DTG curve of dregs at different heating rates.

FIGURE 4
KAS method to find the fit curve of activation energy.
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hysteresis between the biomass particles resulted in partial non-

devolatilization, which formed the coke with higher calorific

value.

4.4 Pyrolysis kinetic analysis

4.4.1 Determination of activation energy
In this study, the KAS method was used to avoid selection of

the mechanism function and directly obtain the activation energy

E, thus reducing unnecessary errors during the calculation

process. Figure 4 shows the fitting curve of the activation

energy of a pesticide residue. When the conversion value was

beyond the range of 0.2–0.8, the linear correlation coefficient of

the obtained fitting curve was low (R2 < 0.95). Therefore, these

fitting curves could not be used to estimate the activation energy

of the pesticide residue. When the conversion value ranged from

0.2 to 0.8, the fitted curves had higher correlation coefficients

(R2 > 0.97) and were basically parallel to each other, indicating

that the apparent activation energy had small changes within this

range and followed the same pyrolysis mechanism; thus, this

range was suitable for the activation energy estimation.

Table 3 shows the activation energy E and correlation

coefficient R2 obtained using the KAS method for dreg

pyrolysis. As shown in Table 3, the activation energy

increased and then decreased with the increase of the

conversion value, which was basically consistent with the

trend of castor pyrolysis reported by Kaur et al. (Kaur et al.,

2018). When the conversion value ranged from 20 to 60%,

hemicellulose and cellulose pyrolysis occurred, and the

activation energy continued to rise. As the pyrolysis

continued, the activation energy value decreased when the

conversion value was between 60 and 80%. At this stage,

lignin and cellulose with low residuals were pyrolyzed.

Vamvuka et al. found that cellulose decomposition had the

highest activation energy (145–285 kJ/mol), whereas lignin

decomposition had the lowest activation energy (30–39 kJ/

mol), which might be the reason for the reduced activation

energy (Vamvuka et al., 2003). When the conversion value

was between 20 and 80%, the average EKAS was 148.71 kJ/mol.

4.4.2 Determination of pyrolysis mechanism
function

In this study, the Coats-Redfern method combined with

41 common solid-phase reaction mechanism functions was

used to calculate the pyrolysis kinetic parameters E, A and the

correlation coefficient R2 at different heating rates ß. Partial

results are listed in Table 4. If the selected pyrolysis kinetic

function G(α) was reasonable, the activation energy E value

obtained by the Coats-Redfern integral method should be

similar to that obtained by the KAS method. Table 4 shows

that the linear correlation coefficients R2 of the equation fitted by

the reactions and the Avrami-Erofeev model (n = 2, 3, 4) was

high, but the E values obtained by these models were quite

different. Only the mechanism function A-E using the reaction

order n = 3 obtained an activation energy EA2 closest to EKAS

(EA2 = 161.34 kJ/mol). Therefore, the pyrolysis stage of the GBR

follows the A-E equation, and its reaction mechanism is random

nucleation and growth. The reaction series n is equal to 3, and the

mechanism function can be expressed as G(α) � [−ln(1 − α)]3.

4.4.3 Kinetic compensation effect
As shown in Table 4, the heating rate is accordance with both

lnA and E. This might be due to the type of interaction between

InA and E, which is named the dynamic compensation effect.

Besides, the E and InA of the dreg pyrolysis fitted linearly (as

shown in Figure 5). The linear correlation coefficient R2 of the

fitted equation was 0.9811, and the dynamics compensation

effect expression of the dregs was lnA = 0.2778E-16.3062.

Thus, the frequency factor A of the dreg pyrolysis reaction

was calculated and found to be approximately equal to

2.418 min × 1,012 min. The mechanism functions G(α), EKAS
and A were substituted into Eq. 13 to get the kinetic equation for

the dreg pyrolytic process as below:

dα

dT
� (2.418 × 1012

β
) exp(148.71 × 103

RT
) · (1 − α)[−ln(1 − α)]2

3

(13)

4.5 GA-Adaboost evaluation

4.5.1 GA-Adaboost model setting
The main parameters that determines the performance of

Adaboost model are the number of iterations and learning rate.

Firstly, the value range of the two parameters was limited to

50–100 and 0.1-2 by empirical method and trial-and-error

method. DNA length contained two parameters, each of

which took up 12 bits. Each parameter had 212 valid values,

TABLE 3 KAS method to obtain activation energy and correlation
coefficient.

Conversion (α) R2 E (KJ/mol)

0.1 0.9210 130.36

0.2 0.9955 143.66

0.3 0.9999 147.56

0.4 0.9976 149.92

0.5 0.9940 151.35

0.6 0.9907 151.93

0.7 0.9835 150.76

0.8 0.9711 145.76

0.9 0.9071 119.1
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TABLE 4 Kinetic parameters of Coats-Redfern method for different heating rates.

Mechanism function β = 10 C/min β = 20 C/min

R2 lnA (min−1) E (kJ/mol) R2 lnA (min−1) E (kJ/mol)

F1 0.9896 3.34 31.75 0.9841 4.07 32.74

F2 0.9894 7.50 48.50 0.9938 8.29 50.15

D1 0.9310 6.06 49.99 0.9182 6.78 51.34

D2 0.9572 6.98 56.46 0.9471 7.71 58.05

D3 0.9806 7.48 64.76 0.9739 8.25 66.66

A1 0.9936 11.84 73.74 0.9899 12.63 75.99

A2 0.9949 27.57 157.72 0.9919 28.21 160.49

A3 0.9945 19.94 115.73 0.9919 20.79 119.24

R1 0.9535 0.94 25.22 0.9413 1.66 25.96

R2 0.9690 1.08 27.25 0.9591 1.80 28.07

β = 30°C/min β = 40°C/min

R2 lnA (min−1) E (kJ/mol) R2 lnA (min−1) E (kJ/mol)

F1 0.9853 4.36 32.69 0.9794 5.12 33.71

F2 0.9930 8.53 50.11 0.9933 9.14 51.45

D1 0.9207 7.04 51.38 0.9115 7.61 52.54

D2 0.9492 7.95 58.09 0.9418 8.46 59.98

D3 0.9754 8.46 66.70 0.9701 8.89 67.25

A1 0.9908 12.82 76.03 0.9872 13.16 76.21

A2 0.9926 28.81 162.72 0.9898 29.46 164.41

A3 0.9920 20.89 119.38 0.9890 21.80 120.71

R1 0.9435 1.96 25.91 0.9316 2.78 27.19

R2 0.9610 2.09 28.02 0.9514 2.90 29.23

FIGURE 5
Kinetic compensation effect of dregs at different heating
rates.

FIGURE 6
Variation curve iteration times and mean squared error.
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and the total DNA length was 24. The DNA population was set to

200. The mating probability of paternal population was 50%. The

mutation probability of each DNA was 0.1%. The number of

iterations was 100.

4.5.2 Comparison of adaboost andGA-Adaboost
models

When the genetic algorithm was used to adjust the

parameters, all valid samples with the amount of 1,303 would

be used to obtain results of parameters selection. During the

verification process, in order to obtain an intuitive comparison,

the data were randomly sampled, 80% of the data were used for

training, and remaining 20% data were used for validation.

Adaboost model and GA-Adaboost model with default

parameters (the rounds of iterations is 50 and the learning

rate is 0.1) were used to train the data. The performance of

the model had been verified by the validation data after the two

models were established. This study used mean squared error

(MSE) as the algorithm loss function for performance

verification.

The number of iterations was determined by observing the

error change of the test samples during iteration. Using Adaboost

algorithm, the number of iterations usually was within (1, 100).

Each iteration ran five times. The average value of the five

running errors was taken as the evaluation index of the final

strong predictor error, as shown in Figure 6. The number of

iterations corresponding to the minimum average test error was

chosen as the iteration constant of GA-Adaboost model to avoid

over learning. It can be seen from the figure that due to the

existence of mutation; the loss function was gradually fluctuating

falling, which shows that the mutation mechanism can effectively

help the algorithm jump out of the local optimum and realize

further iteration. Therefore, in this study, the number of

iterations was 88 and the learning rate was 1.5485.

The Adaboost model had fitting degree of 99.38% on training

data, 99.26% on verification data, and MSE was 4.9653. The GA-

Adaboost model had a fitting degree of 99.88% on training data,

99.80% on verification data, and MSE was 3.4173. Figure 6 is the

fitting diagram of test data. It can be found that the fitting degree

of the two models is very high, so the difference between the two

models cannot be seen directly. However, the MSE of Adaboost

model was 4.9653, while GA-Adaboost can reduce the mean

squared error by 31.18%. This proves that the performance of

Adaboost model adjusted by GA algorithm has significant

advantages. As shown in Figure 7, we can see that the GA-

Adaboost runs are closer to the 45° fit line. On the other hand, the

fit of GA-Adaboost on the validation dataset is close to the fit of

the Adaboost model with default parameters on the training

dataset. Therefore, compared with Adaboost model with default

settings, GA-Adaboost model achieved better performance while

predicting the pyrolysis process of ginkgo biloba residue.

5 Conclusion

In this study, in order to improve the reaction efficiency of

GBR Pyrolysis, the thermodynamic and parameters of GBR were

systematically studied, and a GA and Adaboost algorithm based

method was proposed to predict the combustion trend. The

thermal analysis of TG and DTG showed that the pyrolysis of

GBR includes a number of complex reaction mechanism. A

Coats-Redfern model based analysis of the thermal kinetics of

GBR indicated that the optimal reaction mechanism was random

nucleation. The pyrolysis kinetic model at different heating rates

was established in the experiment. The introduced GA-Adaboost

model achieved good performance (with a fitting degree of

99.88% on training data, 99.80% on verification data, and

MSE of 3.4173) while predicting the pyrolysis process of GBR.

Various kinetic parameters and TG data in pyrolysis can be

observed through these predicted data by GA-Adaboost model.

These parameters were proved (by the experiment) valid for the

pyrolysis process of GBR.

FIGURE 7
(A) Fitting diagram of Adaboost model on the test dataset, (B) Fitting diagram of GA-Adaboost model on the test dataset.
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