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ABSTRACT 
 

From obtained structure equations, restrictions on a space-time geometry for possible solutions of 
relativistic continua are studied. The Minkowski space proved to be “cramped” to describe the 
continuum if except for the medium motion equations one imposes rigidity and rotation conditions. 
The continuum is a basis of noninertial reference frames (NRF) where one studies different 
physical processes. For example, bases of simplest NRF are constructed: 1. Relativistic globally 
uniformly accelerated Born rigid NRF. 2. Relativistic Born rigid uniformly rotating reference frame 
(RF) without a horizon. 3. Rigid irrotational spherically symmetrical quasi-Einstein’s NRF. One can’t 
describe bases of these systems in the Minkowski space, the Riemannian space-time is needed. 
The space-time of these RF is not directly connected with the general relativity theory (GRT), 
though it imposes conditions on some solutions of the Einstein equations. A solution of the 
Sagnac’s, Erenfest’s and Bell’s paradoxes is proposed. 

Original Research Article 



 
 
 
 

Podosenov et al.; PSIJ, 13(2): 1-18, 2017; Article no.PSIJ.30616 
 
 

 
2 
 

Keywords: Space-time; metric tensor; curvature tensor; reference frame (RF); Bell’s problem; Born’s 
rigidity. 

 
1. INTRODUCTION 
 
From the physical encyclopaedia [1], “reference 
frames (RF) are the collections of the coordinate 
and clock system connected with the body 
relatively to which the motion (or the equilibrium) 
of any other mass points or bodies is studied”... . 
So to investigate the motion (equilibrium) of 
other bodies an analytical specification of the 
body properties (the basis of RF itself) is 
needed. We select a continuum as a basis body. 
 
4-acceleration, a strain velocity tensor and a 
rotational velocity tensor are characteristics of a 
continuum at 4-space-time. The law of motion 
includes 4-acceleration and at specified flat 
metric 4-velocity field and the main continuous 
medium tensors are determined by the 
integration of the motion equation. The 
continuum at a force field specifies some 
reference frame (RF). For RF with specified 
properties besides the motion equations one 
needs to know additional conditions assigned to 
the main continuous medium tensors depending 
on 4-velocities and 4-accelerations. For 
example, the demand concerning the rotation 
and the rigidity. The number of equations to 
obtain 4-velocity becomes overdetermined and 
the integrability conditions should be fulfilled. 
The latter are fulfilled if both 4-velocities of the 
continuous medium and the metric coefficients 
will be sought for.  
 
When describing properties of arbitrary 
deformable reference frames in the form of the 
continuum either field of 4-velocities (the Euler 
viewpoint) or the law of continuum motion 
determining the connection between Euler and 
Lagrange variables are specified. Space-time is 
considered either flat in the case of special 
relativity theory (SRT), or the Riemannian one in 
the case of the general relativity theory (GRT).  
 
If one neglects by the gravitational particle 
interaction and an external force influencing on a 
body is not a gravitational one then to describe 
the medium motion the relativistic SRT 
mechanics is applied.  
 
In SRT fields do not curve the space-time. The 
space-time geometry remains flat. Only “spatial 
sections” are curved. Such viewpoint is the 
routine in the relativity theory (RT). We want to 
prove the fallibility of such approach connected 

with the existing transition from the inertial 
reference frame (IRF) to the noninertial 
reference frame (NRF).  
 
Even for the transition to the simplest reference 
frames (RF) there is no a complete evidence in 
RT. One does not know what reference frames 
in SRT are the relativistic uniformly accelerated 
ones. On the one hand, the Möller-Rindler 
systems are related to such ones [2], on the 
other hand the Logunov’s system is [3].  
 
The Logunov’s system is a motion of a charged 
dust in a homogeneous constant electric field 
with zero initial velocities. However, neither the 
Möller-Rindler system [2] nor the Logunov’s 
system [3] are both Born rigid and relativistic 
uniformly accelerated ones! The Möller-Rindler 
system is a relativistic rigid one, but it is not a 
global uniformly accelerated system. The 
Logunov’s system is a global uniformly 
accelerated one, but it does not move in a Born 
rigid way!  
 
We divide all NRF into 2 classes: 

 
1. NRF with the specified law of motion. 
2. NRF with the specified structure. 

 
The routine method of transition from IRF to NRF 
[4,5] is connected with the transformation of 
coordinates containing a non-linear time (that is 
with the law of continuum motion in the 
Lagrangian coordinates, which is obtained, for 
example, by the integration of the motion 
equations in the Euler variables).  
 
It’s obvious that if the motion equations are 
specified in the Minkowski space then no 
transformation of coordinates permit go beyond 
the scope of the flat space-time, as one can’t 
obtain the Riemannian - Christoffel tensor 
differed from zero if this one is absent in IRF. We 
determine a such NRF as the 1-st class NRF. 
 
In the 2-nd class NRF both the knowledge of the 
law of continuum motion and the predetermined 
RF properties specified by the strain velocity 
tensors and the rotational velocity tensors are 
needed. 
 
The Minkowski space, for example, is “tight” to 
satisfy simultaneously even the elemental 
requirements: The Born’s rigidity and uniformly 
acceleration. In this article the 2-nd class NRF 
will be considered.  
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2. STRUCTURE EQUATIONS OF 
RELATIVISTIC CONTINUUM 

 
Our approach is following. Consider the flat 
Minkowski space-time with the signature (+---) 
and the continuum at rest. At some moment t=t0 
any force field is switched on (except the 
gravitational one) and the continuum begins to 
move. What space-time properties are induced 
by the force field? According to the orthodox 
interpretation the space-time properties will be 
unchanged [4]. Our answer to this question will 
not be so dogmatic. We do not exclude the 
possibility that inclusion of the force field can 
change the space-time properties transforming it 
in the world tube limits into a curved one. We 
determine the structure of this space-time in 
accordance with the specified force field 
structure and with the continuum characteristics 

such as µνΣ  the strain velocity tensor, µνΩ  the 

rotational velocity tensor, and the first curvature 

vector of world lines of medium particles µA  

(motion equations).  
 
For a moving continuum in four-dimensional 
space-time with the signature (+---) the 
decomposition of the covariant derivative, of the 
4-velocity field into expansion, rotation and 
acceleration is 
 

∇��� = Σ�� + Ω�� + ���� ,                         (2.1) 
 

where µV  is the field of 4 – velocity, satisfying 

the normalization condition   
 

	������ = 1,                                           (2.2) 
 

µνg  is the metric tensor at the Euler reference 

frame. The connection between covariant 

components 4-velocity νV  and contravariant 

ones 
µV  is determined by means of the metric 

tensor  
 

µ
νµν VgV = . 

 

Space 4-velocity 
kV  corresponds to the direction 

of 
kv  three-dimensional velocity. The relativistic 

strain velocity tensor µνΣ  is determined by 

 

Σ�� = ∇(���) − �(���),                              (2.3) 
 

and the relativistic tensor of rotational velocity 
has the form 
 

Ω�� = ∇[���] − �[���].                              (2.4) 

 
Covariant components of 4-acceleration νA  are 

connected with the 4-acceleration µA  by the 
ratio 
 

µ
νµν AgA =  

µν
ν

µ VVA ∇= .                                        (2.5) 

 
The Greek indices go from zero to three, the 
Latin ones from one to three. 
 
One can interpret the expansion (2.1) from two 
viewpoints: 
 

1. Consider that the field of 4 – velocity µV  is 

known, for example, as a result of the 
integration of the relativistic Euler or 
Navier - Stokes equation at the specified 

flat metric. In this case µνΣ , µνΩ , µA  

continuum characteristics can be obtained 
in accordance with formulae (2.3) – (2.5), 
and expansion (2.1) acts as a 
mathematical identity.  

2. Consider that µνΣ , µνΩ , µA  functions are 

specified. In this case expansion (2.1) 
converts into the differential equation 

system relatively to νV  and µνg . As the 

number of system equations (2.1) and 
(2.2) ranks over the number of unknown 
functions some integrability conditions 
must be satisfied. The relation  

 
����

��� ��� = ����
��� ���,                                    (2.6) 

 
will be the integrability condition for 4-velocity 
components. 
 
To obtain the connection between geometrical 
and kinematic continuum characteristics we will 
calculate the expression in explicit form 
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∂ ∂
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ε
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From this it follows by taking into account (2.1) – 
(2.6), that  
 

���,�� �� = 2∇[�Σ�]� + 2∇[�Ω�]� + 2∇[�(��]��). 
(2.7) 

 
The integration of the system (2.1), (2.7), where 

µ
νεσ,R  is the curvature tensor expressed in terms 

of the metric tensor in an ordinary way, permits 
the solution of the space-time geometry problem 
in which NRF with specified structure is realized. 
We name equations (2.7) as NRF structure 
equations [6].  
 

3. COMPARISON OF CLASSICAL AND 
RELATIVISTIC UNIFORMLY 
ACCELERATED RIGID CONTINUUM 

 
Let us consider the medium motion at the level 
of classical Newtonian mechanics. One can 

determine the velocity field av  of such a system 

from the equations in the Cartesian coordinates 
 

0
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0
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∂
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∂
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b
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b
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xx
xx
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νν

 
 

consta
t

v

x

v
v

tdt

d
a

a

b

a
b

aa ==
∂

∂=
∂
∂+

∂
∂= νν     (3.1) 

 
The first equation (3.1) means zero strain 
velocity tensor, i. e. it corresponds to the rigid 
motion. The second one reflects the absence of 
rotation, and the third one reflects that the 4-
acceleration is constant. The solution of (3.1) 
has the form 
 

0 ,a a av a t v= +                                          (3.2)  
 

where av0  is the initial velocity. If the acceleration 

has a constant direction and its value depends 
on time, the solution of (3.1) is obtained in the 
form 
 

00
( ) .

t

a a av a d vτ τ= +∫                             (3.3) 

Classical mechanics permits a solid-state 
translation with arbitrary acceleration depending 
on time. Non-commuted identical dust particles 
located at such field at equal initial velocities 
move as a solid.  
 
In order to generalize the classical conception of 
the rigid motion Born introduced the definition 
consistent with SRT and GRT. According to this 
definition the continuum motion is called rigid (in 
the Born’s sense) if for any pair of neighboring 
body particles the orthogonal interval between 
corresponding pairs of world lines of medium 
particles remains constant during the motion. 
The orthogonal interval is the distance between 
two world particle lines, measured along the 
hypersurface orthogonal to both world particle 
lines. The difference between the classical and 
relativistic rigidity conditions is in the selection of 
spatial hypersurfaces along which distances 
between world lines of body particles are 
measured.  
 
In classical consideration the hyperplanes of 
simultaneous events are the hypersurfaces. The 
hyperplanes of simultaneity in one IRF are not a 
hyperplanes of simultaneity in the other one. 
While the Born’s rigidity condition has no that 
lack. Obviously when rigid moving hypersurfaces 
orthogonal to world lines in one IRF are 
hyperplanes orthogonal to world lines in all other 
IRF that makes the Born-rigid NRF the Lorentz-
covariant one as opposed to the classical rigid 
NRF.  
 
The Born rigidity condition is equivalent to zero 

µνΣ  relativistic strain velocity tensor. Therefore 

one can expect in relativistic consideration µνΣ

= µνΩ =0, and in accordance with [4] one 

determines “the relativistic uniformly accelerated 
motion as a rectilinear one at which the 
acceleration value A in its own (in each time 
instant) reference frame remains constant”. Then 
as a result, we will obtain the field of 4-velocity 

µV  of relativistic rigid NRF at SRT. 

 
Such a program is realized in [7]. As proper 
reference frame the Fermi- Walker's tetrad 
system [8] was used, in the basis of which the 
constant acceleration is specified. Such motion 
can’t be realized at the Minkowski space as                   
the obtained system of equations is then 
inconsistent.  
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If at the right hand side of equation (2.7) µνΣ =

µνΩ =0, and constAAg =νµ
µν , then the left 

side of an equation does not vanish. 
Consequently in the Minkowski space where the 
curvature tensor is identically zero, the rigid 
globally uniformly accelerated NRF does not 
exist.  
 
The question arises. What is the motion of the 
assembly of identical particles if they are located 
in a constant uniform force field when the initial 
velocities of all particles are equal to zero?  
 
Let us consider the motion of the charged dust 
particles in a constant uniform electric field. 
 
To obtain the Logunov’s or the Möller’s metric 
one considers the pseudo – Euclidean interval 
specified in the Euler variables in the form  
 

( ) ( ) ( ) ( )232221202 dxdxdxdxdS −−−= , (3.4) 
 

where 
3210 ,,, xxxctx =  are the Cartesian 

coordinates, and the law of continuum motion for 
the Logunov’s metric has the form  
 

( )











−+








+= 11,

2

22
0

2
111

c

ta

a

c
ytyx

o

, 

,22 yx =       ,33 yx =       
00 yx =         (3.5) 

 
or 
 

( ) 






 −






+= 1cosh, 0
2

111

c

a

a

c
ytyx

o

τ
, 

,22 yx =       ,33 yx =       

















=

c

a

a

c
t

o

τ0sinh ,                             (3.6) 

 
where the time in IRF is used as a time 
parameter in (3.5) and in (3.6) τ is the proper 
time. A substitution of (3.5) and (3.6) into (3.4) 
gives [3] 
 

2
1

2

22
0

1
0

2

22
0

22
2

1

2
1









+

−
+

=

c

ta

tdtdya

c

ta

dtc
dS

 

( ) ( ) ( )232221 dydydy −−− ,                           (3.7) 
 

( )

( ) ( ) ( )232221

10222 sinh2

dydydy

dycd
c

a
dcdS

−−−








−= τττ
. (3.8) 

 
If from metrics (3.7), (3.8) according to [4] one 
constructs three-dimensional metric tensor 
 

0 0 00/kl kl k lg g g gγ =− + , 

 
then for the square of “physical space distance” 
element we obtain 
 

2 2 2 2 1 2 2 2 3 2
0(1 / )( ) ( ) ( ) ,dl a t c dy dy dy= + + +  

(3.9) 

 
2 2 1 2 2 2 3 2

0cosh ( / )( ) ( ) ( ) .dl a c dy dy dyτ= + +   
(3.10) 

 
It follows from the latter formulae that the 
Logunov metric is not a rigid one.  
 
For the Möller transform the law of motion has 
the form 
 

( ) 







−






+






= 1coshcosh,
2

0111

c

aT

a

c

c

Ta
yTyx

o

, 

,22 yx =       ,33 yx =       

















+=

c

Ta

c

ya

a

c
t 0

2

1
0

0

sinh1 , cTy =0 ,     (3.11) 

 
and the Möller metric is expressed by the interval 
element 
 

( ) ( ) ( ) ( )23222122

2

2

1
02 1 dydydydTc
c

ya
dS −−−








+= .       

(3.12) 
 
Analysis of the Möller transform showed that in 
the Fermi-Wolker basis (to which the 
accelerometer readings are related [6]) the 
accelerations of different particles are not 
identical and these ones are calculated 
according to the formula 
 

( )







 +
=

2
0

0

1
c

ya
a

ya ,                             (3.12a) 

 

where 0a  is the acceleration of the particle along 

y axis located at the origin of the Lagrangian co-
moving coordinate system, c is the velocity of 
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light in free space. Thus, the Möller transform 
does not describe the transition to the global 
linearly accelerated NRF. Each Lagrangian 
particle moves with constant acceleration but 
these accelerations are not equal [2].  
 
Expressing in laws of motion (3.5), (3.6), (3.11) 
the Lagrangian coordinates by the Euler ones, 
we pass from the Logunov’s and Möller’s metrics 
to the pseudo-Euclidean interval (3.4).  
 
It is difficult to understand an origin of 
deformations depending on a time for co-moving 
observers in moving in a uniform field. Identical 
physical conditions for any basis particles 
resulted in a particle motion relatively each other. 
 
When constructing of the relativistic rigid 
uniformly accelerated NRF our approach is 
based on the demand of the deformation 
absence at the medium in its translational motion 
without initial velocity in the homogeneous field. 
The approach integrates properties of the 
Logunov system (uniformly acceleration) and the 
Möller system (rigidity), but inside the world tube 
the space-time is not a flat one. Mathematically 
the problem reduces to the solution of system 
(2.1) provided that  
 

,0=Ω=Σ µνµν   ,1=νµ
µν VVg

 
42

0 /caAAg −=νµ
µν                             (3.13) 

  
and system (2.7) taking into account (2.3) and 
(2.4) provided that the acceleration a0 and the c 
light velocity are constant. System (2.1) at the 
Euler variables reduces to the form  
 

νµνµ AVV =∇                                       (3.14) 

 
Its solution is easier searched at the Lagrange 
accompanying reference frame where 
 

0 1/2 1/2
00 0 000, , .k

kV V V g V g−= = = =  
(3.15) 

 
Let the medium moves along the Euler x1 
coordinate. Then we will find the NRF metric in 
the Lagrange coordinates in the form 
 

2 1 0 2 1 1 2 2 2 3 2( )( ) ( )( ) ( ) ( ) .dS D X dX A X dX dX dX= − − −  
(3.16) 

 
Independence of A(X1) metric coefficient on the 
time coordinate is equivalent to zero strain 

velocity tensor, and the absence of the metric g0k 
components is equivalent to the rotation 
absence. The solution of system (3.14) taking 
into account (3.13) and (3.15) and using the 
Dingle formula [9] results in the relation 
 

( )
2

122
0

4
1

4







=
dX

dD

Da

c
XA .                   (3.17) 

 
Substitution of (3.17) into the structure equations 
(2.7) gives an identity. If one transforms the 
Lagrange coordinates Xi into other Lagrange 
coordinates yi in accordance with formulae  
 

1 1/2 1 0 0 2 2 3 3, , , ,dy A dX X y X y X y= = = =  
 

one finds the expression for the metric of 
uniformly accelerated NRF 
 

��� = exp(�"#$%
&� )(�'()� − (�'))� − (�'�)� −

(�'*)�,                                                   (3.18) 
 

where acceleration a0 is directed along the y1 
axis. One can directly be convinced of the 
uniformly accelerated NRF (3.18)  
 

�) = +�)
�� = ��)

�� + Γ(() (�()� = 1
	((

Γ(()  

= − ,%%
�,##

�,##
�$% = "#

&�.                                  (3.19) 

 
The rest of the components of the 4-acceleration 
are equal to zero. Let us find the NFR space-
time geometry using the known formula for the 
curvature tensor [4] 
 

2 2 22

,

1

2

g g gg
R

y y y y y y y y
βγ αγ βδαδ

β γ α δ β δ αγ γαβ δ

 ∂ ∂ ∂∂= + − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

. ,( )g g Rµ ν µ σ
βγ

ν
αµν β γδδ βδ αγ ασ+ Γ Γ − Γ Γ = (3.20) 

 
where the Christoffel symbols are calculated in 
accordance with the formulae 
 

,

1
,

2

g g g

y y y
µα µβ αβ

µ αβ β α µ

∂ ∂ ∂ 
Γ = + − ∂ ∂ ∂ 

     (3.21) 

 

.

1
.

2

g g g

y y
g

y
γα γβ αβ

αβ β α
µ

γ
µ γ ∂ ∂ ∂ 

+ − ∂ ∂ ∂ 
Γ =

  

 (3.22) 

 
One independent curvature tensor component 
calculated in accordance with the metric (3.18) 
has the form 
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22 2 1
00 00 0 0

10,10 12 1 4 2
00

21 1
exp .

2 2

g g a a y
R

y g y c c

    ∂ ∂= − − = −    ∂ ∂     

                    

(3.23) 
 
The components of the Ricci tensor �-. =
	/.�/-,.0 can be written as 
 

�(( = −�)(,)(,    �)) = − "#�
&2 ,    �)( = 0.  (3.24) 

 
and the scalar curvature is 
 

� = 2 "#�
&2 .                                               (3.25) 

 
Thus, one can realize the relativistic rigid 
uniformly accelerated NRF in the space with 
constant curvature. 
 
If instead of the metric (3.18) one substitutes 

1 2 2
00 0(1 / )g a y c= + , corresponding to the 

Möller metric [2], into the right side of equation 

(3.23), then 10,10 0R = , as the Möller metric was 

obtained by means of transformation of 
coordinates from the Minkowski space. In our 
case the joint demand of rigidity and uniformly 
acceleration does not make the right side of 
structure equations (2.7) vanish. Hence, the 
Riemannian - Christoffel tensor is differed from 
zero. The formulas (3.18), (3.23) are obtained in 
[6] and repeated in [10,11].  
 
Let us prove the lemma.  

 
Lemma 1  
 
In the Minkowski space the Born-rigid and 
relativistic uniformly accelerated translational 
continuum motion is absent. 
 
Proof  
 
According to (2.7) Ω�� = 0  for the translational 
motion, Σ�� = 0 for the rigid motion in the Born 
sense. For the relativistic uniformly accelerated 
motion the equality is valid 
 

	������ = 45678.                                  (3.26) 
 

Then the structural equation has the form 
 

���,�� �� = ∇�(����) − ∇�(����).              (3.27) 
 
and equations (2.1-2.5) yield the relation 

∇��� = ���� .                                          (3.28) 
 

Let us examine the convolution  
 

���,������ = (9�� − ����)∇��� − ����. (3.29) 
 
Convolving with 4-accelerations, we have 
 

���,���������� = ����∇��� − (����)� 
= ��∇�(����) − ����∇��� − (����)�.  (3.30) 

 
In accordance with (3.26)  
 

���,���������� = −(����)� = 45678 ≠ 0. 
(3.31) 

 
The Riemann-Christoffel tensor convolution is 
differed from zero. So, the Riemann-Christoffel 
tensor is nonzero. The lemma 1 is proved. 
 
In structure equations (2.7) for vortex-free rigid 
motions, if one contracts over the first and third 
indices (the Ricci and curvature tensors are 
selected), applying the identity ∇�(����) ≡ 0 and 
equation (3.26), we have 

 
����� = ��∇��� ,                                    (3.32) 

 
that is equivalent to 
 

<��� − �	��=�� = 0,   � ≡ ∇��� .            (3.33) 
 

One can obtain metric (3.18) directly from the 
relations 
 

ε
ε

σµ
σµ ARVR ∇== 0

0V .                     (3.34) 

 
4. RELATIVISTIC RIGID UNIFORMLY 

REVOLVING DISK  
 
Generally when examining the revolving disk one 
chooses the rest-frame where the >( , ?( , @( , 8( 
cylindrical coordinates are introduced and 
passes to the revolving reference frame >, ?, @, 8 
according to the formulas: 
 

>( = >,    ?( = ? + Ω8, 
@( = @,    8( = 8,                                        (4.0) 

 
where the Ω speed of rotation relatively @ axis is 
constant. The line element is 
 

��� = (1 − Ω
�A�
&� )4��8� − 2Ω>��?�8 − �@� −

>��?� − �>�.                                           (4.1) 
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This formula is valid if >Ω/4 < 1. Other velocity 
distributions restricting the disk linear velocity at 
> → ∞ to values less than the light velocity 4 and 

at 
ΩA
& ≪ 1  with F = Ω>  are presented in 

[12,13,14]. But only the usual distribution law 
F = Ω> , Ω = 45678  satisfies the stiffness 
criterion, both the classic and the relativistic one 
(in Born’s sense). 
 
Let us find the metric of the rigid relativistic 
uniformly revolving NRF supposing that the 
strain velocity tensor is Σ�� = 0. We demand the 
invariant constancy characterizing the 
relativisctic generalization of the square of the 
disk rotational velocity G. 
 

Ω��Ω�� = �H�
&� = c5678.                            (4.2) 

 
In the Lagrangian co-moving RF connected with 
the revolving disk we have 
  ��� = +(>)4��8� − 2J(>)4�8�? − �@� −

>��?� − �>�,                                           (4.3) 
 
�) = )

�K
LK
LA ,    �� = �* = �( = 0.               (4.4) 

 
After the calculations [6,15,16,17,18] we have 
two independent equations  
 

M
K

LK
LA − LM

LA = −2 H
& (+>� + J�)%

�,                  (4.5) 

 
LK
LA = −2 H

& +J(+>� + J�)N)/�.                   (4.6) 

 
Equation (4.2) is equivalent to the constancy of 
the value of metrically invariant angular velocity 
vector [19] and that is equivalent to the 
constancy of the value of the speed of rotation in 
the co-moving tetrads [14]. 
 
The relativistic G  and the classical rotational 
speeds Ω are connected by the equation 
 

G = Ω(1 − Ω
�A�
&� )N).                                  (4.7) 

 
There is a steady-state solution for (4.3). This 
solution is applicable in the whole area 0 ≤ > ≤ ∞ 
and it is realized in the Riemannian space – 
time.  
 
The solution of the system (4.5), (4.6) in the 
quadratures is absent. Analysis showed that at 
G>/4 = 1  the metric (4.3) coincides with (4.1). 
The centripetal acceleration in the revolving NRF 
has the form 

P = 4��) = − H&M
QKA�RM�,                             (4.8) 

 
at small > it passes into the classical one and at 
> → ∞  gives P = −G4 . After simplifications the 
system (4.5-4.6) is represented in the form 
 LS

L� + S
� (1 − F�) = (2 − F�)(1 − F�),         (4.9) 

 

+ = exp(−2 T  F�U), F = V
Q)RV� , W = M

A√K ,
U = HA

& .                                                   (4.10) 
 
The F(U)  function is the dimensionless linear 
disk velocity. For small velocities 
 

+ = exp(−2 T  F�U) = exp(−U�) = 1 − U�, 
(4.11) 

 
that is equivalent to the classical equation. It 
follows from (4.9) that for U → ∞ the equation has 
the solution F = 1. This solution is differed from 
the classical rigid disk, where the field of 
velocities at infinity is indefinitely great. The 
numerical solution diagram (4.9) is similar to the 
hyperbolic tangent diagram for U > 0. 
 
It is known [4], that on a revolving disk at all 
points the clocks can not be identically 
synchronized. So synchronizing along a closed 
circuit and returning to the reference point, we 
obtain that the time differes from the original one 
by the value 
 

( )∫ −
Ω=−=∆

22

2

00

02

1

21

β
πϕ

c

r
d

g

g

c
t .         (4.12) 

 
From our point of view this opinion is erronious. 
The circuit in a physical space is unclosed. Let 
us divide the rotating thin disk into concentric 
thin hoops and consider particles located in one 
of them. World lines of this hoop’s particles in the 
Minkowski space (that is true for small velocities) 
form the congruence of the helical lines on the 
cylinder with radius r and axis t, and the 
congruence of spacelike helical lines orthogonal 
to the congruence of world lines of hoop’s 
particles will be a “physical space”. This 
congruence is found from Pfaff’s equation 
 

,00
0

0 =+ ϕϕdVdxV   ( ) ( )22

2

1
,

β
ϕϕ

−
Ω=

c

r
rt       (4.13) 

 
Let at the law of motion (4.0)  
 

tΩ+=ϕϕ0 , 
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for which the square of interval element (4.1) is 

obtained, the Euler coordinate 0ϕ  coincides with 

the initial Lagrangian coordinate ϕ . That 

corresponds t = 0. From the Euler point ( )0,ϕr  at 

t = 0 instant the world line of some hoop’s 
particle starts. This line is located on the cylinder 
surface above the spatially similar line of a 
“physical space” (Fig. 1). 
 

 
 

Fig. 1. The spatially-time geometry of rotating 
hoop in a plane Z=0 

 
In the π2  angle in the co-moving hoop’s 
system the Lagrangian point ϕ  in a “physical” 

space coincides with the world line of the hoop’s 
particle with ϕ  number. From (4.13) we have 

 

( ) ( )22

2

1

2
2,

β
ππ

−
Ω=

c

r
rt .                           (4.14) 

 
Time interval ( )ϕ,rt  corresponds to the time 

distance along the element of cylinder from the 
plane t=0 up to the “physical” spatially similar line 
( )ϕ,rt  (Fig. 1). Thus, in spite of coincidence of 

formulae (4.14) and (4.12) they have quite 
distinct physical meaning. 
  
Let us consider the light ray propagation 
relatively the source in IRF. The source is 
located at the origin of the Eulerian and 
Lagrangian coordinates. Light pulses are emitted 
in the opposite directions on the circle coinciding 
with one of the circles of the rotating disk. The 

velocity of light in IRF is constant. But as the disk 
rotates, then the “catching up” pulse in a 
“physical”space spends more time up to reach 
the Lagrangian point π2  on the ( )π2,rtt =∆  

value. The pulse propagating in the opposite 
direction to the linear velocity of the rotating disk 
spends less time on the same value. In 
accordance with the universal time the time 
difference to reach the Lagrangian point π2  is 
equal to  
 

( ) ( ) 22222

2

0

4

1

4

1

4
2

c

S

c

S

c

r
tt

ω
ββ

π =
−
Ω=

−
Ω=∆=∆ ,   (4.15) 

 
where the classical angular velocity Ω  is 
substituted on the relativistic one ω  from (4.7), 
and S is the disk area. The expression obtained 
from the Sagnac experiment follows from (4.15). 
Let us consider the relativistic hoop. Using (4.10) 
we have 
 

( )∫∫ −
=−=∆=∆ vdx

v

vr

c
d

g

g

c
tt exp

1

42
2

2

2

0
00

02 πϕ
π

.          (4.16) 
 

In nonrelativistic approximation for small disk 
velocities xv =  and the formula passes into 
(4.15). 
 
Instead of a cylinder we will consider a thin 
rotating hoop as the cylinder element. Fig. 1 
shows that if one places along the hoop absolute 
identical clocks and at the initial instant of time 

sets on all of them the time 1tt =  then on any 
hyperplane t=const lengths of world lines of all 
clocks will be identical, that means that all clocks 
on the hoop go synchronously. That's true from 
physical considerations as clocks at identical 
distances from the centre are in absolutely 
identical conditions. And statement [4] that 
clocks located on the rotating hoop can not be 
synchronized in all hoop’s points is incorrect.  
 
Let us consider the SRT paradox proposed by 
Erenfest [20].  
 
“Erenfest considered not perfectly rigid cylinder 
with radius r and height H, which gradually 
began revolving on its axis and then it rotated 
with constant velocity. Let 'r  is the radius of this 
cylinder from the stationary observer viewpoint. 
Then from the Erenfest viewpoint the 'r  value 
should satisfy two requirements which contradict 
one another:” 
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a) The perimeter of circle of the rotating 
cylinder as compared with the state of rest 
should be shorten: 
  
2 Z> ′ < 2Z>,  
 
as each element of such circle moved 
along the tangent line with the 
instantaneous velocity 'rΩ ; 

b) The instantaneous velocity of each radius 
element was perpendicular to its direction. 
That meant that the radius elements did 
not subject the shrinkage as compared 
with the state of rest. (The elongation of 
the radius at the expense of centrifugal 
inertial forces was ignored.) 

 
This implyies that  
 

''' rr = . 
 
Let us consider the paradox.  
 
Generally for the rotating cylinder one selects the 
rest-frame in which the cylindrical Eulerian 
coordinates >( , ?(, @( , 8( = 8 are introduced and 
passes to the rotating Lagrangian co-moving 
frame by the standard method using the IRF time 
t and the Lagrangian coordinates >, ?, @, 8.  
 
Firstly we will consider the cylinder motion with 

constant angular acceleration ε  up to 1t  instant  
 

( ) ,tt ε=Ω  ( ) ,
2

2

0

t
t

εϕϕ +=  ,1tt <  

( ) constt =Ω=Ω 1 .                                 (4.17a) 
 

We select (4.0) as the law of motion after the 
acceleration when angular velocity Ω  became 
constant. 
 
The transformation formulae (4.0) give 
 

>( = >,    ?( = ? + Ω8, 
@( = @,    8) < 8.                                      (4.17) 
 

Let us consider the difference 
 

(?(� − ?())r = (?� − ?))> = ∆] = 45678. (4.18) 
 
This means that in the Euler variables (in IRF) 
the length of an arbitral arc of the rotating 
cylinder is equal to the arc length in the 
Lagrangian coordinates (in NRF) at the initial 
time. If one selects the perimeter of circle instead 
the arc then the result will not change. It will be 
equal to rπ2 . If instead the Ωt value one can 

select an arbitrary function ^(8) , derivative of 
which in the initial time is equal to zero, then we 
will obtain the same result. Zero derivative �^/�8 
in the initial time means that the disk is at rest. 
(4.17a) satifies the condition. Thus, the 
acceleration in speeding-up does not influence 
on the perimeter of circle both in the co-moving 
NRF and in the initial IRF. There are no any 
Lorentz contractions. The initial perimeter of 
circle of the cylinder being at rest in IRF is equal 
to the circumference of the rotating in this 
system cylinder. We don’t take into account that 
in the cylinder speed-up the radius increase in 
NRF occurs because of a centrifugial inertial 
force. 
 
Solutions (3.5) and (3.6) have identical 
properties. It followes from these solutions that at 
planes constt = , const=τ  the distances 
between the world lines remain constant both in 
IRF and in NRF and no Lorentz contractions 
occur. Relativistictic solutions (3.5) and (3.6) 
represent classical rigid motions of charged dust 
in uniform electrostatic field at zero initial 
velocity. However these dust motions do not 
satisfy to the relativistic Born’s stiffness criterion. 
One can check that the law of motion (4.17) 
satisfy both the Born’s stiffness criterion and the 
classical stiffness criterion. For that one needs 
calculate the relativistic strain velocity tensor 

µνΣ  (2.3) and the classical strain tensor from 

(3.1) and ascertain that both these tensors are 
equal to zero [21]. The lack of the law of motion 
(4.17) is the presence of the horizon which is 
absent in the proposed relativistic uniformly 
rotating NRF.  
 
Let us determine the “physical space” in the 
Minkowski space for arbitrary moving body in the 
Euler variables. The “physical space” with the 
specified 4- velocity field µV  should belong to the 
hypersurface orthogonal to the world lines. The 
metric tensor of the hypersurface in the Euler 
variables has the form 
 

νµµνµνγ VVg +−= .                              (4.19) 

 

Here µνγ  is the projection operator orthogonal 

to the 4-velocity µV . Let the law of continuum 
motion at an arbitrary field of force in the 
Minkowski space is determined by the equation 
 

( )0,ξµµ kyx Ψ= ,                                 (4.20) 
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where µx  are the Eulerian coordinates and 
ky  

are the Lagrangian coordinates, which are 

constant along each fixed world line, ( ) 0/1 ξc  is 

the some time parameter, for example, a proper 
time. As in the co-moving NRF the obvious 
correlations are valid  
 

0
0 00

00

1
0, ,kV V V g

g
= = = , 

0 0
0

00

,k
k k kk

g
V V g V g V

y g

µ
α

µ α
∂Ψ= = = =
∂     (4.21) 

then the element of the spatial interval in the 
Lagrangian co-moving NRF has the form 
 

kn
nk

konnk
kn dydyg

g

gg
dydydL 








−==

00

02 γ .(4.22) 

 
The element of the interval (4.22) coincides with 
the well-known relation [4] obtained by means of 
the radar method. From (4.1), (4.22) we find in 
the rotating disk that the circumference is equal 
to 
 

2

22

1

2

c

r

r
L

Ω−
= π

.                                   (4.23) 

 
Let us ascertain the physical meaning of the 
formula (4.23). Let us consider the Euler 
coordinate system and the hoop being at rest. In 
Fig. 1 the uniformly accelerated hoop motion 
(4.17a) is not mapped, but the law of motion 
(4.17) is represented. The world lines of the 
particles of the hoop being at rest represent the 
collection of the elements of time-space cylinder 
with the radius r, and the congruence of the 
spacelike lines orthogonal to the world lines of 
the hoop particles is the collection of the circles 
parallel to the hoop circle. The curved line 
MNGB is the part of the helical world line of the 
particle being at the instant t = 0 at M point. At 
the same point one of the spacelike curved lines 
orthogonal to the world lines of the hoop 
particles begins. The B point is the intersection 
point of the curved helical lines MB and MNGB.  
 
One can see from the Fig. 1 that the length of 
the “physical” spacelike line MNGB orthogonal to 
the world lines of the hoop points is equal to the 
length of the helical line from the intersection 

point ( )0,,00 === trϕϕ  up to the intersection 

point of this line with the same world line of the 
hoop  
 

( ) ( )







−
Ω===

22

2

1

2
2,,,0

β
ππϕϕ

c

r
rtr . (4.24) 

 
Let us find the length of the helical “physical” 
spacelike line beginning at the M point and 
finishing at the B poit. B and M points belong to 
the world helical line of the same hoop particle 
along that the Lagrangian number of the particle 

0=ϕ  is kept. From the viewpoint of the 

Lagrangian observer during the time (4.24) the 
spacelike “physical” line will again intersect with 
the world line of the hoop particle in π2 . 
Previously these lines were intersect at the M 
point. We point out that the “physical” lines 
always are orthogonal to the world lines of the 
hoop points. Therefore a right angle in the 
Euclidean space is distorted in the pseudo-
Euclidean space. Let us consider the 
infinitesimal curvilinear triangle EDC. The vertex 
angle C corresponds to the right angle. DE 
hypotenuse has a negative length as this line is 
a spacelike one. CE=dL1 also has a negative 
length and DC=dL2 is the element of the world 
line of some hoop point and it is time-similar with 
the positive length. The Pythagorean theorem for 
the pseudo-Euclidean space gives 
 

( ) ( ) ( ) 2
2

2
1

2
1

222 , dldldLDECEDC +=−=−  
 
or 
 

( )
2

22
222222

1 1
1

β
ϕβϕ

−
=−+= dr

dtcdrdL .      (4.25) 

 
In deriving we have used (4.13) from the Pfaff 
equation. We have taken into account that in the 
curve ED according to (4.18)  
 

( ) 0,0 ==Ω+=→ dtrddtrrdrdED ϕϕϕ .  (4.26) 

 
Integrating (4.25) we obtain 
 

2

221

1

2

c
r

r
L

Ω−
= π

.                                 (4.27) 

 
For relativistic hoop from (4.3), (4.9), (4.10) we 
have 
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







+=

−
=+=

Dr

P
dr

v

dr
dtDcdrdL

2

2
22

2

22
22222

1 1
1

ϕϕϕ

     (4.28) 
 









+=

−
=

Dr

P
r

v

r
L

2

2

21 12
1

2 ππ
.       (4.29) 

 
The result for nonrelativistic hoop coincides with 
well-known one [4]. It should be noted the 
identity of formulae (4.23) and (4.27). Expression 
(4.23) was calculated in the hoop NRF, and 
expression (4.27) was calculated in the IRF. That 
solves the Erenfest’s paradox. Both for “physical” 
lengths and for usual ones in the intersection of 
the hypersurface t=const with the surface of the 
spatio-temporal cylinder (4.18) there are no any 
Lorentz contractions. The Lorentz contraction 
appears in transiting (passing) from “physical” 
invariant line lengths orthogonal to world hoop 
point lines to unphysical ones (line lengths). 
Lengths of “physical” and unphysical lines are 
connected by the relation 
 

r
c

r

c

r

r
L ππ

21

1

2
2

22

2

222 =Ω−
Ω−

= .    (4.30) 

 
It is such Lorentz length contraction Erenfest 
pointed out. However such Lorentz contractions 
do not cause deformations and tensions in 
bodies. Only changes of invariant “physical” 
lengths result in tensions [21,22]. We point out in 
conclusion that from our viewpoint the standard 
transiton from the IRF to the rotating NRF (4.0), 
(4.1) is a mixture of the nonrelativistic and 
relativistic approach and it should be clarified. 
That is shown at this part.  
 
5. RIGID IRROTATIONAL SPHERICALLY 

SYMMETRICAL QUASI-NEWTONIAN 
AND QUASI-EINSTEIN NRF 

 
Let us consider in the Minkowski space a 
centrosymmetrical continuum motion which 
occurs from some point. The origin of 
coordinates is located in thar point. Obviously for 
observes in the Lagrangian co-moving reference 
frame the distance between adjacent medium 
elements on any sphere will vary with time i.e. 
such a system is not a rigid one. As all medium 
points located at the identical distance from the 
centre have identical velocities and accelerations 

then such a medium moves without rotations. 
Thus, for a such motion the tensor of rotational 
velocity is equal to zero, and the strain velocity 
tensor and the field of the first curvature vectors 
are nonzero. If for the medium concerned one 
demands the fulfillment of rigidity condition then 
it follows from the analysis of the structure 
equation (2.7) that in the Minkowski space the 
spherically symmetrical NRF having nonzero 
radial acceleration and zero strain velocity tensor 
does not exist. It is accepted that for weak fields 
the Newton’s and the Einstein’s theories 
coincided. However it is not quite so. In the 
Newton’s theory a body being at rest on the 
surface of the gravitating body has zero absolute 
acceleration. A vector sum of a gravity force and 
a supporting force is equal to zero, that causes 
absolute zero acceleration. Freely falling body in 
the Newton’s theory has nonzero absolute 
acceleration. In the Einstein’s theory the situation 
is opposite. A mass poit being at rest on the 
surface of a gravitating body has nonzero 
absolute acceleration that is numerically equal to 
the gravitational acceleration on the body 
surface and directed upwards perpendicularly to 
the surface. And in the Schwarzschild field a 
geodetic line corresponds to the particle, i.e. 
zero absolute acceletation. Thus, the quasi-
Einstein NRF corresponds to the static field in 
which particles being in equilibrium in this field 
are studied.  
 
We obtain the metric of the spherically 
symmetrical Lagrangian co-moving NRF by 
analogy with GRT in the form 
 

��� = exp (_)(�'()� − >�(�`� + sin�`�ϕ�) −
exp (d)(�>)�,                                            (5.1) 
 

where _ and d depend only on >. 
 
The metric (5.1) is rigid one, as the metric 
coefficients do not depend on the time. Zero 

components kg0  mean that rotations are 

absent. The system (2.1) taking into account 
mentioned demands and the fulfillment of the co-
moving conditions has the form 
 

�e = �e = 0,    �( = (	(()N)/�,    �( = (	(())/�,
        �) = �(>),        �( = �� = �* = 0.  

 
That may be reduced to the equation 
 

�) = )
�

L�
LA exp(−d).                                    (5.2) 
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Structure equations (2.7) satisfy (5.2) without 
additional demands for _(>) and d(>)  functions. 
Hence, according to the specified field of the first 
curvature vectors �) it is impossible uniquely to 
find the metric (5.1) without additional conditions. 
 
As stated above, from the physical 
encyclopaedia [1], “reference frames (RF) are 
the collections of the coordinate and clock 
system connected with the body relatively to 
which the motion (or the equilibrium) of any other 
mass points or bodies is studied”... . So to 
investigate the motion (equilibrium) of other 
bodies an analytical specification of the body 
properties (the basis of RF itself) is needed. And 
what means the RF in vacuum? The problem is 
not included in the physical encyclopaedia. In the 
Schwarzschild field vacuum presents outside the 
body. According to GRT in vacuum in the static 
field (as well as the alternating one) we 
understand that RF “… is the collection of the 
infinite number of the bodies filling all space like 
some medium” [4]. Let us examine some 
possibilities. 
 
a) Let the observers be positioned at the earth’s 
surface. They measure the gravitational field with 
accelerometers. The earth’s rotation is not taken 
into account, its density is constant, and the 
earth has a spherical shape. They will detect that 
the acceleration field is directed along the radius 
from the centre perpendicular to the surface. To 
measure the field far from the surface in vacuum 
we use the set of radial weightless rigid rods. 
The accelerometer system is installed along 
these rods. The set of rods and accelerometers 
is a basis of the radially accelerated rigid 
reference frame. The acceleration field will 
decrease with the distance from the earth 
according to the Newton’s gravitation law (in 
zero approximation). If the observers consider 
that their space is plane and the gravitation law 
is exact, the metric (5.1) has the form 
[6,15,16,17,18].  
 

��� = exp (−>,/>)(�'()� − >�(�`� +
sin�`�ϕ�) − (�>)�,                                   (5.3) 

 
where >, = 2Gg/4�  is called “the gravitational 
radius”, M is a body mass, G is the gravitation 
constant, c is the velocity of light in free space. 
When deriving (5.3) we took into account that by 
the definition of the flat space d = 0 and _  was 
found from (5.2) and the Newton’s gravitation 
law. We call metric (5.3) quasi-Newtonian one.  
 

�) = 1
2

�_
�> = hg

4�>�. 
 
In spite of the space metric being flat, the space-
time metric (5.3) is the Riemannian one. That 
contradicts the Newton’s theory where not only 
space is flat but also space-time.  
 
One can show [23] that the calculation of the 
pericentre displacement over one rotation 
according to the formula (5.3) is one-third of the 
one in the Schwarzschild metric. The change of 
the light ray direction when passing nearby the 
central body according to (5.3) is half as large as 
the Schwarzschild’s one.  
 
b) When deriving (5.3) one assumes d = 0 that 
corresponds to the flat space model. The system 
of the rigid non-deformable rods was selected as 
the reference frame outside the earth. The sound 
spreads on these rods with infinitely large 
velocity (that contradicts to the finite velocity of 
the interaction spreading). We assume that the 
interaction propagation velocity is finite and we 
permit that the basis structure of the radial 
accelerated NRF outside the earth is equivalent 
to some elastic medium subjected to 
deformations (and tensions), and the strain 
velocity tensor is equal to zero. 
 
It is convenient to define the connection between 
the deformation and stress tensors in the 
Lagrange co-moving NRF considering the elastic 
medium for which the Hooke law [21,24] is           
valid 
 

Jij = dkl)mij + 2nm iemjopeo,    
 l)(p) = meopeo = )

� (1 − exp(−d)),            (5.4) 

 
where l) is the first invariant of the deformation 

tensor, µλ,
~

 are the Lamé factors, mij = −	ij  is 
the metric of the spatial section (5.4). 
 

pij = )
� (mij − m′ij), 

 
m′ij  is the metric tensor of the flat space in 
spherical coordinates.  
 
The elastic medium has to satisfy the continuity 
equation  
 

∇�(q��) = 0. 
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The solution of the continuity equation results in 
the correlation 
 

q = q(exp(−d/2),                                    (5.5) 
 

where q(  is the density of the “medium” in the 
unstrained state.  
 
The equations of the “motion” of the elastic 
medium in the Lagrange NRF have a form 
analogous to the equilibrium condition of the 
elastic medium in the classic Newtonian 
gravitational field  
 

∇jJij = −qPj ,                                          (5.6) 
 

where Pj  are the “unphysical” (affine) 
acceleration components, and the raising and 
the lowering of tensor indices and the calculation 
of the covariant derivative is realized by means 
of the spatial metric mij . The metric (5.1) is 
orthogonal, and to construct the tetrad field one 
can combine vectors of ortho reference mark rs/ 
with vectors of the affine reference mark. One 
can write the tetrad field in the form of the Lame 
calibration [25,26] 
 

r(/)
� = 9/�

Q|	//| ,        r�(/) = 9�/Q|	//|, 
 

where the summation of u is absent. The tetrad 
tensor components coincide with the “physical” 
ones. Assuming that the tetrad 4-acceleration 
components correspond to (as in the case a). 
The Newtonian value in the flat space, from (5.5) 
and (5.6) we have the expression in the 
spherical coordinates 
 

exp(−d) Lv
LA = −2 w#ex

(vyR��)A�,                         (5.7) 

 
the integration of which results in the relation 
(provided that at infinity the space is flat d = 0)  
 

exp(−d) = (1 − �ex
&#�A ),        4(� = vyR��

w# ,         (5.8) 

 
where 4( is the longitudinal velocity of a sound. 
The tetrad or “physical” component of the first 
curvature vector of the body world line being in 
equilibrium in the quasi-Newtonian gravitational 
field is equal to the rod reaction force or the 
attracting force with opposite sign.  
 

( ) ( ) ( )21
11

1
1

11
1

1 / crGMAgAeA === δ .  (5.9) 

Whence the affine component of the first 

curvature vector 1A  has the form 
 

( ) ( )
( ) ( )2

2
2

1

11
121

/2/exp

/

crGM

crGMacA

λ
γ

−=

== −−

.         (5.10) 

 
Applying (5.2) and (5.8) we find the equation for 
_. 
  

( )

,
/1

/2
2

expexp2

2

21

rr

r

crGMA
dr

d

g

α

λλν

−
=








==
  

,
2

2
0c

GM=α   
2

2

c

GM
rg = .                         (5.11) 

 
The integration of (5.11) gives (provided 
that  at in|inity _ = 0 )  
 

.1
2

12
2
0

2

0











−−







=
rc

GM

c

cν               (5.12) 

  
The limit of the expressions (5.8) and (5.12) 
when 4( → ∞  results in the metric (5.3) that 
corresponds to the Newtonian perfectly rigid 
body model. We refer to such a body as a 
relativistic rigid body in which the longitudinal 
velocity of sound is equal to the light velocity in 
vacuum [21]. The expression (5.8) coincides with 
the m)) component of the Schwarzschild metric in 
the standard form. The 	((  component of this 
metrics is obtained from (5.12) if one expands 
exp(_)  into a series and keeps only the first 
infinitesimal order on (>,/>). 
 
We represent the final output in the form 
 

��� = exp{2�1 − ��x
&#�A − 2}(�'()� − >�(�`� +

sin�`�ϕ�) − LA�
)N���

�#��
.                                 (5.13) 

 
The calculation of the known GRT effects 
according to the metric (5.13) differs only slightly 
from the calculation in accordance with the 
Schwarzschild’s metric. Using [23] we find that 
the difference is in the calculation of the 
pericenter shift which is equal to 5/6 from the 
Schwarzschild’s one. The change of the direction 
of a light beam when passing close by the 
central body coincides with the Schwarzschild’s 
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one. Therefore, we refer to such metric (5.13) as 
a quasi-Einstein one. Time-series identification 
of the physical reference frame as a reference 
body with specified physical properties resulted 
in a new approach to Newton’s and Einstein’s 
gravitation theories. The physical properties of 
the reference frame are similar to the 
introduction of the quantum-mechanical 
complementary principle into the Newton 
gravitation theory. The space-time geometry 
depends on facilities by means of which it is 
observed. The atomic systems are not described 
independently of observation capability. It is 
clear that the reference frame has to possess 
properties which provide minimal distortion of the 
initial field.  

 
6. BELL’S PROBLEM SOLUTION 

 
Let us consider the Bell’s problem [18,27-35]. 
Assume we have two space ships which are 
being at rest relatively to some inertial reference 
frame (IRF). These space ships are connected 
with a tight string. At the time zero in accordance 
with the IRF clock both space ships begin to 
accelerate with constant proper acceleration g 
measured with the accelerometers located on 
each shipboard. The problem is: whether the 
string will be broken or whether the distance 
between these space ships will be increased?  
 
As accelerometers on two ships show the 
identical acceleration g, then the ship motion is 
equivalent to the motion of the charged dust in 
uniform force field with the law of motion (3.5). It 
follows from (3.5) that from the IRF observer 
viewpoint for any particle pair the equality              
holds 
 

( ) ( ) constyytyxtyx =−=− 2
2

1
1

1
2

1
2

1
1

1
1 ,, . 

 
The difference between the current Euler 
coordinates and the original Lagrangian 
coordinates at any instant of time constt =  is 
constant and no Lorentz contractions in IRF 
occur. However according to (3.9) a “physical 
distance” between the rockets increases that 
from the SRT and the relativistic elasticity theory 
viewpoint have to result in the string rupture.    
 
From our viewpoint the string will break if one 
strictly adheres to the SRT approach as in such 
a motion the relativistic (Born’s) rigidity of the 
string is disturbed. Deformations and tensions in 
the medium occur when the medium does not 
move in a Born rigid way. 

From physical viewpoint that situation is absurd. 
Two identical Bell’s rockets with similar driving 
forces (similar accelerometer readings) move 
differently from the astronaut viewpoint. The 
second rocket decelerates from the first one 
although all physical conditions are identical. In 
order to the second rocket does not retard (from 
the astronaut viewpoint) it is necessary that it will 
move with the greater acceleration than the first 
one (3.12a).  
 
In SRT the Bell’s paradox is not solved as 
according to the proved lemma in the Minkowski 
space conditions of relativistic rigidity and            
global relativistic uniform acceleration are not 
simultaneously satisfied. To solve the paradox 
one must admit that it is impossible to realize           
the transition into NRF by means of the 
transformation of coordinates containing 
nonlinear time. Such transformations can not 
result in nonzero space-time curvature [36].  
 
As both rockets are absolutely identical and have 
identical accelerations, in the rocket system, they 
must be at rest relative to each other. Therefore 
after the relaxation period both the Born rigidity 
and the relativistic uniformly acceleration in the 
co-moving reference frame are simultaneously 
realized for the string. 
 
The obtained metric (3.18) and formulae (3.13), 
(3.19) solve the Bell’s problem. These formulae 
correspond to the relativistic rigidity and the 
global uniformly acceleration.  
 
In accordance with that the string will not break. 
But we exit out of the Minkowski space into the 
Riemannian one.  
 
In [30,31] the original formula was obtained 
 

�(8) = &�
"#

 l6 �cosh �"#�#
&� � + sinh �"#�#

&� � Q1 + ���. 
(6.1) 

 
This formula is based on the calclation of the 
“physical” spatial string length L as compared 
with its initial length L0. 
 
Comparison of (6.1) and a similar formula of the 
Lorentz shrinkage  
 

�(8) = �(Q1 + P(�8�/4�                           (6.2) 
 
resulted in a great difference when calculating 
electron bunch deformations in modern linear 
colliders in co-moving reference frames. A 
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standard calculation (see formula (6.2))     
increased the bunch length at the output of the 
collider in a 40000 times, and the calculation 
according to the formula (6.1) increased this 
length in 1.003 times. Detailed results are 
presented in [30,31]. Although the formula (6.1) 
is correct both for large and low accelerations it 
does not solve the Bell paradox in principle.  
 
“It is easy to join words into the expression “the 
coordinate system of the accelerated observer” 
however it is more difficult to search for the 
conception to which that might correspond to. By 
careful consideration this expression proved to 
be contradictory” [37,38].  
 
The detailed critical analysis of the extended 
body mechanics in SRT is presented in [9]. G. C. 
McVITTIE wrote that the “satisfied relativistic 
form of the dynamics of a rigid body is still off the 
beam”.  
 
7. CONCLUSION 
 
It is proved that the translational globally 
uniformly accelerated and Born’s rigid continuum 
motion is impossible in the Minkowski space. If 
one imposes supplementary conditions for the 
rigidity or continuum rotations besides the 
continuum motion equations, these conditions 
“remove” the moving medium from the flat 
space-time. 
 
The metric of the Born rigid globally uniformly 
accelerated continuous medium is realized in the 
Riemannian space-time. This metric combines 
the Möller’s metric properties (the Born rigidity) 
and the Logunov’s metric properties (the global 
uniformly acceleration). 
 
It should be noted that the proper time obtained 
by Einstein [39], which was called the exact time, 
can be obtained from the metric (3.18) for the 
fixed Lagrangian particle. 
  

ττ 







=

2

1
0exp
c

ya
s , 

 
where sτ  is the proper time for the given space 

point, τ  is the universal time. But Einstein 
dismissed the exact expression for the 
approximate (Möller) one. 
 
The relativistic Born rigid uniformly revolving 
NRF without the restriction of the radius value 

and having at infinity the linear velocity which is 
equal to the light velocity and finite acceleration, 
and realized in the Riemannian space time, is 
obtained. The Sagnac’s and Erenfest’s effects 
are explained.  
 
The spherically symmetrical rigid NRF, having no 
analog in the Minkowski space, which is 
equivalent to the balance of gravitational forces 
to elastic ones, is created. If in the elastic 
medium the longitudinal velocity of sound 
concides with the light velocity in free space, this 
body is the relativistic rigid one, and the 
equilibrium solution obtained is described with 
the metric close to the Schwarzschild’s one. For 
a classical solid the sound velocity goes to 
infinity but the equilibrium space-time metric 
remains the Riemannian one with the flat space. 
It turns out that the connection between 
Newton’s and Einstein’s theories is much closer 
than commonly thought. 
 
A solution of the Bell’s problem is proposed.  
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